ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.23 by dholmes, Wed Aug 6 01:57:53 2003 UTC vs.
Revision 1.77 by jsr166, Mon Dec 12 20:53:11 2011 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27  
28   /**
29 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
30 < * This queue orders
31 < * elements according to an order specified at construction time, which is
32 < * specified in the same manner as {@link java.util.TreeSet} and
33 < * {@link java.util.TreeMap}: elements are ordered
34 < * either according to their <i>natural order</i> (see {@link Comparable}), or
35 < * according to a {@link java.util.Comparator}, depending on which
36 < * constructor is used.
37 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
38 < * respect to the specified ordering.
39 < * If multiple elements are tied for least value, the
40 < * head is one of those elements. A priority queue does not permit
41 < * <tt>null</tt> elements.
42 < *
43 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
44 < * return the head of the queue.
45 < *
46 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
47 < * not delete, the head of the queue.
48 < *
49 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
50 < * size of the array used internally to store the elements on the
51 < * queue.
52 < * It is always at least as large as the queue size.  As
53 < * elements are added to a priority queue, its capacity grows
54 < * automatically.  The details of the growth policy are not specified.
55 < *
56 < * <p>Implementation note: this implementation provides O(log(n)) time
57 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
58 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
59 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
60 < * constant time for the retrieval methods (<tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80 + @SuppressWarnings("unchecked")
81   public class PriorityQueue<E> extends AbstractQueue<E>
82 <    implements Queue<E>, java.io.Serializable {
82 >    implements java.io.Serializable {
83 >
84 >    private static final long serialVersionUID = -7720805057305804111L;
85  
86      private static final int DEFAULT_INITIAL_CAPACITY = 11;
87  
88      /**
89 <     * Priority queue represented as a balanced binary heap: the two children
90 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
91 <     * ordered by comparator, or by the elements' natural ordering, if
92 <     * comparator is null:  For each node n in the heap and each descendant d
93 <     * of n, n <= d.
94 <     *
56 <     * The element with the lowest value is in queue[1], assuming the queue is
57 <     * nonempty.  (A one-based array is used in preference to the traditional
58 <     * zero-based array to simplify parent and child calculations.)
59 <     *
60 <     * queue.length must be >= 2, even if size == 0.
89 >     * Priority queue represented as a balanced binary heap: the two
90 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
91 >     * priority queue is ordered by comparator, or by the elements'
92 >     * natural ordering, if comparator is null: For each node n in the
93 >     * heap and each descendant d of n, n <= d.  The element with the
94 >     * lowest value is in queue[0], assuming the queue is nonempty.
95       */
96      private transient Object[] queue;
97  
# Line 79 | Line 113 | public class PriorityQueue<E> extends Ab
113      private transient int modCount = 0;
114  
115      /**
116 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
117 <     * (11) that orders its elements according to their natural
118 <     * ordering (using <tt>Comparable</tt>.)
116 >     * Creates a {@code PriorityQueue} with the default initial
117 >     * capacity (11) that orders its elements according to their
118 >     * {@linkplain Comparable natural ordering}.
119       */
120      public PriorityQueue() {
121          this(DEFAULT_INITIAL_CAPACITY, null);
122      }
123  
124      /**
125 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
126 <     * that orders its elements according to their natural ordering
127 <     * (using <tt>Comparable</tt>.)
128 <     *
129 <     * @param initialCapacity the initial capacity for this priority queue.
130 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131 <     * than 1
125 >     * Creates a {@code PriorityQueue} with the specified initial
126 >     * capacity that orders its elements according to their
127 >     * {@linkplain Comparable natural ordering}.
128 >     *
129 >     * @param initialCapacity the initial capacity for this priority queue
130 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
131 >     *         than 1
132       */
133      public PriorityQueue(int initialCapacity) {
134          this(initialCapacity, null);
135      }
136  
137      /**
138 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
138 >     * Creates a {@code PriorityQueue} with the specified initial capacity
139       * that orders its elements according to the specified comparator.
140       *
141 <     * @param initialCapacity the initial capacity for this priority queue.
142 <     * @param comparator the comparator used to order this priority queue.
143 <     * If <tt>null</tt> then the order depends on the elements' natural
144 <     * ordering.
145 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
146 <     * than 1
141 >     * @param  initialCapacity the initial capacity for this priority queue
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @throws IllegalArgumentException if {@code initialCapacity} is
146 >     *         less than 1
147       */
148 <    public PriorityQueue(int initialCapacity,
148 >    public PriorityQueue(int initialCapacity,
149                           Comparator<? super E> comparator) {
150 +        // Note: This restriction of at least one is not actually needed,
151 +        // but continues for 1.5 compatibility
152          if (initialCapacity < 1)
153              throw new IllegalArgumentException();
154 <        this.queue = new Object[initialCapacity + 1];
154 >        this.queue = new Object[initialCapacity];
155          this.comparator = comparator;
156      }
157  
158      /**
159 <     * Common code to initialize underlying queue array across
160 <     * constructors below.
161 <     */
162 <    private void initializeArray(Collection<? extends E> c) {
163 <        int sz = c.size();
164 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
129 <                                            Integer.MAX_VALUE - 1);
130 <        if (initialCapacity < 1)
131 <            initialCapacity = 1;
132 <
133 <        this.queue = new Object[initialCapacity + 1];
134 <    }
135 <
136 <    /**
137 <     * Initially fill elements of the queue array under the
138 <     * knowledge that it is sorted or is another PQ, in which
139 <     * case we can just place the elements without fixups.
140 <     */
141 <    private void fillFromSorted(Collection<? extends E> c) {
142 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
143 <            queue[++size] = i.next();
144 <    }
145 <
146 <
147 <    /**
148 <     * Initially fill elements of the queue array that is
149 <     * not to our knowledge sorted, so we must add them
150 <     * one by one.
151 <     */
152 <    private void fillFromUnsorted(Collection<? extends E> c) {
153 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 <            add(i.next());
155 <    }
156 <
157 <    /**
158 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
159 <     * specified collection.  The priority queue has an initial
160 <     * capacity of 110% of the size of the specified collection or 1
161 <     * if the collection is empty.  If the specified collection is an
162 <     * instance of a {@link SortedSet} or is another
163 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
164 <     * according to the same comparator, or according to its elements'
165 <     * natural order if the collection is sorted according to its
166 <     * elements' natural order.  Otherwise, the priority queue is
167 <     * ordered according to its elements' natural order.
159 >     * Creates a {@code PriorityQueue} containing the elements in the
160 >     * specified collection.  If the specified collection is an instance of
161 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 >     * priority queue will be ordered according to the same ordering.
163 >     * Otherwise, this priority queue will be ordered according to the
164 >     * {@linkplain Comparable natural ordering} of its elements.
165       *
166 <     * @param c the collection whose elements are to be placed
167 <     *        into this priority queue.
166 >     * @param  c the collection whose elements are to be placed
167 >     *         into this priority queue
168       * @throws ClassCastException if elements of the specified collection
169       *         cannot be compared to one another according to the priority
170 <     *         queue's ordering.
171 <     * @throws NullPointerException if <tt>c</tt> or any element within it
172 <     * is <tt>null</tt>
170 >     *         queue's ordering
171 >     * @throws NullPointerException if the specified collection or any
172 >     *         of its elements are null
173       */
174 +    @SuppressWarnings("unchecked")
175      public PriorityQueue(Collection<? extends E> c) {
176 <        initializeArray(c);
177 <        if (c instanceof SortedSet<? extends E>) {
178 <            SortedSet<? extends E> s = (SortedSet<? extends E>) c;
179 <            comparator = (Comparator<? super E>)s.comparator();
180 <            fillFromSorted(s);
181 <        }
182 <        else if (c instanceof PriorityQueue<? extends E>) {
183 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
184 <            comparator = (Comparator<? super E>)s.comparator();
187 <            fillFromSorted(s);
176 >        if (c instanceof SortedSet<?>) {
177 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
178 >            this.comparator = (Comparator<? super E>) ss.comparator();
179 >            initElementsFromCollection(ss);
180 >        }
181 >        else if (c instanceof PriorityQueue<?>) {
182 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
183 >            this.comparator = (Comparator<? super E>) pq.comparator();
184 >            initFromPriorityQueue(pq);
185          }
186          else {
187 <            comparator = null;
188 <            fillFromUnsorted(c);
187 >            this.comparator = null;
188 >            initFromCollection(c);
189          }
190      }
191  
192      /**
193 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
194 <     * specified collection.  The priority queue has an initial
195 <     * capacity of 110% of the size of the specified collection or 1
196 <     * if the collection is empty.  This priority queue will be sorted
200 <     * according to the same comparator as the given collection, or
201 <     * according to its elements' natural order if the collection is
202 <     * sorted according to its elements' natural order.
193 >     * Creates a {@code PriorityQueue} containing the elements in the
194 >     * specified priority queue.  This priority queue will be
195 >     * ordered according to the same ordering as the given priority
196 >     * queue.
197       *
198 <     * @param c the collection whose elements are to be placed
199 <     *        into this priority queue.
200 <     * @throws ClassCastException if elements of the specified collection
201 <     *         cannot be compared to one another according to the priority
202 <     *         queue's ordering.
203 <     * @throws NullPointerException if <tt>c</tt> or any element within it
204 <     * is <tt>null</tt>
198 >     * @param  c the priority queue whose elements are to be placed
199 >     *         into this priority queue
200 >     * @throws ClassCastException if elements of {@code c} cannot be
201 >     *         compared to one another according to {@code c}'s
202 >     *         ordering
203 >     * @throws NullPointerException if the specified priority queue or any
204 >     *         of its elements are null
205       */
206 +    @SuppressWarnings("unchecked")
207      public PriorityQueue(PriorityQueue<? extends E> c) {
208 <        initializeArray(c);
209 <        comparator = (Comparator<? super E>)c.comparator();
215 <        fillFromSorted(c);
208 >        this.comparator = (Comparator<? super E>) c.comparator();
209 >        initFromPriorityQueue(c);
210      }
211  
212      /**
213 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
214 <     * specified collection.  The priority queue has an initial
215 <     * capacity of 110% of the size of the specified collection or 1
222 <     * if the collection is empty.  This priority queue will be sorted
223 <     * according to the same comparator as the given collection, or
224 <     * according to its elements' natural order if the collection is
225 <     * sorted according to its elements' natural order.
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214 >     * specified sorted set.   This priority queue will be ordered
215 >     * according to the same ordering as the given sorted set.
216       *
217 <     * @param c the collection whose elements are to be placed
218 <     *        into this priority queue.
219 <     * @throws ClassCastException if elements of the specified collection
220 <     *         cannot be compared to one another according to the priority
221 <     *         queue's ordering.
222 <     * @throws NullPointerException if <tt>c</tt> or any element within it
223 <     * is <tt>null</tt>
217 >     * @param  c the sorted set whose elements are to be placed
218 >     *         into this priority queue
219 >     * @throws ClassCastException if elements of the specified sorted
220 >     *         set cannot be compared to one another according to the
221 >     *         sorted set's ordering
222 >     * @throws NullPointerException if the specified sorted set or any
223 >     *         of its elements are null
224       */
225 +    @SuppressWarnings("unchecked")
226      public PriorityQueue(SortedSet<? extends E> c) {
227 <        initializeArray(c);
228 <        comparator = (Comparator<? super E>)c.comparator();
238 <        fillFromSorted(c);
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initElementsFromCollection(c);
229      }
230  
231 <    /**
232 <     * Resize array, if necessary, to be able to hold given index
233 <     */
234 <    private void grow(int index) {
235 <        int newlen = queue.length;
236 <        if (index < newlen) // don't need to grow
247 <            return;
248 <        if (index == Integer.MAX_VALUE)
249 <            throw new OutOfMemoryError();
250 <        while (newlen <= index) {
251 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
252 <                newlen = Integer.MAX_VALUE;
253 <            else
254 <                newlen <<= 2;
231 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
232 >        if (c.getClass() == PriorityQueue.class) {
233 >            this.queue = c.toArray();
234 >            this.size = c.size();
235 >        } else {
236 >            initFromCollection(c);
237          }
256        Object[] newQueue = new Object[newlen];
257        System.arraycopy(queue, 0, newQueue, 0, queue.length);
258        queue = newQueue;
238      }
260            
261    // Queue Methods
262
239  
240 +    private void initElementsFromCollection(Collection<? extends E> c) {
241 +        Object[] a = c.toArray();
242 +        // If c.toArray incorrectly doesn't return Object[], copy it.
243 +        if (a.getClass() != Object[].class)
244 +            a = Arrays.copyOf(a, a.length, Object[].class);
245 +        int len = a.length;
246 +        if (len == 1 || this.comparator != null)
247 +            for (int i = 0; i < len; i++)
248 +                if (a[i] == null)
249 +                    throw new NullPointerException();
250 +        this.queue = a;
251 +        this.size = a.length;
252 +    }
253  
254      /**
255 <     * Add the specified element to this priority queue.
255 >     * Initializes queue array with elements from the given Collection.
256       *
257 <     * @return <tt>true</tt>
269 <     * @throws ClassCastException if the specified element cannot be compared
270 <     * with elements currently in the priority queue according
271 <     * to the priority queue's ordering.
272 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
257 >     * @param c the collection
258       */
259 <    public boolean offer(E o) {
260 <        if (o == null)
261 <            throw new NullPointerException();
277 <        modCount++;
278 <        ++size;
279 <
280 <        // Grow backing store if necessary
281 <        if (size >= queue.length)
282 <            grow(size);
283 <
284 <        queue[size] = o;
285 <        fixUp(size);
286 <        return true;
259 >    private void initFromCollection(Collection<? extends E> c) {
260 >        initElementsFromCollection(c);
261 >        heapify();
262      }
263  
264 <    public E poll() {
265 <        if (size == 0)
266 <            return null;
267 <        return (E) remove(1);
268 <    }
264 >    /**
265 >     * The maximum size of array to allocate.
266 >     * Some VMs reserve some header words in an array.
267 >     * Attempts to allocate larger arrays may result in
268 >     * OutOfMemoryError: Requested array size exceeds VM limit
269 >     */
270 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
271  
272 <    public E peek() {
273 <        return (E) queue[1];
272 >    /**
273 >     * Increases the capacity of the array.
274 >     *
275 >     * @param minCapacity the desired minimum capacity
276 >     */
277 >    private void grow(int minCapacity) {
278 >        int oldCapacity = queue.length;
279 >        // Double size if small; else grow by 50%
280 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
281 >                                         (oldCapacity + 2) :
282 >                                         (oldCapacity >> 1));
283 >        // overflow-conscious code
284 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
285 >            newCapacity = hugeCapacity(minCapacity);
286 >        queue = Arrays.copyOf(queue, newCapacity);
287      }
288  
289 <    // Collection Methods - the first two override to update docs
289 >    private static int hugeCapacity(int minCapacity) {
290 >        if (minCapacity < 0) // overflow
291 >            throw new OutOfMemoryError();
292 >        return (minCapacity > MAX_ARRAY_SIZE) ?
293 >            Integer.MAX_VALUE :
294 >            MAX_ARRAY_SIZE;
295 >    }
296  
297      /**
298 <     * Adds the specified element to this queue.
303 <     * @return <tt>true</tt> (as per the general contract of
304 <     * <tt>Collection.add</tt>).
298 >     * Inserts the specified element into this priority queue.
299       *
300 <     * @throws NullPointerException {@inheritDoc}
301 <     * @throws ClassCastException if the specified element cannot be compared
302 <     * with elements currently in the priority queue according
303 <     * to the priority queue's ordering.
300 >     * @return {@code true} (as specified by {@link Collection#add})
301 >     * @throws ClassCastException if the specified element cannot be
302 >     *         compared with elements currently in this priority queue
303 >     *         according to the priority queue's ordering
304 >     * @throws NullPointerException if the specified element is null
305       */
306 <    public boolean add(E o) {
307 <        return super.add(o);
306 >    public boolean add(E e) {
307 >        return offer(e);
308      }
309  
315  
310      /**
311 <     * Adds all of the elements in the specified collection to this queue.
312 <     * The behavior of this operation is undefined if
313 <     * the specified collection is modified while the operation is in
314 <     * progress.  (This implies that the behavior of this call is undefined if
315 <     * the specified collection is this queue, and this queue is nonempty.)
316 <     * <p>
317 <     * This implementation iterates over the specified collection, and adds
324 <     * each object returned by the iterator to this collection, in turn.
325 <     * @throws NullPointerException {@inheritDoc}
326 <     * @throws ClassCastException if any element cannot be compared
327 <     * with elements currently in the priority queue according
328 <     * to the priority queue's ordering.
311 >     * Inserts the specified element into this priority queue.
312 >     *
313 >     * @return {@code true} (as specified by {@link Queue#offer})
314 >     * @throws ClassCastException if the specified element cannot be
315 >     *         compared with elements currently in this priority queue
316 >     *         according to the priority queue's ordering
317 >     * @throws NullPointerException if the specified element is null
318       */
319 <    public boolean addAll(Collection<? extends E> c) {
320 <        return super.addAll(c);
319 >    public boolean offer(E e) {
320 >        if (e == null)
321 >            throw new NullPointerException();
322 >        modCount++;
323 >        int i = size;
324 >        if (i >= queue.length)
325 >            grow(i + 1);
326 >        size = i + 1;
327 >        if (i == 0)
328 >            queue[0] = e;
329 >        else
330 >            siftUp(i, e);
331 >        return true;
332      }
333  
334 +    public E peek() {
335 +        return (size == 0) ? null : (E) queue[0];
336 +    }
337 +
338 +    private int indexOf(Object o) {
339 +        if (o != null) {
340 +            for (int i = 0; i < size; i++)
341 +                if (o.equals(queue[i]))
342 +                    return i;
343 +        }
344 +        return -1;
345 +    }
346  
347 < /**
348 <     * Removes a single instance of the specified element from this
349 <     * queue, if it is present.  More formally,
350 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
351 <     * o.equals(e))</tt>, if the queue contains one or more such
352 <     * elements.  Returns <tt>true</tt> if the queue contained the
341 <     * specified element (or equivalently, if the queue changed as a
347 >    /**
348 >     * Removes a single instance of the specified element from this queue,
349 >     * if it is present.  More formally, removes an element {@code e} such
350 >     * that {@code o.equals(e)}, if this queue contains one or more such
351 >     * elements.  Returns {@code true} if and only if this queue contained
352 >     * the specified element (or equivalently, if this queue changed as a
353       * result of the call).
354       *
355 <     * <p>This implementation iterates over the queue looking for the
356 <     * specified element.  If it finds the element, it removes the element
346 <     * from the queue using the iterator's remove method.<p>
347 <     *
355 >     * @param o element to be removed from this queue, if present
356 >     * @return {@code true} if this queue changed as a result of the call
357       */
358      public boolean remove(Object o) {
359 <        if (o == null)
359 >        int i = indexOf(o);
360 >        if (i == -1)
361              return false;
362 +        else {
363 +            removeAt(i);
364 +            return true;
365 +        }
366 +    }
367  
368 <        if (comparator == null) {
369 <            for (int i = 1; i <= size; i++) {
370 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
371 <                    remove(i);
372 <                    return true;
373 <                }
374 <            }
375 <        } else {
376 <            for (int i = 1; i <= size; i++) {
377 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
378 <                    remove(i);
379 <                    return true;
365 <                }
368 >    /**
369 >     * Version of remove using reference equality, not equals.
370 >     * Needed by iterator.remove.
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     * @return {@code true} if removed
374 >     */
375 >    boolean removeEq(Object o) {
376 >        for (int i = 0; i < size; i++) {
377 >            if (o == queue[i]) {
378 >                removeAt(i);
379 >                return true;
380              }
381          }
382          return false;
383      }
384  
385      /**
386 +     * Returns {@code true} if this queue contains the specified element.
387 +     * More formally, returns {@code true} if and only if this queue contains
388 +     * at least one element {@code e} such that {@code o.equals(e)}.
389 +     *
390 +     * @param o object to be checked for containment in this queue
391 +     * @return {@code true} if this queue contains the specified element
392 +     */
393 +    public boolean contains(Object o) {
394 +        return indexOf(o) != -1;
395 +    }
396 +
397 +    /**
398 +     * Returns an array containing all of the elements in this queue.
399 +     * The elements are in no particular order.
400 +     *
401 +     * <p>The returned array will be "safe" in that no references to it are
402 +     * maintained by this queue.  (In other words, this method must allocate
403 +     * a new array).  The caller is thus free to modify the returned array.
404 +     *
405 +     * <p>This method acts as bridge between array-based and collection-based
406 +     * APIs.
407 +     *
408 +     * @return an array containing all of the elements in this queue
409 +     */
410 +    public Object[] toArray() {
411 +        return Arrays.copyOf(queue, size);
412 +    }
413 +
414 +    /**
415 +     * Returns an array containing all of the elements in this queue; the
416 +     * runtime type of the returned array is that of the specified array.
417 +     * The returned array elements are in no particular order.
418 +     * If the queue fits in the specified array, it is returned therein.
419 +     * Otherwise, a new array is allocated with the runtime type of the
420 +     * specified array and the size of this queue.
421 +     *
422 +     * <p>If the queue fits in the specified array with room to spare
423 +     * (i.e., the array has more elements than the queue), the element in
424 +     * the array immediately following the end of the collection is set to
425 +     * {@code null}.
426 +     *
427 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
428 +     * array-based and collection-based APIs.  Further, this method allows
429 +     * precise control over the runtime type of the output array, and may,
430 +     * under certain circumstances, be used to save allocation costs.
431 +     *
432 +     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
433 +     * The following code can be used to dump the queue into a newly
434 +     * allocated array of <tt>String</tt>:
435 +     *
436 +     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 +     *
438 +     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
439 +     * <tt>toArray()</tt>.
440 +     *
441 +     * @param a the array into which the elements of the queue are to
442 +     *          be stored, if it is big enough; otherwise, a new array of the
443 +     *          same runtime type is allocated for this purpose.
444 +     * @return an array containing all of the elements in this queue
445 +     * @throws ArrayStoreException if the runtime type of the specified array
446 +     *         is not a supertype of the runtime type of every element in
447 +     *         this queue
448 +     * @throws NullPointerException if the specified array is null
449 +     */
450 +    public <T> T[] toArray(T[] a) {
451 +        if (a.length < size)
452 +            // Make a new array of a's runtime type, but my contents:
453 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 +        System.arraycopy(queue, 0, a, 0, size);
455 +        if (a.length > size)
456 +            a[size] = null;
457 +        return a;
458 +    }
459 +
460 +    /**
461       * Returns an iterator over the elements in this queue. The iterator
462       * does not return the elements in any particular order.
463       *
464 <     * @return an iterator over the elements in this queue.
464 >     * @return an iterator over the elements in this queue
465       */
466      public Iterator<E> iterator() {
467          return new Itr();
468      }
469  
470 <    private class Itr implements Iterator<E> {
470 >    private final class Itr implements Iterator<E> {
471          /**
472           * Index (into queue array) of element to be returned by
473           * subsequent call to next.
474           */
475 <        private int cursor = 1;
475 >        private int cursor = 0;
476  
477          /**
478 <         * Index of element returned by most recent call to next or
479 <         * previous.  Reset to 0 if this element is deleted by a call
480 <         * to remove.
478 >         * Index of element returned by most recent call to next,
479 >         * unless that element came from the forgetMeNot list.
480 >         * Set to -1 if element is deleted by a call to remove.
481           */
482 <        private int lastRet = 0;
482 >        private int lastRet = -1;
483 >
484 >        /**
485 >         * A queue of elements that were moved from the unvisited portion of
486 >         * the heap into the visited portion as a result of "unlucky" element
487 >         * removals during the iteration.  (Unlucky element removals are those
488 >         * that require a siftup instead of a siftdown.)  We must visit all of
489 >         * the elements in this list to complete the iteration.  We do this
490 >         * after we've completed the "normal" iteration.
491 >         *
492 >         * We expect that most iterations, even those involving removals,
493 >         * will not need to store elements in this field.
494 >         */
495 >        private ArrayDeque<E> forgetMeNot = null;
496 >
497 >        /**
498 >         * Element returned by the most recent call to next iff that
499 >         * element was drawn from the forgetMeNot list.
500 >         */
501 >        private E lastRetElt = null;
502  
503          /**
504           * The modCount value that the iterator believes that the backing
505 <         * List should have.  If this expectation is violated, the iterator
505 >         * Queue should have.  If this expectation is violated, the iterator
506           * has detected concurrent modification.
507           */
508          private int expectedModCount = modCount;
509  
510          public boolean hasNext() {
511 <            return cursor <= size;
511 >            return cursor < size ||
512 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
513          }
514  
515          public E next() {
516 <            checkForComodification();
517 <            if (cursor > size)
518 <                throw new NoSuchElementException();
519 <            E result = (E) queue[cursor];
520 <            lastRet = cursor++;
521 <            return result;
516 >            if (expectedModCount != modCount)
517 >                throw new ConcurrentModificationException();
518 >            if (cursor < size)
519 >                return (E) queue[lastRet = cursor++];
520 >            if (forgetMeNot != null) {
521 >                lastRet = -1;
522 >                lastRetElt = forgetMeNot.poll();
523 >                if (lastRetElt != null)
524 >                    return lastRetElt;
525 >            }
526 >            throw new NoSuchElementException();
527          }
528  
529          public void remove() {
530 <            if (lastRet == 0)
530 >            if (expectedModCount != modCount)
531 >                throw new ConcurrentModificationException();
532 >            if (lastRet != -1) {
533 >                E moved = PriorityQueue.this.removeAt(lastRet);
534 >                lastRet = -1;
535 >                if (moved == null)
536 >                    cursor--;
537 >                else {
538 >                    if (forgetMeNot == null)
539 >                        forgetMeNot = new ArrayDeque<E>();
540 >                    forgetMeNot.add(moved);
541 >                }
542 >            } else if (lastRetElt != null) {
543 >                PriorityQueue.this.removeEq(lastRetElt);
544 >                lastRetElt = null;
545 >            } else {
546                  throw new IllegalStateException();
547 <            checkForComodification();
419 <
420 <            PriorityQueue.this.remove(lastRet);
421 <            if (lastRet < cursor)
422 <                cursor--;
423 <            lastRet = 0;
547 >            }
548              expectedModCount = modCount;
549          }
426
427        final void checkForComodification() {
428            if (modCount != expectedModCount)
429                throw new ConcurrentModificationException();
430        }
550      }
551  
552      public int size() {
# Line 435 | Line 554 | public class PriorityQueue<E> extends Ab
554      }
555  
556      /**
557 <     * Remove all elements from the priority queue.
557 >     * Removes all of the elements from this priority queue.
558 >     * The queue will be empty after this call returns.
559       */
560      public void clear() {
561          modCount++;
562 <
443 <        // Null out element references to prevent memory leak
444 <        for (int i=1; i<=size; i++)
562 >        for (int i = 0; i < size; i++)
563              queue[i] = null;
446
564          size = 0;
565      }
566  
567 +    public E poll() {
568 +        if (size == 0)
569 +            return null;
570 +        int s = --size;
571 +        modCount++;
572 +        E result = (E) queue[0];
573 +        E x = (E) queue[s];
574 +        queue[s] = null;
575 +        if (s != 0)
576 +            siftDown(0, x);
577 +        return result;
578 +    }
579 +
580      /**
581 <     * Removes and returns the ith element from queue.  Recall
452 <     * that queue is one-based, so 1 <= i <= size.
581 >     * Removes the ith element from queue.
582       *
583 <     * XXX: Could further special-case i==size, but is it worth it?
584 <     * XXX: Could special-case i==0, but is it worth it?
583 >     * Normally this method leaves the elements at up to i-1,
584 >     * inclusive, untouched.  Under these circumstances, it returns
585 >     * null.  Occasionally, in order to maintain the heap invariant,
586 >     * it must swap a later element of the list with one earlier than
587 >     * i.  Under these circumstances, this method returns the element
588 >     * that was previously at the end of the list and is now at some
589 >     * position before i. This fact is used by iterator.remove so as to
590 >     * avoid missing traversing elements.
591       */
592 <    private E remove(int i) {
593 <        assert i <= size;
592 >    private E removeAt(int i) {
593 >        // assert i >= 0 && i < size;
594          modCount++;
595 <
596 <        E result = (E) queue[i];
597 <        queue[i] = queue[size];
598 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
599 <        if (i <= size)
600 <            fixDown(i);
601 <        return result;
595 >        int s = --size;
596 >        if (s == i) // removed last element
597 >            queue[i] = null;
598 >        else {
599 >            E moved = (E) queue[s];
600 >            queue[s] = null;
601 >            siftDown(i, moved);
602 >            if (queue[i] == moved) {
603 >                siftUp(i, moved);
604 >                if (queue[i] != moved)
605 >                    return moved;
606 >            }
607 >        }
608 >        return null;
609      }
610  
611      /**
612 <     * Establishes the heap invariant (described above) assuming the heap
613 <     * satisfies the invariant except possibly for the leaf-node indexed by k
614 <     * (which may have a nextExecutionTime less than its parent's).
615 <     *
616 <     * This method functions by "promoting" queue[k] up the hierarchy
617 <     * (by swapping it with its parent) repeatedly until queue[k]
618 <     * is greater than or equal to its parent.
619 <     */
620 <    private void fixUp(int k) {
621 <        if (comparator == null) {
622 <            while (k > 1) {
623 <                int j = k >> 1;
624 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
625 <                    break;
626 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
627 <                k = j;
628 <            }
629 <        } else {
630 <            while (k > 1) {
631 <                int j = k >> 1;
632 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
633 <                    break;
634 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
635 <                k = j;
636 <            }
612 >     * Inserts item x at position k, maintaining heap invariant by
613 >     * promoting x up the tree until it is greater than or equal to
614 >     * its parent, or is the root.
615 >     *
616 >     * To simplify and speed up coercions and comparisons. the
617 >     * Comparable and Comparator versions are separated into different
618 >     * methods that are otherwise identical. (Similarly for siftDown.)
619 >     *
620 >     * @param k the position to fill
621 >     * @param x the item to insert
622 >     */
623 >    private void siftUp(int k, E x) {
624 >        if (comparator != null)
625 >            siftUpUsingComparator(k, x);
626 >        else
627 >            siftUpComparable(k, x);
628 >    }
629 >
630 >    private void siftUpComparable(int k, E x) {
631 >        Comparable<? super E> key = (Comparable<? super E>) x;
632 >        while (k > 0) {
633 >            int parent = (k - 1) >>> 1;
634 >            Object e = queue[parent];
635 >            if (key.compareTo((E) e) >= 0)
636 >                break;
637 >            queue[k] = e;
638 >            k = parent;
639          }
640 +        queue[k] = key;
641 +    }
642 +
643 +    private void siftUpUsingComparator(int k, E x) {
644 +        while (k > 0) {
645 +            int parent = (k - 1) >>> 1;
646 +            Object e = queue[parent];
647 +            if (comparator.compare(x, (E) e) >= 0)
648 +                break;
649 +            queue[k] = e;
650 +            k = parent;
651 +        }
652 +        queue[k] = x;
653      }
654  
655      /**
656 <     * Establishes the heap invariant (described above) in the subtree
657 <     * rooted at k, which is assumed to satisfy the heap invariant except
658 <     * possibly for node k itself (which may be greater than its children).
659 <     *
660 <     * This method functions by "demoting" queue[k] down the hierarchy
661 <     * (by swapping it with its smaller child) repeatedly until queue[k]
662 <     * is less than or equal to its children.
663 <     */
664 <    private void fixDown(int k) {
665 <        int j;
666 <        if (comparator == null) {
667 <            while ((j = k << 1) <= size) {
668 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
669 <                    j++; // j indexes smallest kid
670 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
671 <                    break;
672 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
673 <                k = j;
674 <            }
675 <        } else {
676 <            while ((j = k << 1) <= size) {
677 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
678 <                    j++; // j indexes smallest kid
679 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
680 <                    break;
681 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
682 <                k = j;
683 <            }
656 >     * Inserts item x at position k, maintaining heap invariant by
657 >     * demoting x down the tree repeatedly until it is less than or
658 >     * equal to its children or is a leaf.
659 >     *
660 >     * @param k the position to fill
661 >     * @param x the item to insert
662 >     */
663 >    private void siftDown(int k, E x) {
664 >        if (comparator != null)
665 >            siftDownUsingComparator(k, x);
666 >        else
667 >            siftDownComparable(k, x);
668 >    }
669 >
670 >    private void siftDownComparable(int k, E x) {
671 >        Comparable<? super E> key = (Comparable<? super E>)x;
672 >        int half = size >>> 1;        // loop while a non-leaf
673 >        while (k < half) {
674 >            int child = (k << 1) + 1; // assume left child is least
675 >            Object c = queue[child];
676 >            int right = child + 1;
677 >            if (right < size &&
678 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
679 >                c = queue[child = right];
680 >            if (key.compareTo((E) c) <= 0)
681 >                break;
682 >            queue[k] = c;
683 >            k = child;
684          }
685 +        queue[k] = key;
686      }
687  
688 +    private void siftDownUsingComparator(int k, E x) {
689 +        int half = size >>> 1;
690 +        while (k < half) {
691 +            int child = (k << 1) + 1;
692 +            Object c = queue[child];
693 +            int right = child + 1;
694 +            if (right < size &&
695 +                comparator.compare((E) c, (E) queue[right]) > 0)
696 +                c = queue[child = right];
697 +            if (comparator.compare(x, (E) c) <= 0)
698 +                break;
699 +            queue[k] = c;
700 +            k = child;
701 +        }
702 +        queue[k] = x;
703 +    }
704 +
705 +    /**
706 +     * Establishes the heap invariant (described above) in the entire tree,
707 +     * assuming nothing about the order of the elements prior to the call.
708 +     */
709 +    private void heapify() {
710 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
711 +            siftDown(i, (E) queue[i]);
712 +    }
713  
714      /**
715 <     * Returns the comparator used to order this collection, or <tt>null</tt>
716 <     * if this collection is sorted according to its elements natural ordering
717 <     * (using <tt>Comparable</tt>.)
715 >     * Returns the comparator used to order the elements in this
716 >     * queue, or {@code null} if this queue is sorted according to
717 >     * the {@linkplain Comparable natural ordering} of its elements.
718       *
719 <     * @return the comparator used to order this collection, or <tt>null</tt>
720 <     * if this collection is sorted according to its elements natural ordering.
719 >     * @return the comparator used to order this queue, or
720 >     *         {@code null} if this queue is sorted according to the
721 >     *         natural ordering of its elements
722       */
723      public Comparator<? super E> comparator() {
724          return comparator;
725      }
726  
727      /**
728 <     * Save the state of the instance to a stream (that
545 <     * is, serialize it).
728 >     * Saves this queue to a stream (that is, serializes it).
729       *
730       * @serialData The length of the array backing the instance is
731 <     * emitted (int), followed by all of its elements (each an
732 <     * <tt>Object</tt>) in the proper order.
550 <     * @param s the stream
731 >     *             emitted (int), followed by all of its elements
732 >     *             (each an {@code Object}) in the proper order.
733       */
734      private void writeObject(java.io.ObjectOutputStream s)
735 <        throws java.io.IOException{
735 >        throws java.io.IOException {
736          // Write out element count, and any hidden stuff
737          s.defaultWriteObject();
738  
739 <        // Write out array length
740 <        s.writeInt(queue.length);
739 >        // Write out array length, for compatibility with 1.5 version
740 >        s.writeInt(Math.max(2, size + 1));
741  
742 <        // Write out all elements in the proper order.
743 <        for (int i=0; i<size; i++)
742 >        // Write out all elements in the "proper order".
743 >        for (int i = 0; i < size; i++)
744              s.writeObject(queue[i]);
745      }
746  
747      /**
748 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
567 <     * deserialize it).
568 <     * @param s the stream
748 >     * Reconstitutes this queue from a stream (that is, deserializes it).
749       */
750      private void readObject(java.io.ObjectInputStream s)
751          throws java.io.IOException, ClassNotFoundException {
752          // Read in size, and any hidden stuff
753          s.defaultReadObject();
754  
755 <        // Read in array length and allocate array
756 <        int arrayLength = s.readInt();
577 <        queue = new Object[arrayLength];
755 >        // Read in (and discard) array length
756 >        s.readInt();
757  
758 <        // Read in all elements in the proper order.
759 <        for (int i=0; i<size; i++)
758 >        queue = new Object[size];
759 >
760 >        // Read in all elements.
761 >        for (int i = 0; i < size; i++)
762              queue[i] = s.readObject();
582    }
763  
764 +        // Elements are guaranteed to be in "proper order", but the
765 +        // spec has never explained what that might be.
766 +        heapify();
767 +    }
768   }
585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines