ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.2 by tim, Sun May 18 18:10:02 2003 UTC vs.
Revision 1.37 by dl, Sat Aug 30 11:44:53 2003 UTC

# Line 1 | Line 1
1   package java.util;
2  
3 /*
4 * Todo
5 *
6 *   1) Make it serializable.
7 */
8
3   /**
4 < * An unbounded priority queue based on a priority heap.  This queue orders
5 < * elements according to the order specified at creation time.  This order is
6 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
7 < * either according to their <i>natural order</i> (see {@link Comparable}), or
8 < * according to a {@link Comparator}, depending on which constructor is used.
9 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 < * minimal element with respect to the specified ordering.  If multiple
11 < * these elements are tied for least value, no guarantees are made as to
12 < * which of elements is returned.
4 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 > * This queue orders elements according to an order specified at construction
6 > * time, which is specified in the same manner as {@link java.util.TreeSet}
7 > * and {@link java.util.TreeMap}: elements are ordered either according to
8 > * their <i>natural order</i> (see {@link Comparable}), or according to a
9 > * {@link java.util.Comparator}, depending on which constructor is used.
10 > * <p>The <em>head</em> of this queue is the <em>least</em> element with
11 > * respect to the specified ordering.  If multiple elements are tied for least
12 > * value, the head is one of those elements. A priority queue does not permit
13 > * <tt>null</tt> elements.
14 > *
15 > * <p>The {@link #remove()} and {@link #poll()} methods remove and
16 > * return the head of the queue.
17 > *
18 > * <p>The {@link #element()} and {@link #peek()} methods return, but do
19 > * not delete, the head of the queue.
20   *
21 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
22 < * the array used to store the elements on the queue.  It is always at least
23 < * as large as the queue size.  As elements are added to a priority list,
24 < * its capacity grows automatically.  The details of the growth policy are not
25 < * specified.
21 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
22 > * size of the array used internally to store the elements on the
23 > * queue.
24 > * It is always at least as large as the queue size.  As
25 > * elements are added to a priority queue, its capacity grows
26 > * automatically.  The details of the growth policy are not specified.
27   *
28 < *<p>Implementation note: this implementation provides O(log(n)) time for
29 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
30 < * methods; linear time for the <tt>remove(Object)</tt> and
31 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
32 < * <tt>element</tt>, and <tt>size</tt> methods.
28 > * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
29 > * guaranteed to traverse the elements of the PriorityQueue in any
30 > * particular order. If you need ordered traversal, consider using
31 > * <tt>Arrays.sort(pq.toArray())</tt>.
32 > *
33 > * <p> <strong>Note that this implementation is not synchronized.</strong>
34 > * Multiple threads should not access a <tt>PriorityQueue</tt>
35 > * instance concurrently if any of the threads modifies the list
36 > * structurally. Instead, use the thread-safe {@link
37 > * java.util.concurrent.PriorityBlockingQueue} class.
38 > *
39 > *
40 > * <p>Implementation note: this implementation provides O(log(n)) time
41 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
42 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
43 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
44 > * constant time for the retrieval methods (<tt>peek</tt>,
45 > * <tt>element</tt>, and <tt>size</tt>).
46   *
47   * <p>This class is a member of the
48   * <a href="{@docRoot}/../guide/collections/index.html">
49   * Java Collections Framework</a>.
50 + * @since 1.5
51 + * @author Josh Bloch
52   */
53   public class PriorityQueue<E> extends AbstractQueue<E>
54 <                              implements Queue<E>
55 < {
54 >    implements Queue<E>, java.io.Serializable {
55 >
56 >    private static final long serialVersionUID = -7720805057305804111L;
57 >
58      private static final int DEFAULT_INITIAL_CAPACITY = 11;
59  
60      /**
61       * Priority queue represented as a balanced binary heap: the two children
62       * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
63       * ordered by comparator, or by the elements' natural ordering, if
64 <     * comparator is null:  For each node n in the heap, and each descendant
65 <     * of n, d, n <= d.
64 >     * comparator is null:  For each node n in the heap and each descendant d
65 >     * of n, n <= d.
66       *
67 <     * The element with the lowest value is in queue[1] (assuming the queue is
68 <     * nonempty). A one-based array is used in preference to the traditional
69 <     * zero-based array to simplify parent and child calculations.
67 >     * The element with the lowest value is in queue[1], assuming the queue is
68 >     * nonempty.  (A one-based array is used in preference to the traditional
69 >     * zero-based array to simplify parent and child calculations.)
70       *
71       * queue.length must be >= 2, even if size == 0.
72       */
73 <    private E[] queue;
73 >    private transient Object[] queue;
74  
75      /**
76       * The number of elements in the priority queue.
# Line 62 | Line 81 | public class PriorityQueue<E> extends Ab
81       * The comparator, or null if priority queue uses elements'
82       * natural ordering.
83       */
84 <    private final Comparator<E> comparator;
84 >    private final Comparator<? super E> comparator;
85  
86      /**
87       * The number of times this priority queue has been
88       * <i>structurally modified</i>.  See AbstractList for gory details.
89       */
90 <    private int modCount = 0;
90 >    private transient int modCount = 0;
91  
92      /**
93 <     * Create a new priority queue with the default initial capacity (11)
94 <     * that orders its elements according to their natural ordering.
93 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
94 >     * (11) that orders its elements according to their natural
95 >     * ordering (using <tt>Comparable</tt>).
96       */
97      public PriorityQueue() {
98 <        this(DEFAULT_INITIAL_CAPACITY);
98 >        this(DEFAULT_INITIAL_CAPACITY, null);
99      }
100  
101      /**
102 <     * Create a new priority queue with the specified initial capacity
103 <     * that orders its elements according to their natural ordering.
102 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
103 >     * that orders its elements according to their natural ordering
104 >     * (using <tt>Comparable</tt>).
105       *
106       * @param initialCapacity the initial capacity for this priority queue.
107 +     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
108 +     * than 1
109       */
110      public PriorityQueue(int initialCapacity) {
111          this(initialCapacity, null);
112      }
113  
114      /**
115 <     * Create a new priority queue with the specified initial capacity (11)
115 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
116       * that orders its elements according to the specified comparator.
117       *
118       * @param initialCapacity the initial capacity for this priority queue.
119       * @param comparator the comparator used to order this priority queue.
120 +     * If <tt>null</tt> then the order depends on the elements' natural
121 +     * ordering.
122 +     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
123 +     * than 1
124       */
125 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
125 >    public PriorityQueue(int initialCapacity,
126 >                         Comparator<? super E> comparator) {
127          if (initialCapacity < 1)
128 <            initialCapacity = 1;
129 <        queue = new E[initialCapacity + 1];
128 >            throw new IllegalArgumentException();
129 >        this.queue = new Object[initialCapacity + 1];
130          this.comparator = comparator;
131      }
132  
133      /**
134 <     * Create a new priority queue containing the elements in the specified
135 <     * collection.  The priority queue has an initial capacity of 110% of the
108 <     * size of the specified collection. If the specified collection
109 <     * implements the {@link Sorted} interface, the priority queue will be
110 <     * sorted according to the same comparator, or according to its elements'
111 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
115 <     *
116 <     * @param initialElements the collection whose elements are to be placed
117 <     *        into this priority queue.
118 <     * @throws ClassCastException if elements of the specified collection
119 <     *         cannot be compared to one another according to the priority
120 <     *         queue's ordering.
121 <     * @throws NullPointerException if the specified collection or an
122 <     *         element of the specified collection is <tt>null</tt>.
134 >     * Common code to initialize underlying queue array across
135 >     * constructors below.
136       */
137 <    public PriorityQueue(Collection<E> initialElements) {
138 <        int sz = initialElements.size();
137 >    private void initializeArray(Collection<? extends E> c) {
138 >        int sz = c.size();
139          int initialCapacity = (int)Math.min((sz * 110L) / 100,
140                                              Integer.MAX_VALUE - 1);
141          if (initialCapacity < 1)
142              initialCapacity = 1;
130        queue = new E[initialCapacity + 1];
143  
144 <        /* Commented out to compile with generics compiler
144 >        this.queue = new Object[initialCapacity + 1];
145 >    }
146 >
147 >    /**
148 >     * Initially fill elements of the queue array under the
149 >     * knowledge that it is sorted or is another PQ, in which
150 >     * case we can just place the elements in the order presented.
151 >     */
152 >    private void fillFromSorted(Collection<? extends E> c) {
153 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 >            queue[++size] = i.next();
155 >    }
156 >
157 >    /**
158 >     * Initially fill elements of the queue array that is not to our knowledge
159 >     * sorted, so we must rearrange the elements to guarantee the heap
160 >     * invariant.
161 >     */
162 >    private void fillFromUnsorted(Collection<? extends E> c) {
163 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
164 >            queue[++size] = i.next();
165 >        heapify();
166 >    }
167  
168 <        if (initialElements instanceof Sorted) {
169 <            comparator = ((Sorted)initialElements).comparator();
170 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
171 <                queue[++size] = i.next();
168 >    /**
169 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
170 >     * specified collection.  The priority queue has an initial
171 >     * capacity of 110% of the size of the specified collection or 1
172 >     * if the collection is empty.  If the specified collection is an
173 >     * instance of a {@link java.util.SortedSet} or is another
174 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
175 >     * according to the same comparator, or according to its elements'
176 >     * natural order if the collection is sorted according to its
177 >     * elements' natural order.  Otherwise, the priority queue is
178 >     * ordered according to its elements' natural order.
179 >     *
180 >     * @param c the collection whose elements are to be placed
181 >     *        into this priority queue.
182 >     * @throws ClassCastException if elements of the specified collection
183 >     *         cannot be compared to one another according to the priority
184 >     *         queue's ordering.
185 >     * @throws NullPointerException if <tt>c</tt> or any element within it
186 >     * is <tt>null</tt>
187 >     */
188 >    public PriorityQueue(Collection<? extends E> c) {
189 >        initializeArray(c);
190 >        if (c instanceof SortedSet) {
191 >            // @fixme double-cast workaround for compiler
192 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
193 >            comparator = (Comparator<? super E>)s.comparator();
194 >            fillFromSorted(s);
195 >        } else if (c instanceof PriorityQueue) {
196 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197 >            comparator = (Comparator<? super E>)s.comparator();
198 >            fillFromSorted(s);
199          } else {
139        */
140        {
200              comparator = null;
201 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 <                add(i.next());
201 >            fillFromUnsorted(c);
202          }
203      }
204  
205 +    /**
206 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
207 +     * specified collection.  The priority queue has an initial
208 +     * capacity of 110% of the size of the specified collection or 1
209 +     * if the collection is empty.  This priority queue will be sorted
210 +     * according to the same comparator as the given collection, or
211 +     * according to its elements' natural order if the collection is
212 +     * sorted according to its elements' natural order.
213 +     *
214 +     * @param c the collection whose elements are to be placed
215 +     *        into this priority queue.
216 +     * @throws ClassCastException if elements of the specified collection
217 +     *         cannot be compared to one another according to the priority
218 +     *         queue's ordering.
219 +     * @throws NullPointerException if <tt>c</tt> or any element within it
220 +     * is <tt>null</tt>
221 +     */
222 +    public PriorityQueue(PriorityQueue<? extends E> c) {
223 +        initializeArray(c);
224 +        comparator = (Comparator<? super E>)c.comparator();
225 +        fillFromSorted(c);
226 +    }
227 +
228 +    /**
229 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
230 +     * specified collection.  The priority queue has an initial
231 +     * capacity of 110% of the size of the specified collection or 1
232 +     * if the collection is empty.  This priority queue will be sorted
233 +     * according to the same comparator as the given collection, or
234 +     * according to its elements' natural order if the collection is
235 +     * sorted according to its elements' natural order.
236 +     *
237 +     * @param c the collection whose elements are to be placed
238 +     *        into this priority queue.
239 +     * @throws ClassCastException if elements of the specified collection
240 +     *         cannot be compared to one another according to the priority
241 +     *         queue's ordering.
242 +     * @throws NullPointerException if <tt>c</tt> or any element within it
243 +     * is <tt>null</tt>
244 +     */
245 +    public PriorityQueue(SortedSet<? extends E> c) {
246 +        initializeArray(c);
247 +        comparator = (Comparator<? super E>)c.comparator();
248 +        fillFromSorted(c);
249 +    }
250 +
251 +    /**
252 +     * Resize array, if necessary, to be able to hold given index
253 +     */
254 +    private void grow(int index) {
255 +        int newlen = queue.length;
256 +        if (index < newlen) // don't need to grow
257 +            return;
258 +        if (index == Integer.MAX_VALUE)
259 +            throw new OutOfMemoryError();
260 +        while (newlen <= index) {
261 +            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
262 +                newlen = Integer.MAX_VALUE;
263 +            else
264 +                newlen <<= 2;
265 +        }
266 +        Object[] newQueue = new Object[newlen];
267 +        System.arraycopy(queue, 0, newQueue, 0, queue.length);
268 +        queue = newQueue;
269 +    }
270 +            
271 +
272      // Queue Methods
273  
274      /**
275 <     * Remove and return the minimal element from this priority queue if
151 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
152 <     * <i>minimal</i> is defined according to this priority queue's order.
275 >     * Add the specified element to this priority queue.
276       *
277 <     * @return the minimal element from this priority queue if it contains
278 <     *         one or more elements, otherwise <tt>null</tt>.
277 >     * @return <tt>true</tt>
278 >     * @throws ClassCastException if the specified element cannot be compared
279 >     * with elements currently in the priority queue according
280 >     * to the priority queue's ordering.
281 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
282       */
283 +    public boolean offer(E o) {
284 +        if (o == null)
285 +            throw new NullPointerException();
286 +        modCount++;
287 +        ++size;
288 +
289 +        // Grow backing store if necessary
290 +        if (size >= queue.length)
291 +            grow(size);
292 +
293 +        queue[size] = o;
294 +        fixUp(size);
295 +        return true;
296 +    }
297 +
298      public E poll() {
299          if (size == 0)
300              return null;
301 <        return remove(1);
301 >        return remove();
302 >    }
303 >
304 >    public E peek() {
305 >        return (E) queue[1];
306      }
307  
308 +    // Collection Methods - the first two override to update docs
309 +
310      /**
311 <     * Return, but do not remove, the minimal element from the priority queue,
312 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
313 <     * defined according to this priority queue's order.  This method returns
167 <     * the same object reference that would be returned by by the
168 <     * <tt>poll</tt> method.  The two methods differ in that this method
169 <     * does not remove the element from the priority queue.
311 >     * Adds the specified element to this queue.
312 >     * @return <tt>true</tt> (as per the general contract of
313 >     * <tt>Collection.add</tt>).
314       *
315 <     * @return the minimal element from this priority queue if it contains
316 <     *         one or more elements, otherwise <tt>null</tt>.
315 >     * @throws NullPointerException {@inheritDoc}
316 >     * @throws ClassCastException if the specified element cannot be compared
317 >     * with elements currently in the priority queue according
318 >     * to the priority queue's ordering.
319       */
320 <    public E peek() {
321 <        return queue[1];
320 >    public boolean add(E o) {
321 >        return super.add(o);
322 >    }
323 >
324 >  
325 >    /**
326 >     * Adds all of the elements in the specified collection to this queue.
327 >     * The behavior of this operation is undefined if
328 >     * the specified collection is modified while the operation is in
329 >     * progress.  (This implies that the behavior of this call is undefined if
330 >     * the specified collection is this queue, and this queue is nonempty.)
331 >     * <p>
332 >     * This implementation iterates over the specified collection, and adds
333 >     * each object returned by the iterator to this collection, in turn.
334 >     * @throws NullPointerException {@inheritDoc}
335 >     * @throws ClassCastException if any element cannot be compared
336 >     * with elements currently in the priority queue according
337 >     * to the priority queue's ordering.
338 >     */
339 >    public boolean addAll(Collection<? extends E> c) {
340 >        return super.addAll(c);
341      }
342  
178    // Collection Methods
343  
344      /**
345 <     * Removes a single instance of the specified element from this priority
346 <     * queue, if it is present.  Returns true if this collection contained the
347 <     * specified element (or equivalently, if this collection changed as a
345 >     * Removes a single instance of the specified element from this
346 >     * queue, if it is present.  More formally,
347 >     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
348 >     * o.equals(e))</tt>, if the queue contains one or more such
349 >     * elements.  Returns <tt>true</tt> if the queue contained the
350 >     * specified element (or equivalently, if the queue changed as a
351       * result of the call).
352       *
353 <     * @param o element to be removed from this collection, if present.
354 <     * @return <tt>true</tt> if this collection changed as a result of the
355 <     *         call
356 <     * @throws ClassCastException if the specified element cannot be compared
190 <     *            with elements currently in the priority queue according
191 <     *            to the priority queue's ordering.
192 <     * @throws NullPointerException if the specified element is null.
353 >     * <p>This implementation iterates over the queue looking for the
354 >     * specified element.  If it finds the element, it removes the element
355 >     * from the queue using the iterator's remove method.<p>
356 >     *
357       */
358 <    public boolean remove(Object element) {
359 <        if (element == null)
360 <            throw new NullPointerException();
358 >    public boolean remove(Object o) {
359 >        if (o == null)
360 >            return false;
361  
362          if (comparator == null) {
363              for (int i = 1; i <= size; i++) {
364 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
365 <                    remove(i);
364 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
365 >                    removeAt(i);
366                      return true;
367                  }
368              }
369          } else {
370              for (int i = 1; i <= size; i++) {
371 <                if (comparator.compare(queue[i], (E) element) == 0) {
372 <                    remove(i);
371 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
372 >                    removeAt(i);
373                      return true;
374                  }
375              }
# Line 214 | Line 378 | public class PriorityQueue<E> extends Ab
378      }
379  
380      /**
381 <     * Returns an iterator over the elements in this priority queue.  The
382 <     * first element returned by this iterator is the same element that
219 <     * would be returned by a call to <tt>peek</tt>.
381 >     * Returns an iterator over the elements in this queue. The iterator
382 >     * does not return the elements in any particular order.
383       *
384 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
384 >     * @return an iterator over the elements in this queue.
385       */
386      public Iterator<E> iterator() {
387          return new Itr();
388      }
389  
390      private class Itr implements Iterator<E> {
391 +
392          /**
393           * Index (into queue array) of element to be returned by
394           * subsequent call to next.
395           */
396 <        int cursor = 1;
396 >        private int cursor = 1;
397  
398          /**
399 <         * Index of element returned by most recent call to next or
400 <         * previous.  Reset to 0 if this element is deleted by a call
401 <         * to remove.
399 >         * Index of element returned by most recent call to next,
400 >         * unless that element came from the forgetMeNot list.
401 >         * Reset to 0 if element is deleted by a call to remove.
402           */
403 <        int lastRet = 0;
403 >        private int lastRet = 0;
404  
405          /**
406           * The modCount value that the iterator believes that the backing
407           * List should have.  If this expectation is violated, the iterator
408           * has detected concurrent modification.
409           */
410 <        int expectedModCount = modCount;
410 >        private int expectedModCount = modCount;
411 >
412 >        /**
413 >         * A list of elements that were moved from the unvisited portion of
414 >         * the heap into the visited portion as a result of "unlucky" element
415 >         * removals during the iteration.  (Unlucky element removals are those
416 >         * that require a fixup instead of a fixdown.)  We must visit all of
417 >         * the elements in this list to complete the iteration.  We do this
418 >         * after we've completed the "normal" iteration.
419 >         *
420 >         * We expect that most iterations, even those involving removals,
421 >         * will not use need to store elements in this field.
422 >         */
423 >        private ArrayList<E> forgetMeNot = null;
424 >
425 >        /**
426 >         * Element returned by the most recent call to next iff that
427 >         * element was drawn from the forgetMeNot list.
428 >         */
429 >        private Object lastRetElt = null;
430  
431          public boolean hasNext() {
432 <            return cursor <= size;
432 >            return cursor <= size || forgetMeNot != null;
433          }
434  
435          public E next() {
436              checkForComodification();
437 <            if (cursor > size)
437 >            E result;
438 >            if (cursor <= size) {
439 >                result = (E) queue[cursor];
440 >                lastRet = cursor++;
441 >            }
442 >            else if (forgetMeNot == null)
443                  throw new NoSuchElementException();
444 <            E result = queue[cursor];
445 <            lastRet = cursor++;
444 >            else {
445 >                int remaining = forgetMeNot.size();
446 >                result = forgetMeNot.remove(remaining - 1);
447 >                if (remaining == 1)
448 >                    forgetMeNot = null;
449 >                lastRet = 0;
450 >                lastRetElt = result;
451 >            }
452              return result;
453          }
454  
455          public void remove() {
262            if (lastRet == 0)
263                throw new IllegalStateException();
456              checkForComodification();
457  
458 <            PriorityQueue.this.remove(lastRet);
459 <            if (lastRet < cursor)
460 <                cursor--;
461 <            lastRet = 0;
458 >            if (lastRet != 0) {
459 >                E moved = PriorityQueue.this.removeAt(lastRet);
460 >                lastRet = 0;
461 >                if (moved == null) {
462 >                    cursor--;
463 >                } else {
464 >                    if (forgetMeNot == null)
465 >                        forgetMeNot = new ArrayList<E>();
466 >                    forgetMeNot.add(moved);
467 >                }
468 >            } else if (lastRetElt != null) {
469 >                PriorityQueue.this.remove(lastRetElt);
470 >                lastRetElt = null;
471 >            } else {
472 >                throw new IllegalStateException();
473 >            }
474 >
475              expectedModCount = modCount;
476          }
477  
# Line 276 | Line 481 | public class PriorityQueue<E> extends Ab
481          }
482      }
483  
279    /**
280     * Returns the number of elements in this priority queue.
281     *
282     * @return the number of elements in this priority queue.
283     */
484      public int size() {
485          return size;
486      }
487  
488      /**
489 <     * Add the specified element to this priority queue.
290 <     *
291 <     * @param element the element to add.
292 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
489 >     * Remove all elements from the priority queue.
490       */
491 <    public boolean offer(E element) {
299 <        if (element == null)
300 <            throw new NullPointerException();
491 >    public void clear() {
492          modCount++;
493  
494 <        // Grow backing store if necessary
495 <        if (++size == queue.length) {
496 <            E[] newQueue = new E[2 * queue.length];
306 <            System.arraycopy(queue, 0, newQueue, 0, size);
307 <            queue = newQueue;
308 <        }
494 >        // Null out element references to prevent memory leak
495 >        for (int i=1; i<=size; i++)
496 >            queue[i] = null;
497  
498 <        queue[size] = element;
311 <        fixUp(size);
312 <        return true;
498 >        size = 0;
499      }
500  
501      /**
502 <     * Remove all elements from the priority queue.
502 >     * Removes and returns the first element from queue.
503       */
504 <    public void clear() {
504 >    public E remove() {
505 >        if (size == 0)
506 >            throw new NoSuchElementException();
507          modCount++;
508  
509 <        // Null out element references to prevent memory leak
510 <        for (int i=1; i<=size; i++)
511 <            queue[i] = null;
509 >        E result = (E) queue[1];
510 >        queue[1] = queue[size];
511 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
512 >        if (size > 1)
513 >            fixDown(1);
514  
515 <        size = 0;
515 >        return result;
516      }
517  
518      /**
519 <     * Removes and returns the ith element from queue.  Recall
520 <     * that queue is one-based, so 1 <= i <= size.
519 >     * Removes and returns the ith element from queue.  (Recall that queue
520 >     * is one-based, so 1 <= i <= size.)
521       *
522 <     * XXX: Could further special-case i==size, but is it worth it?
523 <     * XXX: Could special-case i==0, but is it worth it?
522 >     * Normally this method leaves the elements at positions from 1 up to i-1,
523 >     * inclusive, untouched.  Under these circumstances, it returns null.
524 >     * Occasionally, in order to maintain the heap invariant, it must move
525 >     * the last element of the list to some index in the range [2, i-1],
526 >     * and move the element previously at position (i/2) to position i.
527 >     * Under these circumstances, this method returns the element that was
528 >     * previously at the end of the list and is now at some position between
529 >     * 2 and i-1 inclusive.
530       */
531 <    private E remove(int i) {
532 <        assert i <= size;
531 >    private E removeAt(int i) {
532 >        assert i > 0 && i <= size;
533          modCount++;
534  
535 <        E result = queue[i];
536 <        queue[i] = queue[size];
535 >        E moved = (E) queue[size];
536 >        queue[i] = moved;
537          queue[size--] = null;  // Drop extra ref to prevent memory leak
538 <        if (i <= size)
538 >        if (i <= size) {
539              fixDown(i);
540 <        return result;
540 >            if (queue[i] == moved) {
541 >                fixUp(i);
542 >                if (queue[i] != moved)
543 >                    return moved;
544 >            }
545 >        }
546 >        return null;
547      }
548  
549      /**
# Line 357 | Line 559 | public class PriorityQueue<E> extends Ab
559          if (comparator == null) {
560              while (k > 1) {
561                  int j = k >> 1;
562 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
562 >                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
563                      break;
564 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
564 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
565                  k = j;
566              }
567          } else {
568              while (k > 1) {
569 <                int j = k >> 1;
570 <                if (comparator.compare(queue[j], queue[k]) <= 0)
569 >                int j = k >>> 1;
570 >                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
571                      break;
572 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
572 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
573                  k = j;
574              }
575          }
# Line 385 | Line 587 | public class PriorityQueue<E> extends Ab
587      private void fixDown(int k) {
588          int j;
589          if (comparator == null) {
590 <            while ((j = k << 1) <= size) {
591 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
590 >            while ((j = k << 1) <= size && (j > 0)) {
591 >                if (j<size &&
592 >                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
593                      j++; // j indexes smallest kid
594 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
594 >
595 >                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
596                      break;
597 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
597 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
598                  k = j;
599              }
600          } else {
601 <            while ((j = k << 1) <= size) {
602 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
601 >            while ((j = k << 1) <= size && (j > 0)) {
602 >                if (j<size &&
603 >                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
604                      j++; // j indexes smallest kid
605 <                if (comparator.compare(queue[k], queue[j]) <= 0)
605 >                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
606                      break;
607 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
607 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
608                  k = j;
609              }
610          }
611      }
612  
613      /**
614 <     * Returns the comparator associated with this priority queue, or
615 <     * <tt>null</tt> if it uses its elements' natural ordering.
614 >     * Establishes the heap invariant (described above) in the entire tree,
615 >     * assuming nothing about the order of the elements prior to the call.
616 >     */
617 >    private void heapify() {
618 >        for (int i = size/2; i >= 1; i--)
619 >            fixDown(i);
620 >    }
621 >
622 >    /**
623 >     * Returns the comparator used to order this collection, or <tt>null</tt>
624 >     * if this collection is sorted according to its elements natural ordering
625 >     * (using <tt>Comparable</tt>).
626       *
627 <     * @return the comparator associated with this priority queue, or
628 <     *         <tt>null</tt> if it uses its elements' natural ordering.
627 >     * @return the comparator used to order this collection, or <tt>null</tt>
628 >     * if this collection is sorted according to its elements natural ordering.
629       */
630 <    Comparator comparator() {
630 >    public Comparator<? super E> comparator() {
631          return comparator;
632      }
633 +
634 +    /**
635 +     * Save the state of the instance to a stream (that
636 +     * is, serialize it).
637 +     *
638 +     * @serialData The length of the array backing the instance is
639 +     * emitted (int), followed by all of its elements (each an
640 +     * <tt>Object</tt>) in the proper order.
641 +     * @param s the stream
642 +     */
643 +    private void writeObject(java.io.ObjectOutputStream s)
644 +        throws java.io.IOException{
645 +        // Write out element count, and any hidden stuff
646 +        s.defaultWriteObject();
647 +
648 +        // Write out array length
649 +        s.writeInt(queue.length);
650 +
651 +        // Write out all elements in the proper order.
652 +        for (int i=0; i<size; i++)
653 +            s.writeObject(queue[i]);
654 +    }
655 +
656 +    /**
657 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
658 +     * deserialize it).
659 +     * @param s the stream
660 +     */
661 +    private void readObject(java.io.ObjectInputStream s)
662 +        throws java.io.IOException, ClassNotFoundException {
663 +        // Read in size, and any hidden stuff
664 +        s.defaultReadObject();
665 +
666 +        // Read in array length and allocate array
667 +        int arrayLength = s.readInt();
668 +        queue = new Object[arrayLength];
669 +
670 +        // Read in all elements in the proper order.
671 +        for (int i=0; i<size; i++)
672 +            queue[i] = (E) s.readObject();
673 +    }
674 +
675   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines