ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.56 by jsr166, Mon Nov 28 02:35:46 2005 UTC vs.
Revision 1.127 by jsr166, Sun May 6 23:09:28 2018 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded priority {@linkplain Queue queue} based on a priority
33 < * heap.  The elements of the priority queue are ordered according to
34 < * their {@linkplain Comparable natural ordering}, or by a {@link
35 < * Comparator} provided at queue construction time, depending on which
36 < * constructor is used.  A priority queue does not permit
37 < * <tt>null</tt> elements.  A priority queue relying on natural
38 < * ordering also does not permit insertion of non-comparable objects
39 < * (doing so may result in <tt>ClassCastException</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40   *
41   * <p>The <em>head</em> of this queue is the <em>least</em> element
42   * with respect to the specified ordering.  If multiple elements are
43   * tied for least value, the head is one of those elements -- ties are
44 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
45 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46   * element at the head of the queue.
47   *
48   * <p>A priority queue is unbounded, but has an internal
# Line 35 | Line 55 | import java.util.*; // for javadoc (till
55   * <p>This class and its iterator implement all of the
56   * <em>optional</em> methods of the {@link Collection} and {@link
57   * Iterator} interfaces.  The Iterator provided in method {@link
58 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60   * the priority queue in any particular order. If you need ordered
61 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62   *
63 < * <p> <strong>Note that this implementation is not synchronized.</strong>
64 < * Multiple threads should not access a <tt>PriorityQueue</tt>
65 < * instance concurrently if any of the threads modifies the list
66 < * structurally. Instead, use the thread-safe {@link
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67   * java.util.concurrent.PriorityBlockingQueue} class.
68   *
69 < * <p>Implementation note: this implementation provides O(log(n)) time
70 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
71 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
72 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
73 < * constant time for the retrieval methods (<tt>peek</tt>,
74 < * <tt>element</tt>, and <tt>size</tt>).
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @version 1.8, 08/27/05
82 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83   */
84 + @SuppressWarnings("unchecked")
85   public class PriorityQueue<E> extends AbstractQueue<E>
86      implements java.io.Serializable {
87  
# Line 75 | Line 97 | public class PriorityQueue<E> extends Ab
97       * heap and each descendant d of n, n <= d.  The element with the
98       * lowest value is in queue[0], assuming the queue is nonempty.
99       */
100 <    private transient Object[] queue;
100 >    transient Object[] queue; // non-private to simplify nested class access
101  
102      /**
103       * The number of elements in the priority queue.
104       */
105 <    private int size = 0;
105 >    int size;
106  
107      /**
108       * The comparator, or null if priority queue uses elements'
# Line 92 | Line 114 | public class PriorityQueue<E> extends Ab
114       * The number of times this priority queue has been
115       * <i>structurally modified</i>.  See AbstractList for gory details.
116       */
117 <    private transient int modCount = 0;
117 >    transient int modCount;     // non-private to simplify nested class access
118  
119      /**
120 <     * Creates a <tt>PriorityQueue</tt> with the default initial
120 >     * Creates a {@code PriorityQueue} with the default initial
121       * capacity (11) that orders its elements according to their
122       * {@linkplain Comparable natural ordering}.
123       */
# Line 104 | Line 126 | public class PriorityQueue<E> extends Ab
126      }
127  
128      /**
129 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
129 >     * Creates a {@code PriorityQueue} with the specified initial
130       * capacity that orders its elements according to their
131       * {@linkplain Comparable natural ordering}.
132       *
133       * @param initialCapacity the initial capacity for this priority queue
134 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
135 <     * than 1
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136       */
137      public PriorityQueue(int initialCapacity) {
138          this(initialCapacity, null);
139      }
140  
141      /**
142 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144 >     *
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149 >     */
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152 >    }
153 >
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156       * that orders its elements according to the specified comparator.
157       *
158       * @param  initialCapacity the initial capacity for this priority queue
159 <     * @param  comparator the comparator that will be used to order
160 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
161 <     *         ordering</i> of the elements will be used.
162 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163       *         less than 1
164       */
165      public PriorityQueue(int initialCapacity,
# Line 138 | Line 173 | public class PriorityQueue<E> extends Ab
173      }
174  
175      /**
176 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
177 <     * specified collection.   If the specified collection is an
178 <     * instance of a {@link java.util.SortedSet} or is another
179 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
180 <     * according to the same ordering.  Otherwise, this priority queue
181 <     * will be ordered according to the natural ordering of its elements.
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182       *
183       * @param  c the collection whose elements are to be placed
184       *         into this priority queue
# Line 154 | Line 189 | public class PriorityQueue<E> extends Ab
189       *         of its elements are null
190       */
191      public PriorityQueue(Collection<? extends E> c) {
192 <        initFromCollection(c);
193 <        if (c instanceof SortedSet)
194 <            comparator = (Comparator<? super E>)
195 <                ((SortedSet<? extends E>)c).comparator();
196 <        else if (c instanceof PriorityQueue)
197 <            comparator = (Comparator<? super E>)
198 <                ((PriorityQueue<? extends E>)c).comparator();
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202          else {
203 <            comparator = null;
204 <            heapify();
203 >            this.comparator = null;
204 >            initFromCollection(c);
205          }
206      }
207  
208      /**
209 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210       * specified priority queue.  This priority queue will be
211       * ordered according to the same ordering as the given priority
212       * queue.
213       *
214       * @param  c the priority queue whose elements are to be placed
215       *         into this priority queue
216 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
217 <     *         compared to one another according to <tt>c</tt>'s
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218       *         ordering
219       * @throws NullPointerException if the specified priority queue or any
220       *         of its elements are null
221       */
222      public PriorityQueue(PriorityQueue<? extends E> c) {
223 <        comparator = (Comparator<? super E>)c.comparator();
224 <        initFromCollection(c);
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226  
227      /**
228 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
229 <     * specified sorted set.  This priority queue will be ordered
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230       * according to the same ordering as the given sorted set.
231       *
232       * @param  c the sorted set whose elements are to be placed
233 <     *         into this priority queue.
233 >     *         into this priority queue
234       * @throws ClassCastException if elements of the specified sorted
235       *         set cannot be compared to one another according to the
236       *         sorted set's ordering
# Line 200 | Line 238 | public class PriorityQueue<E> extends Ab
238       *         of its elements are null
239       */
240      public PriorityQueue(SortedSet<? extends E> c) {
241 <        comparator = (Comparator<? super E>)c.comparator();
242 <        initFromCollection(c);
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
246 >    private static Object[] ensureNonEmpty(Object[] es) {
247 >        return (es.length > 0) ? es : new Object[1];
248 >    }
249 >
250 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 >        if (c.getClass() == PriorityQueue.class) {
252 >            this.queue = ensureNonEmpty(c.toArray());
253 >            this.size = c.size();
254 >        } else {
255 >            initFromCollection(c);
256 >        }
257 >    }
258 >
259 >    private void initElementsFromCollection(Collection<? extends E> c) {
260 >        Object[] es = c.toArray();
261 >        int len = es.length;
262 >        // If c.toArray incorrectly doesn't return Object[], copy it.
263 >        if (es.getClass() != Object[].class)
264 >            es = Arrays.copyOf(es, len, Object[].class);
265 >        if (len == 1 || this.comparator != null)
266 >            for (Object e : es)
267 >                if (e == null)
268 >                    throw new NullPointerException();
269 >        this.queue = ensureNonEmpty(es);
270 >        this.size = len;
271      }
272  
273      /**
274 <     * Initialize queue array with elements from the given Collection.
274 >     * Initializes queue array with elements from the given Collection.
275 >     *
276       * @param c the collection
277       */
278      private void initFromCollection(Collection<? extends E> c) {
279 <        Object[] a = c.toArray();
280 <        // If c.toArray incorrectly doesn't return Object[], copy it.
214 <        if (a.getClass() != Object[].class)
215 <            a = Arrays.copyOf(a, a.length, Object[].class);
216 <        queue = a;
217 <        size = a.length;
279 >        initElementsFromCollection(c);
280 >        heapify();
281      }
282  
283      /**
284 +     * The maximum size of array to allocate.
285 +     * Some VMs reserve some header words in an array.
286 +     * Attempts to allocate larger arrays may result in
287 +     * OutOfMemoryError: Requested array size exceeds VM limit
288 +     */
289 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290 +
291 +    /**
292       * Increases the capacity of the array.
293       *
294       * @param minCapacity the desired minimum capacity
295       */
296      private void grow(int minCapacity) {
297 <        if (minCapacity < 0) // overflow
227 <            throw new OutOfMemoryError();
228 <        int oldCapacity = queue.length;
297 >        int oldCapacity = queue.length;
298          // Double size if small; else grow by 50%
299 <        int newCapacity = ((oldCapacity < 64)?
300 <                           ((oldCapacity + 1) * 2):
301 <                           ((oldCapacity * 3) / 2));
302 <        if (newCapacity < minCapacity)
303 <            newCapacity = minCapacity;
299 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 >                                         (oldCapacity + 2) :
301 >                                         (oldCapacity >> 1));
302 >        // overflow-conscious code
303 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
304 >            newCapacity = hugeCapacity(minCapacity);
305          queue = Arrays.copyOf(queue, newCapacity);
306      }
307  
308 +    private static int hugeCapacity(int minCapacity) {
309 +        if (minCapacity < 0) // overflow
310 +            throw new OutOfMemoryError();
311 +        return (minCapacity > MAX_ARRAY_SIZE) ?
312 +            Integer.MAX_VALUE :
313 +            MAX_ARRAY_SIZE;
314 +    }
315 +
316      /**
317       * Inserts the specified element into this priority queue.
318       *
319 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
319 >     * @return {@code true} (as specified by {@link Collection#add})
320       * @throws ClassCastException if the specified element cannot be
321       *         compared with elements currently in this priority queue
322       *         according to the priority queue's ordering
# Line 251 | Line 329 | public class PriorityQueue<E> extends Ab
329      /**
330       * Inserts the specified element into this priority queue.
331       *
332 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
332 >     * @return {@code true} (as specified by {@link Queue#offer})
333       * @throws ClassCastException if the specified element cannot be
334       *         compared with elements currently in this priority queue
335       *         according to the priority queue's ordering
# Line 264 | Line 342 | public class PriorityQueue<E> extends Ab
342          int i = size;
343          if (i >= queue.length)
344              grow(i + 1);
345 +        siftUp(i, e);
346          size = i + 1;
268        if (i == 0)
269            queue[0] = e;
270        else
271            siftUp(i, e);
347          return true;
348      }
349  
350      public E peek() {
276        if (size == 0)
277            return null;
351          return (E) queue[0];
352      }
353  
354      private int indexOf(Object o) {
355 <        if (o != null) {
356 <            for (int i = 0; i < size; i++)
357 <                if (o.equals(queue[i]))
355 >        if (o != null) {
356 >            final Object[] es = queue;
357 >            for (int i = 0, n = size; i < n; i++)
358 >                if (o.equals(es[i]))
359                      return i;
360          }
361          return -1;
# Line 289 | Line 363 | public class PriorityQueue<E> extends Ab
363  
364      /**
365       * Removes a single instance of the specified element from this queue,
366 <     * if it is present.  More formally, removes an element <tt>e</tt> such
367 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
368 <     * elements.  Returns true if this queue contained the specified element
369 <     * (or equivalently, if this queue changed as a result of the call).
366 >     * if it is present.  More formally, removes an element {@code e} such
367 >     * that {@code o.equals(e)}, if this queue contains one or more such
368 >     * elements.  Returns {@code true} if and only if this queue contained
369 >     * the specified element (or equivalently, if this queue changed as a
370 >     * result of the call).
371       *
372       * @param o element to be removed from this queue, if present
373 <     * @return <tt>true</tt> if this queue changed as a result of the call
373 >     * @return {@code true} if this queue changed as a result of the call
374       */
375      public boolean remove(Object o) {
376 <        int i = indexOf(o);
377 <        if (i == -1)
378 <            return false;
379 <        else {
380 <            removeAt(i);
381 <            return true;
382 <        }
376 >        int i = indexOf(o);
377 >        if (i == -1)
378 >            return false;
379 >        else {
380 >            removeAt(i);
381 >            return true;
382 >        }
383      }
384  
385      /**
386 <     * Version of remove using reference equality, not equals.
312 <     * Needed by iterator.remove
386 >     * Identity-based version for use in Itr.remove.
387       *
388       * @param o element to be removed from this queue, if present
315     * @return <tt>true</tt> if removed.
389       */
390 <    boolean removeEq(Object o) {
391 <        for (int i = 0; i < size; i++) {
392 <            if (o == queue[i]) {
390 >    void removeEq(Object o) {
391 >        final Object[] es = queue;
392 >        for (int i = 0, n = size; i < n; i++) {
393 >            if (o == es[i]) {
394                  removeAt(i);
395 <                return true;
395 >                break;
396              }
397          }
324        return false;
398      }
399  
400      /**
401 <     * Returns <tt>true</tt> if this queue contains the specified element.
402 <     * More formally, returns <tt>true</tt> if and only if this queue contains
403 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
401 >     * Returns {@code true} if this queue contains the specified element.
402 >     * More formally, returns {@code true} if and only if this queue contains
403 >     * at least one element {@code e} such that {@code o.equals(e)}.
404       *
405       * @param o object to be checked for containment in this queue
406 <     * @return <tt>true</tt> if this queue contains the specified element
406 >     * @return {@code true} if this queue contains the specified element
407       */
408      public boolean contains(Object o) {
409 <        return indexOf(o) != -1;
409 >        return indexOf(o) >= 0;
410      }
411  
412      /**
413 <     * Returns an array containing all of the elements in this queue,
413 >     * Returns an array containing all of the elements in this queue.
414       * The elements are in no particular order.
415       *
416       * <p>The returned array will be "safe" in that no references to it are
417 <     * maintained by this list.  (In other words, this method must allocate
417 >     * maintained by this queue.  (In other words, this method must allocate
418       * a new array).  The caller is thus free to modify the returned array.
419       *
420 <     * @return an array containing all of the elements in this queue.
420 >     * <p>This method acts as bridge between array-based and collection-based
421 >     * APIs.
422 >     *
423 >     * @return an array containing all of the elements in this queue
424       */
425      public Object[] toArray() {
426          return Arrays.copyOf(queue, size);
427      }
428  
429      /**
430 <     * Returns an array containing all of the elements in this queue.
431 <     * The elements are in no particular order.  The runtime type of
432 <     * the returned array is that of the specified array.  If the queue
433 <     * fits in the specified array, it is returned therein.
434 <     * Otherwise, a new array is allocated with the runtime type of
435 <     * the specified array and the size of this queue.
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436       *
437       * <p>If the queue fits in the specified array with room to spare
438       * (i.e., the array has more elements than the queue), the element in
439       * the array immediately following the end of the collection is set to
440 <     * <tt>null</tt>.  (This is useful in determining the length of the
441 <     * queue <i>only</i> if the caller knows that the queue does not contain
442 <     * any null elements.)
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455       *
456       * @param a the array into which the elements of the queue are to
457       *          be stored, if it is big enough; otherwise, a new array of the
458       *          same runtime type is allocated for this purpose.
459 <     * @return an array containing the elements of the queue
459 >     * @return an array containing all of the elements in this queue
460       * @throws ArrayStoreException if the runtime type of the specified array
461       *         is not a supertype of the runtime type of every element in
462       *         this queue
463       * @throws NullPointerException if the specified array is null
464       */
465      public <T> T[] toArray(T[] a) {
466 +        final int size = this.size;
467          if (a.length < size)
468              // Make a new array of a's runtime type, but my contents:
469              return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 <        System.arraycopy(queue, 0, a, 0, size);
470 >        System.arraycopy(queue, 0, a, 0, size);
471          if (a.length > size)
472              a[size] = null;
473          return a;
# Line 399 | Line 488 | public class PriorityQueue<E> extends Ab
488           * Index (into queue array) of element to be returned by
489           * subsequent call to next.
490           */
491 <        private int cursor = 0;
491 >        private int cursor;
492  
493          /**
494           * Index of element returned by most recent call to next,
# Line 417 | Line 506 | public class PriorityQueue<E> extends Ab
506           * after we've completed the "normal" iteration.
507           *
508           * We expect that most iterations, even those involving removals,
509 <         * will not use need to store elements in this field.
509 >         * will not need to store elements in this field.
510           */
511 <        private ArrayDeque<E> forgetMeNot = null;
511 >        private ArrayDeque<E> forgetMeNot;
512  
513          /**
514           * Element returned by the most recent call to next iff that
515           * element was drawn from the forgetMeNot list.
516           */
517 <        private E lastRetElt = null;
517 >        private E lastRetElt;
518  
519          /**
520           * The modCount value that the iterator believes that the backing
521 <         * List should have.  If this expectation is violated, the iterator
521 >         * Queue should have.  If this expectation is violated, the iterator
522           * has detected concurrent modification.
523           */
524          private int expectedModCount = modCount;
525  
526 +        Itr() {}                        // prevent access constructor creation
527 +
528          public boolean hasNext() {
529              return cursor < size ||
530                  (forgetMeNot != null && !forgetMeNot.isEmpty());
# Line 456 | Line 547 | public class PriorityQueue<E> extends Ab
547          public void remove() {
548              if (expectedModCount != modCount)
549                  throw new ConcurrentModificationException();
459            if (lastRet == -1 && lastRetElt == null)
460                throw new IllegalStateException();
550              if (lastRet != -1) {
551                  E moved = PriorityQueue.this.removeAt(lastRet);
552                  lastRet = -1;
# Line 465 | Line 554 | public class PriorityQueue<E> extends Ab
554                      cursor--;
555                  else {
556                      if (forgetMeNot == null)
557 <                        forgetMeNot = new ArrayDeque<E>();
557 >                        forgetMeNot = new ArrayDeque<>();
558                      forgetMeNot.add(moved);
559                  }
560 <            } else {
560 >            } else if (lastRetElt != null) {
561                  PriorityQueue.this.removeEq(lastRetElt);
562                  lastRetElt = null;
563 +            } else {
564 +                throw new IllegalStateException();
565              }
566              expectedModCount = modCount;
567          }
477
568      }
569  
570      public int size() {
# Line 487 | Line 577 | public class PriorityQueue<E> extends Ab
577       */
578      public void clear() {
579          modCount++;
580 <        for (int i = 0; i < size; i++)
581 <            queue[i] = null;
580 >        final Object[] es = queue;
581 >        for (int i = 0, n = size; i < n; i++)
582 >            es[i] = null;
583          size = 0;
584      }
585  
586      public E poll() {
587 <        if (size == 0)
588 <            return null;
589 <        int s = --size;
590 <        modCount++;
591 <        E result = (E)queue[0];
592 <        E x = (E)queue[s];
593 <        queue[s] = null;
594 <        if (s != 0)
595 <            siftDown(0, x);
587 >        final Object[] es;
588 >        final E result;
589 >
590 >        if ((result = (E) ((es = queue)[0])) != null) {
591 >            modCount++;
592 >            final int n;
593 >            final E x = (E) es[(n = --size)];
594 >            es[n] = null;
595 >            if (n > 0) {
596 >                final Comparator<? super E> cmp;
597 >                if ((cmp = comparator) == null)
598 >                    siftDownComparable(0, x, es, n);
599 >                else
600 >                    siftDownUsingComparator(0, x, es, n, cmp);
601 >            }
602 >        }
603          return result;
604      }
605  
# Line 515 | Line 613 | public class PriorityQueue<E> extends Ab
613       * i.  Under these circumstances, this method returns the element
614       * that was previously at the end of the list and is now at some
615       * position before i. This fact is used by iterator.remove so as to
616 <     * avoid missing traverseing elements.
616 >     * avoid missing traversing elements.
617       */
618 <    private E removeAt(int i) {
619 <        assert i >= 0 && i < size;
618 >    E removeAt(int i) {
619 >        // assert i >= 0 && i < size;
620 >        final Object[] es = queue;
621          modCount++;
622          int s = --size;
623          if (s == i) // removed last element
624 <            queue[i] = null;
624 >            es[i] = null;
625          else {
626 <            E moved = (E) queue[s];
627 <            queue[s] = null;
626 >            E moved = (E) es[s];
627 >            es[s] = null;
628              siftDown(i, moved);
629 <            if (queue[i] == moved) {
629 >            if (es[i] == moved) {
630                  siftUp(i, moved);
631 <                if (queue[i] != moved)
631 >                if (es[i] != moved)
632                      return moved;
633              }
634          }
# Line 541 | Line 640 | public class PriorityQueue<E> extends Ab
640       * promoting x up the tree until it is greater than or equal to
641       * its parent, or is the root.
642       *
643 <     * To simplify and speed up coercions and comparisons. the
643 >     * To simplify and speed up coercions and comparisons, the
644       * Comparable and Comparator versions are separated into different
645       * methods that are otherwise identical. (Similarly for siftDown.)
646       *
# Line 550 | Line 649 | public class PriorityQueue<E> extends Ab
649       */
650      private void siftUp(int k, E x) {
651          if (comparator != null)
652 <            siftUpUsingComparator(k, x);
652 >            siftUpUsingComparator(k, x, queue, comparator);
653          else
654 <            siftUpComparable(k, x);
654 >            siftUpComparable(k, x, queue);
655      }
656  
657 <    private void siftUpComparable(int k, E x) {
658 <        Comparable<? super E> key = (Comparable<? super E>) x;
657 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
658 >        Comparable<? super T> key = (Comparable<? super T>) x;
659          while (k > 0) {
660              int parent = (k - 1) >>> 1;
661 <            Object e = queue[parent];
662 <            if (key.compareTo((E)e) >= 0)
661 >            Object e = es[parent];
662 >            if (key.compareTo((T) e) >= 0)
663                  break;
664 <            queue[k] = e;
664 >            es[k] = e;
665              k = parent;
666          }
667 <        queue[k] = key;
667 >        es[k] = key;
668      }
669  
670 <    private void siftUpUsingComparator(int k, E x) {
670 >    private static <T> void siftUpUsingComparator(
671 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
672          while (k > 0) {
673              int parent = (k - 1) >>> 1;
674 <            Object e = queue[parent];
675 <            if (comparator.compare(x, (E)e) >= 0)
674 >            Object e = es[parent];
675 >            if (cmp.compare(x, (T) e) >= 0)
676                  break;
677 <            queue[k] = e;
677 >            es[k] = e;
678              k = parent;
679          }
680 <        queue[k] = x;
680 >        es[k] = x;
681      }
682  
683      /**
# Line 590 | Line 690 | public class PriorityQueue<E> extends Ab
690       */
691      private void siftDown(int k, E x) {
692          if (comparator != null)
693 <            siftDownUsingComparator(k, x);
693 >            siftDownUsingComparator(k, x, queue, size, comparator);
694          else
695 <            siftDownComparable(k, x);
695 >            siftDownComparable(k, x, queue, size);
696      }
697  
698 <    private void siftDownComparable(int k, E x) {
699 <        Comparable<? super E> key = (Comparable<? super E>)x;
700 <        int half = size >>> 1;        // loop while a non-leaf
698 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
699 >        // assert n > 0;
700 >        Comparable<? super T> key = (Comparable<? super T>)x;
701 >        int half = n >>> 1;           // loop while a non-leaf
702          while (k < half) {
703              int child = (k << 1) + 1; // assume left child is least
704 <            Object c = queue[child];
704 >            Object c = es[child];
705              int right = child + 1;
706 <            if (right < size &&
707 <                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
708 <                c = queue[child = right];
709 <            if (key.compareTo((E)c) <= 0)
706 >            if (right < n &&
707 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
708 >                c = es[child = right];
709 >            if (key.compareTo((T) c) <= 0)
710                  break;
711 <            queue[k] = c;
711 >            es[k] = c;
712              k = child;
713          }
714 <        queue[k] = key;
714 >        es[k] = key;
715      }
716  
717 <    private void siftDownUsingComparator(int k, E x) {
718 <        int half = size >>> 1;
717 >    private static <T> void siftDownUsingComparator(
718 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
719 >        // assert n > 0;
720 >        int half = n >>> 1;
721          while (k < half) {
722              int child = (k << 1) + 1;
723 <            Object c = queue[child];
723 >            Object c = es[child];
724              int right = child + 1;
725 <            if (right < size &&
726 <                comparator.compare((E)c, (E)queue[right]) > 0)
727 <                c = queue[child = right];
625 <            if (comparator.compare(x, (E)c) <= 0)
725 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
726 >                c = es[child = right];
727 >            if (cmp.compare(x, (T) c) <= 0)
728                  break;
729 <            queue[k] = c;
729 >            es[k] = c;
730              k = child;
731          }
732 <        queue[k] = x;
732 >        es[k] = x;
733      }
734  
735      /**
736       * Establishes the heap invariant (described above) in the entire tree,
737       * assuming nothing about the order of the elements prior to the call.
738 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
739       */
740      private void heapify() {
741 <        for (int i = (size >>> 1) - 1; i >= 0; i--)
742 <            siftDown(i, (E)queue[i]);
741 >        final Object[] es = queue;
742 >        int n = size, i = (n >>> 1) - 1;
743 >        final Comparator<? super E> cmp;
744 >        if ((cmp = comparator) == null)
745 >            for (; i >= 0; i--)
746 >                siftDownComparable(i, (E) es[i], es, n);
747 >        else
748 >            for (; i >= 0; i--)
749 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
750      }
751  
752      /**
753       * Returns the comparator used to order the elements in this
754 <     * queue, or <tt>null</tt> if this queue is sorted according to
754 >     * queue, or {@code null} if this queue is sorted according to
755       * the {@linkplain Comparable natural ordering} of its elements.
756       *
757       * @return the comparator used to order this queue, or
758 <     *         <tt>null</tt> if this queue is sorted according to the
759 <     *         natural ordering of its elements.
758 >     *         {@code null} if this queue is sorted according to the
759 >     *         natural ordering of its elements
760       */
761      public Comparator<? super E> comparator() {
762          return comparator;
763      }
764  
765      /**
766 <     * Save the state of the instance to a stream (that
657 <     * is, serialize it).
766 >     * Saves this queue to a stream (that is, serializes it).
767       *
659     * @serialData The length of the array backing the instance is
660     * emitted (int), followed by all of its elements (each an
661     * <tt>Object</tt>) in the proper order.
768       * @param s the stream
769 +     * @throws java.io.IOException if an I/O error occurs
770 +     * @serialData The length of the array backing the instance is
771 +     *             emitted (int), followed by all of its elements
772 +     *             (each an {@code Object}) in the proper order.
773       */
774      private void writeObject(java.io.ObjectOutputStream s)
775 <        throws java.io.IOException{
775 >        throws java.io.IOException {
776          // Write out element count, and any hidden stuff
777          s.defaultWriteObject();
778  
779 <        // Write out array length
780 <        // For compatibility with 1.5 version, must be at least 2.
671 <        s.writeInt(Math.max(2, queue.length));
779 >        // Write out array length, for compatibility with 1.5 version
780 >        s.writeInt(Math.max(2, size + 1));
781  
782 <        // Write out all elements in the proper order.
783 <        for (int i=0; i<size; i++)
784 <            s.writeObject(queue[i]);
782 >        // Write out all elements in the "proper order".
783 >        final Object[] es = queue;
784 >        for (int i = 0, n = size; i < n; i++)
785 >            s.writeObject(es[i]);
786      }
787  
788      /**
789 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
790 <     * (that is, deserialize it).
789 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
790 >     * (that is, deserializes it).
791 >     *
792       * @param s the stream
793 +     * @throws ClassNotFoundException if the class of a serialized object
794 +     *         could not be found
795 +     * @throws java.io.IOException if an I/O error occurs
796       */
797      private void readObject(java.io.ObjectInputStream s)
798          throws java.io.IOException, ClassNotFoundException {
799          // Read in size, and any hidden stuff
800          s.defaultReadObject();
801  
802 <        // Read in array length and allocate array
803 <        int arrayLength = s.readInt();
804 <        queue = new Object[arrayLength];
805 <
806 <        // Read in all elements in the proper order.
807 <        for (int i=0; i<size; i++)
808 <            queue[i] = (E) s.readObject();
802 >        // Read in (and discard) array length
803 >        s.readInt();
804 >
805 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
806 >        final Object[] es = queue = new Object[Math.max(size, 1)];
807 >
808 >        // Read in all elements.
809 >        for (int i = 0, n = size; i < n; i++)
810 >            es[i] = s.readObject();
811 >
812 >        // Elements are guaranteed to be in "proper order", but the
813 >        // spec has never explained what that might be.
814 >        heapify();
815 >    }
816 >
817 >    /**
818 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
819 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
820 >     * queue. The spliterator does not traverse elements in any particular order
821 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
822 >     *
823 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
824 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
825 >     * Overriding implementations should document the reporting of additional
826 >     * characteristic values.
827 >     *
828 >     * @return a {@code Spliterator} over the elements in this queue
829 >     * @since 1.8
830 >     */
831 >    public final Spliterator<E> spliterator() {
832 >        return new PriorityQueueSpliterator(0, -1, 0);
833 >    }
834 >
835 >    final class PriorityQueueSpliterator implements Spliterator<E> {
836 >        private int index;            // current index, modified on advance/split
837 >        private int fence;            // -1 until first use
838 >        private int expectedModCount; // initialized when fence set
839 >
840 >        /** Creates new spliterator covering the given range. */
841 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
842 >            this.index = origin;
843 >            this.fence = fence;
844 >            this.expectedModCount = expectedModCount;
845 >        }
846 >
847 >        private int getFence() { // initialize fence to size on first use
848 >            int hi;
849 >            if ((hi = fence) < 0) {
850 >                expectedModCount = modCount;
851 >                hi = fence = size;
852 >            }
853 >            return hi;
854 >        }
855 >
856 >        public PriorityQueueSpliterator trySplit() {
857 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
858 >            return (lo >= mid) ? null :
859 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
860 >        }
861 >
862 >        public void forEachRemaining(Consumer<? super E> action) {
863 >            if (action == null)
864 >                throw new NullPointerException();
865 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
866 >            final Object[] es = queue;
867 >            int i, hi; E e;
868 >            for (i = index, index = hi = fence; i < hi; i++) {
869 >                if ((e = (E) es[i]) == null)
870 >                    break;      // must be CME
871 >                action.accept(e);
872 >            }
873 >            if (modCount != expectedModCount)
874 >                throw new ConcurrentModificationException();
875 >        }
876 >
877 >        public boolean tryAdvance(Consumer<? super E> action) {
878 >            if (action == null)
879 >                throw new NullPointerException();
880 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
881 >            int i;
882 >            if ((i = index) < fence) {
883 >                index = i + 1;
884 >                E e;
885 >                if ((e = (E) queue[i]) == null
886 >                    || modCount != expectedModCount)
887 >                    throw new ConcurrentModificationException();
888 >                action.accept(e);
889 >                return true;
890 >            }
891 >            return false;
892 >        }
893 >
894 >        public long estimateSize() {
895 >            return getFence() - index;
896 >        }
897 >
898 >        public int characteristics() {
899 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
900 >        }
901      }
902  
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public void forEach(Consumer<? super E> action) {
907 +        Objects.requireNonNull(action);
908 +        final int expectedModCount = modCount;
909 +        final Object[] es = queue;
910 +        for (int i = 0, n = size; i < n; i++)
911 +            action.accept((E) es[i]);
912 +        if (expectedModCount != modCount)
913 +            throw new ConcurrentModificationException();
914 +    }
915   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines