ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.14 by tim, Mon Jul 28 16:00:19 2003 UTC vs.
Revision 1.71 by jsr166, Sun Sep 5 21:32:19 2010 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27  
28   /**
29 < * An unbounded priority queue based on a priority heap.  This queue orders
30 < * elements according to an order specified at construction time, which is
31 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
32 < * elements are ordered
33 < * either according to their <i>natural order</i> (see {@link Comparable}), or
34 < * according to a {@link Comparator}, depending on which constructor is used.
35 < * The <em>head</em> of this queue is the least element with respect to the
36 < * specified ordering. If multiple elements are tied for least value, the
37 < * head is one of those elements. A priority queue does not permit
38 < * <tt>null</tt> elements.
39 < *
40 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
41 < * return the head of the queue.
42 < *
43 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
44 < * not delete, the head of the queue.
45 < *
46 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
47 < * size of the array used internally to store the elements on the
48 < * queue.  It is always at least as large as the queue size.  As
49 < * elements are added to a priority queue, its capacity grows
50 < * automatically.  The details of the growth policy are not specified.
51 < *
52 < * <p>Implementation note: this implementation provides O(log(n)) time
53 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
54 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
55 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
56 < * constant time for the retrieval methods (<tt>peek</tt>,
57 < * <tt>element</tt>, and <tt>size</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <    implements Queue<E>, java.io.Serializable {
81 >    implements java.io.Serializable {
82 >
83 >    private static final long serialVersionUID = -7720805057305804111L;
84  
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap and each descendant d
92 <     * of n, n <= d.
93 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95 <    private transient E[] queue;
95 >    private transient Object[] queue;
96  
97      /**
98       * The number of elements in the priority queue.
# Line 66 | Line 103 | public class PriorityQueue<E> extends Ab
103       * The comparator, or null if priority queue uses elements'
104       * natural ordering.
105       */
106 <    private final Comparator<E> comparator;
106 >    private final Comparator<? super E> comparator;
107  
108      /**
109       * The number of times this priority queue has been
# Line 75 | Line 112 | public class PriorityQueue<E> extends Ab
112      private transient int modCount = 0;
113  
114      /**
115 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
116 <     * (11) that orders its elements according to their natural
117 <     * ordering (using <tt>Comparable</tt>.)
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120          this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
125 <     * that orders its elements according to their natural ordering
126 <     * (using <tt>Comparable</tt>.)
127 <     *
128 <     * @param initialCapacity the initial capacity for this priority queue.
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     * If <tt>null</tt> then the order depends on the elements' natural
143 <     * ordering.
144 <     */
145 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <        queue = (E[]) new Object[initialCapacity + 1];
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
159 <     * collection.  The priority queue has an initial capacity of 110% of the
160 <     * size of the specified collection. If the specified collection
161 <     * implements the {@link Sorted} interface, the priority queue will be
162 <     * sorted according to the same comparator, or according to its elements'
163 <     * natural order if the collection is sorted according to its elements'
120 <     * natural order.  If the specified collection does not implement
121 <     * <tt>Sorted</tt>, the priority queue is ordered according to
122 <     * its elements' natural order.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164       *
165 <     * @param initialElements the collection whose elements are to be placed
166 <     *        into this priority queue.
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167       * @throws ClassCastException if elements of the specified collection
168       *         cannot be compared to one another according to the priority
169 <     *         queue's ordering.
170 <     * @throws NullPointerException if the specified collection or an
171 <     *         element of the specified collection is <tt>null</tt>.
172 <     */
173 <    public PriorityQueue(Collection<E> initialElements) {
174 <        int sz = initialElements.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <        queue = (E[]) new Object[initialCapacity + 1];
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189 >    }
190 >
191 >    /**
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204 >     */
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209 >    }
210  
211 <        if (initialElements instanceof Sorted) {
212 <            comparator = ((Sorted)initialElements).comparator();
213 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
214 <                queue[++size] = i.next();
211 >    /**
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223 >     */
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228 >    }
229 >
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234          } else {
235 <            comparator = null;
146 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
147 <                add(i.next());
235 >            initFromCollection(c);
236          }
237      }
238  
239 <    // Queue Methods
239 >    private void initElementsFromCollection(Collection<? extends E> c) {
240 >        Object[] a = c.toArray();
241 >        // If c.toArray incorrectly doesn't return Object[], copy it.
242 >        if (a.getClass() != Object[].class)
243 >            a = Arrays.copyOf(a, a.length, Object[].class);
244 >        int len = a.length;
245 >        if (len == 1 || this.comparator != null)
246 >            for (int i = 0; i < len; i++)
247 >                if (a[i] == null)
248 >                    throw new NullPointerException();
249 >        this.queue = a;
250 >        this.size = a.length;
251 >    }
252  
253      /**
254 <     * Add the specified element to this priority queue.
254 >     * Initializes queue array with elements from the given Collection.
255       *
256 <     * @param element the element to add.
157 <     * @return <tt>true</tt>
158 <     * @throws ClassCastException if the specified element cannot be compared
159 <     * with elements currently in the priority queue according
160 <     * to the priority queue's ordering.
161 <     * @throws NullPointerException if the specified element is null.
256 >     * @param c the collection
257       */
258 <    public boolean offer(E element) {
259 <        if (element == null)
260 <            throw new NullPointerException();
261 <        modCount++;
167 <        ++size;
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261 >    }
262  
263 <        // Grow backing store if necessary
264 <        while (size >= queue.length) {
265 <            E[] newQueue = (E[]) new Object[2 * queue.length];
266 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
267 <            queue = newQueue;
268 <        }
263 >    /**
264 >     * The maximum size of array to allocate.
265 >     * Some VMs reserve some header words in an array.
266 >     * Attempts to allocate larger arrays may result in
267 >     * OutOfMemoryError: Requested array size exceeds VM limit
268 >     */
269 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270 >
271 >    /**
272 >     * Increases the capacity of the array.
273 >     *
274 >     * @param minCapacity the desired minimum capacity
275 >     */
276 >    private void grow(int minCapacity) {
277 >        int oldCapacity = queue.length;
278 >        // Double size if small; else grow by 50%
279 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 >                                         (oldCapacity + 2) :
281 >                                         (oldCapacity >> 1));
282 >        // overflow-conscious code
283 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 >            newCapacity = hugeCapacity(minCapacity);
285 >        queue = Arrays.copyOf(queue, newCapacity);
286 >    }
287  
288 <        queue[size] = element;
289 <        fixUp(size);
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294 >    }
295 >
296 >    /**
297 >     * Inserts the specified element into this priority queue.
298 >     *
299 >     * @return {@code true} (as specified by {@link Collection#add})
300 >     * @throws ClassCastException if the specified element cannot be
301 >     *         compared with elements currently in this priority queue
302 >     *         according to the priority queue's ordering
303 >     * @throws NullPointerException if the specified element is null
304 >     */
305 >    public boolean add(E e) {
306 >        return offer(e);
307 >    }
308 >
309 >    /**
310 >     * Inserts the specified element into this priority queue.
311 >     *
312 >     * @return {@code true} (as specified by {@link Queue#offer})
313 >     * @throws ClassCastException if the specified element cannot be
314 >     *         compared with elements currently in this priority queue
315 >     *         according to the priority queue's ordering
316 >     * @throws NullPointerException if the specified element is null
317 >     */
318 >    public boolean offer(E e) {
319 >        if (e == null)
320 >            throw new NullPointerException();
321 >        modCount++;
322 >        int i = size;
323 >        if (i >= queue.length)
324 >            grow(i + 1);
325 >        size = i + 1;
326 >        if (i == 0)
327 >            queue[0] = e;
328 >        else
329 >            siftUp(i, e);
330          return true;
331      }
332  
333 <    public E poll() {
333 >    public E peek() {
334          if (size == 0)
335              return null;
336 <        return remove(1);
336 >        return (E) queue[0];
337      }
338  
339 <    public E peek() {
340 <        return queue[1];
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            for (int i = 0; i < size; i++)
342 >                if (o.equals(queue[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347  
348 <    // Collection Methods
349 <
350 <    // these first two override just to get the throws docs
348 >    /**
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355 >     *
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358 >     */
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367 >    }
368  
369      /**
370 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
370 >     * Version of remove using reference equality, not equals.
371 >     * Needed by iterator.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if removed
375       */
376 <    public boolean add(E element) {
377 <        return super.add(element);
376 >    boolean removeEq(Object o) {
377 >        for (int i = 0; i < size; i++) {
378 >            if (o == queue[i]) {
379 >                removeAt(i);
380 >                return true;
381 >            }
382 >        }
383 >        return false;
384      }
385  
386      /**
387 <     * @throws NullPointerException if any element is <tt>null</tt>.
387 >     * Returns {@code true} if this queue contains the specified element.
388 >     * More formally, returns {@code true} if and only if this queue contains
389 >     * at least one element {@code e} such that {@code o.equals(e)}.
390 >     *
391 >     * @param o object to be checked for containment in this queue
392 >     * @return {@code true} if this queue contains the specified element
393       */
394 <    public boolean addAll(Collection<? extends E> c) {
395 <        return super.addAll(c);
394 >    public boolean contains(Object o) {
395 >        return indexOf(o) != -1;
396      }
397  
398      /**
399 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
399 >     * Returns an array containing all of the elements in this queue.
400 >     * The elements are in no particular order.
401 >     *
402 >     * <p>The returned array will be "safe" in that no references to it are
403 >     * maintained by this queue.  (In other words, this method must allocate
404 >     * a new array).  The caller is thus free to modify the returned array.
405 >     *
406 >     * <p>This method acts as bridge between array-based and collection-based
407 >     * APIs.
408 >     *
409 >     * @return an array containing all of the elements in this queue
410       */
411 <    public boolean remove(Object o) {
412 <        if (o == null)
413 <            throw new NullPointerException();
411 >    public Object[] toArray() {
412 >        return Arrays.copyOf(queue, size);
413 >    }
414  
415 <        if (comparator == null) {
416 <            for (int i = 1; i <= size; i++) {
417 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
418 <                    remove(i);
419 <                    return true;
420 <                }
421 <            }
422 <        } else {
423 <            for (int i = 1; i <= size; i++) {
424 <                if (comparator.compare(queue[i], (E)o) == 0) {
425 <                    remove(i);
426 <                    return true;
427 <                }
428 <            }
429 <        }
430 <        return false;
415 >    /**
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422 >     *
423 >     * <p>If the queue fits in the specified array with room to spare
424 >     * (i.e., the array has more elements than the queue), the element in
425 >     * the array immediately following the end of the collection is set to
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of <tt>String</tt>:
436 >     *
437 >     * <pre>
438 >     *     String[] y = x.toArray(new String[0]);</pre>
439 >     *
440 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
441 >     * <tt>toArray()</tt>.
442 >     *
443 >     * @param a the array into which the elements of the queue are to
444 >     *          be stored, if it is big enough; otherwise, a new array of the
445 >     *          same runtime type is allocated for this purpose.
446 >     * @return an array containing all of the elements in this queue
447 >     * @throws ArrayStoreException if the runtime type of the specified array
448 >     *         is not a supertype of the runtime type of every element in
449 >     *         this queue
450 >     * @throws NullPointerException if the specified array is null
451 >     */
452 >    public <T> T[] toArray(T[] a) {
453 >        if (a.length < size)
454 >            // Make a new array of a's runtime type, but my contents:
455 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 >        System.arraycopy(queue, 0, a, 0, size);
457 >        if (a.length > size)
458 >            a[size] = null;
459 >        return a;
460      }
461  
462      /**
463 <     * Returns an iterator over the elements in this priority queue.  The
464 <     * elements of the priority queue will be returned by this iterator in the
237 <     * order specified by the queue, which is to say the order they would be
238 <     * returned by repeated calls to <tt>poll</tt>.
463 >     * Returns an iterator over the elements in this queue. The iterator
464 >     * does not return the elements in any particular order.
465       *
466 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
466 >     * @return an iterator over the elements in this queue
467       */
468      public Iterator<E> iterator() {
469          return new Itr();
470      }
471  
472 <    private class Itr implements Iterator<E> {
472 >    private final class Itr implements Iterator<E> {
473          /**
474           * Index (into queue array) of element to be returned by
475           * subsequent call to next.
476           */
477 <        private int cursor = 1;
477 >        private int cursor = 0;
478 >
479 >        /**
480 >         * Index of element returned by most recent call to next,
481 >         * unless that element came from the forgetMeNot list.
482 >         * Set to -1 if element is deleted by a call to remove.
483 >         */
484 >        private int lastRet = -1;
485  
486          /**
487 <         * Index of element returned by most recent call to next or
488 <         * previous.  Reset to 0 if this element is deleted by a call
489 <         * to remove.
487 >         * A queue of elements that were moved from the unvisited portion of
488 >         * the heap into the visited portion as a result of "unlucky" element
489 >         * removals during the iteration.  (Unlucky element removals are those
490 >         * that require a siftup instead of a siftdown.)  We must visit all of
491 >         * the elements in this list to complete the iteration.  We do this
492 >         * after we've completed the "normal" iteration.
493 >         *
494 >         * We expect that most iterations, even those involving removals,
495 >         * will not need to store elements in this field.
496           */
497 <        private int lastRet = 0;
497 >        private ArrayDeque<E> forgetMeNot = null;
498 >
499 >        /**
500 >         * Element returned by the most recent call to next iff that
501 >         * element was drawn from the forgetMeNot list.
502 >         */
503 >        private E lastRetElt = null;
504  
505          /**
506           * The modCount value that the iterator believes that the backing
507 <         * List should have.  If this expectation is violated, the iterator
507 >         * Queue should have.  If this expectation is violated, the iterator
508           * has detected concurrent modification.
509           */
510          private int expectedModCount = modCount;
511  
512          public boolean hasNext() {
513 <            return cursor <= size;
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515          }
516  
517          public E next() {
518 <            checkForComodification();
519 <            if (cursor > size)
520 <                throw new NoSuchElementException();
521 <            E result = queue[cursor];
522 <            lastRet = cursor++;
523 <            return result;
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529          }
530  
531          public void remove() {
532 <            if (lastRet == 0)
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<E>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548                  throw new IllegalStateException();
549 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
549 >            }
550              expectedModCount = modCount;
551          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
552      }
553  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
554      public int size() {
555          return size;
556      }
557  
558      /**
559 <     * Remove all elements from the priority queue.
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561       */
562      public void clear() {
563          modCount++;
564 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
564 >        for (int i = 0; i < size; i++)
565              queue[i] = null;
316
566          size = 0;
567      }
568  
569 +    public E poll() {
570 +        if (size == 0)
571 +            return null;
572 +        int s = --size;
573 +        modCount++;
574 +        E result = (E) queue[0];
575 +        E x = (E) queue[s];
576 +        queue[s] = null;
577 +        if (s != 0)
578 +            siftDown(0, x);
579 +        return result;
580 +    }
581 +
582      /**
583 <     * Removes and returns the ith element from queue.  Recall
322 <     * that queue is one-based, so 1 <= i <= size.
583 >     * Removes the ith element from queue.
584       *
585 <     * XXX: Could further special-case i==size, but is it worth it?
586 <     * XXX: Could special-case i==0, but is it worth it?
585 >     * Normally this method leaves the elements at up to i-1,
586 >     * inclusive, untouched.  Under these circumstances, it returns
587 >     * null.  Occasionally, in order to maintain the heap invariant,
588 >     * it must swap a later element of the list with one earlier than
589 >     * i.  Under these circumstances, this method returns the element
590 >     * that was previously at the end of the list and is now at some
591 >     * position before i. This fact is used by iterator.remove so as to
592 >     * avoid missing traversing elements.
593       */
594 <    private E remove(int i) {
595 <        assert i <= size;
594 >    private E removeAt(int i) {
595 >        assert i >= 0 && i < size;
596          modCount++;
597 <
598 <        E result = queue[i];
599 <        queue[i] = queue[size];
600 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
601 <        if (i <= size)
602 <            fixDown(i);
603 <        return result;
597 >        int s = --size;
598 >        if (s == i) // removed last element
599 >            queue[i] = null;
600 >        else {
601 >            E moved = (E) queue[s];
602 >            queue[s] = null;
603 >            siftDown(i, moved);
604 >            if (queue[i] == moved) {
605 >                siftUp(i, moved);
606 >                if (queue[i] != moved)
607 >                    return moved;
608 >            }
609 >        }
610 >        return null;
611      }
612  
613      /**
614 <     * Establishes the heap invariant (described above) assuming the heap
615 <     * satisfies the invariant except possibly for the leaf-node indexed by k
616 <     * (which may have a nextExecutionTime less than its parent's).
617 <     *
618 <     * This method functions by "promoting" queue[k] up the hierarchy
619 <     * (by swapping it with its parent) repeatedly until queue[k]
620 <     * is greater than or equal to its parent.
621 <     */
622 <    private void fixUp(int k) {
623 <        if (comparator == null) {
624 <            while (k > 1) {
625 <                int j = k >> 1;
626 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
627 <                    break;
628 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
629 <                k = j;
630 <            }
631 <        } else {
632 <            while (k > 1) {
633 <                int j = k >> 1;
634 <                if (comparator.compare(queue[j], queue[k]) <= 0)
635 <                    break;
636 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
637 <                k = j;
638 <            }
614 >     * Inserts item x at position k, maintaining heap invariant by
615 >     * promoting x up the tree until it is greater than or equal to
616 >     * its parent, or is the root.
617 >     *
618 >     * To simplify and speed up coercions and comparisons. the
619 >     * Comparable and Comparator versions are separated into different
620 >     * methods that are otherwise identical. (Similarly for siftDown.)
621 >     *
622 >     * @param k the position to fill
623 >     * @param x the item to insert
624 >     */
625 >    private void siftUp(int k, E x) {
626 >        if (comparator != null)
627 >            siftUpUsingComparator(k, x);
628 >        else
629 >            siftUpComparable(k, x);
630 >    }
631 >
632 >    private void siftUpComparable(int k, E x) {
633 >        Comparable<? super E> key = (Comparable<? super E>) x;
634 >        while (k > 0) {
635 >            int parent = (k - 1) >>> 1;
636 >            Object e = queue[parent];
637 >            if (key.compareTo((E) e) >= 0)
638 >                break;
639 >            queue[k] = e;
640 >            k = parent;
641 >        }
642 >        queue[k] = key;
643 >    }
644 >
645 >    private void siftUpUsingComparator(int k, E x) {
646 >        while (k > 0) {
647 >            int parent = (k - 1) >>> 1;
648 >            Object e = queue[parent];
649 >            if (comparator.compare(x, (E) e) >= 0)
650 >                break;
651 >            queue[k] = e;
652 >            k = parent;
653          }
654 +        queue[k] = x;
655      }
656  
657      /**
658 <     * Establishes the heap invariant (described above) in the subtree
659 <     * rooted at k, which is assumed to satisfy the heap invariant except
660 <     * possibly for node k itself (which may be greater than its children).
661 <     *
662 <     * This method functions by "demoting" queue[k] down the hierarchy
663 <     * (by swapping it with its smaller child) repeatedly until queue[k]
664 <     * is less than or equal to its children.
665 <     */
666 <    private void fixDown(int k) {
667 <        int j;
668 <        if (comparator == null) {
669 <            while ((j = k << 1) <= size) {
670 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
671 <                    j++; // j indexes smallest kid
672 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
673 <                    break;
674 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
675 <                k = j;
676 <            }
677 <        } else {
678 <            while ((j = k << 1) <= size) {
679 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
680 <                    j++; // j indexes smallest kid
681 <                if (comparator.compare(queue[k], queue[j]) <= 0)
682 <                    break;
683 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
684 <                k = j;
685 <            }
658 >     * Inserts item x at position k, maintaining heap invariant by
659 >     * demoting x down the tree repeatedly until it is less than or
660 >     * equal to its children or is a leaf.
661 >     *
662 >     * @param k the position to fill
663 >     * @param x the item to insert
664 >     */
665 >    private void siftDown(int k, E x) {
666 >        if (comparator != null)
667 >            siftDownUsingComparator(k, x);
668 >        else
669 >            siftDownComparable(k, x);
670 >    }
671 >
672 >    private void siftDownComparable(int k, E x) {
673 >        Comparable<? super E> key = (Comparable<? super E>)x;
674 >        int half = size >>> 1;        // loop while a non-leaf
675 >        while (k < half) {
676 >            int child = (k << 1) + 1; // assume left child is least
677 >            Object c = queue[child];
678 >            int right = child + 1;
679 >            if (right < size &&
680 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
681 >                c = queue[child = right];
682 >            if (key.compareTo((E) c) <= 0)
683 >                break;
684 >            queue[k] = c;
685 >            k = child;
686          }
687 +        queue[k] = key;
688 +    }
689 +
690 +    private void siftDownUsingComparator(int k, E x) {
691 +        int half = size >>> 1;
692 +        while (k < half) {
693 +            int child = (k << 1) + 1;
694 +            Object c = queue[child];
695 +            int right = child + 1;
696 +            if (right < size &&
697 +                comparator.compare((E) c, (E) queue[right]) > 0)
698 +                c = queue[child = right];
699 +            if (comparator.compare(x, (E) c) <= 0)
700 +                break;
701 +            queue[k] = c;
702 +            k = child;
703 +        }
704 +        queue[k] = x;
705 +    }
706 +
707 +    /**
708 +     * Establishes the heap invariant (described above) in the entire tree,
709 +     * assuming nothing about the order of the elements prior to the call.
710 +     */
711 +    private void heapify() {
712 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
713 +            siftDown(i, (E) queue[i]);
714      }
715  
716 <    public Comparator comparator() {
716 >    /**
717 >     * Returns the comparator used to order the elements in this
718 >     * queue, or {@code null} if this queue is sorted according to
719 >     * the {@linkplain Comparable natural ordering} of its elements.
720 >     *
721 >     * @return the comparator used to order this queue, or
722 >     *         {@code null} if this queue is sorted according to the
723 >     *         natural ordering of its elements
724 >     */
725 >    public Comparator<? super E> comparator() {
726          return comparator;
727      }
728  
729      /**
730 <     * Save the state of the instance to a stream (that
731 <     * is, serialize it).
730 >     * Saves the state of the instance to a stream (that
731 >     * is, serializes it).
732       *
733       * @serialData The length of the array backing the instance is
734 <     * emitted (int), followed by all of its elements (each an
735 <     * <tt>Object</tt>) in the proper order.
734 >     *             emitted (int), followed by all of its elements
735 >     *             (each an {@code Object}) in the proper order.
736       * @param s the stream
737       */
738 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
738 >    private void writeObject(java.io.ObjectOutputStream s)
739          throws java.io.IOException{
740          // Write out element count, and any hidden stuff
741          s.defaultWriteObject();
742  
743 <        // Write out array length
744 <        s.writeInt(queue.length);
743 >        // Write out array length, for compatibility with 1.5 version
744 >        s.writeInt(Math.max(2, size + 1));
745  
746 <        // Write out all elements in the proper order.
747 <        for (int i=0; i<size; i++)
746 >        // Write out all elements in the "proper order".
747 >        for (int i = 0; i < size; i++)
748              s.writeObject(queue[i]);
749      }
750  
751      /**
752 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
753 <     * deserialize it).
752 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
753 >     * (that is, deserializes it).
754 >     *
755       * @param s the stream
756       */
757 <    private synchronized void readObject(java.io.ObjectInputStream s)
757 >    private void readObject(java.io.ObjectInputStream s)
758          throws java.io.IOException, ClassNotFoundException {
759          // Read in size, and any hidden stuff
760          s.defaultReadObject();
761  
762 <        // Read in array length and allocate array
763 <        int arrayLength = s.readInt();
438 <        queue = (E[]) new Object[arrayLength];
439 <
440 <        // Read in all elements in the proper order.
441 <        for (int i=0; i<size; i++)
442 <            queue[i] = (E)s.readObject();
443 <    }
762 >        // Read in (and discard) array length
763 >        s.readInt();
764  
765 < }
765 >        queue = new Object[size];
766  
767 +        // Read in all elements.
768 +        for (int i = 0; i < size; i++)
769 +            queue[i] = s.readObject();
770 +
771 +        // Elements are guaranteed to be in "proper order", but the
772 +        // spec has never explained what that might be.
773 +        heapify();
774 +    }
775 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines