ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.28 by dl, Wed Aug 13 14:11:59 2003 UTC

# Line 1 | Line 1
1 < package java.util;
2 <
3 < import java.util.*;
1 > package java.util;
2  
3   /**
4 < * An unbounded (resizable) priority queue based on a priority
5 < * heap.The take operation returns the least element with respect to
6 < * the given ordering. (If more than one element is tied for least
7 < * value, one of them is arbitrarily chosen to be returned -- no
8 < * guarantees are made for ordering across ties.) Ordering follows the
9 < * java.util.Collection conventions: Either the elements must be
10 < * Comparable, or a Comparator must be supplied. Comparison failures
11 < * throw ClassCastExceptions during insertions and extractions.
12 < **/
13 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
14 <    public PriorityQueue(int initialCapacity) {}
15 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
4 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
5 > * This queue orders
6 > * elements according to an order specified at construction time, which is
7 > * specified in the same manner as {@link java.util.TreeSet} and
8 > * {@link java.util.TreeMap}: elements are ordered
9 > * either according to their <i>natural order</i> (see {@link Comparable}), or
10 > * according to a {@link java.util.Comparator}, depending on which
11 > * constructor is used.
12 > * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 > * respect to the specified ordering.
14 > * If multiple elements are tied for least value, the
15 > * head is one of those elements. A priority queue does not permit
16 > * <tt>null</tt> elements.
17 > *
18 > * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 > * return the head of the queue.
20 > *
21 > * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 > * not delete, the head of the queue.
23 > *
24 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
25 > * size of the array used internally to store the elements on the
26 > * queue.
27 > * It is always at least as large as the queue size.  As
28 > * elements are added to a priority queue, its capacity grows
29 > * automatically.  The details of the growth policy are not specified.
30 > *
31 > * <p>Implementation note: this implementation provides O(log(n)) time
32 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
33 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
34 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
35 > * constant time for the retrieval methods (<tt>peek</tt>,
36 > * <tt>element</tt>, and <tt>size</tt>).
37 > *
38 > * <p>This class is a member of the
39 > * <a href="{@docRoot}/../guide/collections/index.html">
40 > * Java Collections Framework</a>.
41 > * @since 1.5
42 > * @author Josh Bloch
43 > */
44 > public class PriorityQueue<E> extends AbstractQueue<E>
45 >    implements Queue<E>, java.io.Serializable {
46  
47 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
47 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
48  
49 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
49 >    /**
50 >     * Priority queue represented as a balanced binary heap: the two children
51 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
52 >     * ordered by comparator, or by the elements' natural ordering, if
53 >     * comparator is null:  For each node n in the heap and each descendant d
54 >     * of n, n <= d.
55 >     *
56 >     * The element with the lowest value is in queue[1], assuming the queue is
57 >     * nonempty.  (A one-based array is used in preference to the traditional
58 >     * zero-based array to simplify parent and child calculations.)
59 >     *
60 >     * queue.length must be >= 2, even if size == 0.
61 >     */
62 >    private transient Object[] queue;
63  
64 <    public boolean add(E x) {
65 <        return false;
64 >    /**
65 >     * The number of elements in the priority queue.
66 >     */
67 >    private int size = 0;
68 >
69 >    /**
70 >     * The comparator, or null if priority queue uses elements'
71 >     * natural ordering.
72 >     */
73 >    private final Comparator<? super E> comparator;
74 >
75 >    /**
76 >     * The number of times this priority queue has been
77 >     * <i>structurally modified</i>.  See AbstractList for gory details.
78 >     */
79 >    private transient int modCount = 0;
80 >
81 >    /**
82 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
83 >     * (11) that orders its elements according to their natural
84 >     * ordering (using <tt>Comparable</tt>).
85 >     */
86 >    public PriorityQueue() {
87 >        this(DEFAULT_INITIAL_CAPACITY, null);
88      }
89 <    public boolean offer(E x) {
90 <        return false;
89 >
90 >    /**
91 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
92 >     * that orders its elements according to their natural ordering
93 >     * (using <tt>Comparable</tt>).
94 >     *
95 >     * @param initialCapacity the initial capacity for this priority queue.
96 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
97 >     * than 1
98 >     */
99 >    public PriorityQueue(int initialCapacity) {
100 >        this(initialCapacity, null);
101      }
102 <    public boolean remove(Object x) {
103 <        return false;
102 >
103 >    /**
104 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
105 >     * that orders its elements according to the specified comparator.
106 >     *
107 >     * @param initialCapacity the initial capacity for this priority queue.
108 >     * @param comparator the comparator used to order this priority queue.
109 >     * If <tt>null</tt> then the order depends on the elements' natural
110 >     * ordering.
111 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112 >     * than 1
113 >     */
114 >    public PriorityQueue(int initialCapacity,
115 >                         Comparator<? super E> comparator) {
116 >        if (initialCapacity < 1)
117 >            throw new IllegalArgumentException();
118 >        this.queue = new Object[initialCapacity + 1];
119 >        this.comparator = comparator;
120      }
121  
122 <    public E remove() {
123 <        return null;
122 >    /**
123 >     * Common code to initialize underlying queue array across
124 >     * constructors below.
125 >     */
126 >    private void initializeArray(Collection<? extends E> c) {
127 >        int sz = c.size();
128 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
129 >                                            Integer.MAX_VALUE - 1);
130 >        if (initialCapacity < 1)
131 >            initialCapacity = 1;
132 >
133 >        this.queue = new Object[initialCapacity + 1];
134      }
135 <    public Iterator<E> iterator() {
136 <      return null;
135 >
136 >    /**
137 >     * Initially fill elements of the queue array under the
138 >     * knowledge that it is sorted or is another PQ, in which
139 >     * case we can just place the elements without fixups.
140 >     */
141 >    private void fillFromSorted(Collection<? extends E> c) {
142 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
143 >            queue[++size] = i.next();
144      }
145  
146 <    public E element() {
147 <        return null;
146 >
147 >    /**
148 >     * Initially fill elements of the queue array that is
149 >     * not to our knowledge sorted, so we must add them
150 >     * one by one.
151 >     */
152 >    private void fillFromUnsorted(Collection<? extends E> c) {
153 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 >            add(i.next());
155      }
156 +
157 +    /**
158 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
159 +     * specified collection.  The priority queue has an initial
160 +     * capacity of 110% of the size of the specified collection or 1
161 +     * if the collection is empty.  If the specified collection is an
162 +     * instance of a {@link java.util.SortedSet} or is another
163 +     * <tt>PriorityQueue</tt>, the priority queue will be sorted
164 +     * according to the same comparator, or according to its elements'
165 +     * natural order if the collection is sorted according to its
166 +     * elements' natural order.  Otherwise, the priority queue is
167 +     * ordered according to its elements' natural order.
168 +     *
169 +     * @param c the collection whose elements are to be placed
170 +     *        into this priority queue.
171 +     * @throws ClassCastException if elements of the specified collection
172 +     *         cannot be compared to one another according to the priority
173 +     *         queue's ordering.
174 +     * @throws NullPointerException if <tt>c</tt> or any element within it
175 +     * is <tt>null</tt>
176 +     */
177 +    public PriorityQueue(Collection<? extends E> c) {
178 +        initializeArray(c);
179 +        if (c instanceof SortedSet) {
180 +            // @fixme double-cast workaround for compiler
181 +            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
182 +            comparator = (Comparator<? super E>)s.comparator();
183 +            fillFromSorted(s);
184 +        } else if (c instanceof PriorityQueue) {
185 +            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
186 +            comparator = (Comparator<? super E>)s.comparator();
187 +            fillFromSorted(s);
188 +        } else {
189 +            comparator = null;
190 +            fillFromUnsorted(c);
191 +        }
192 +    }
193 +
194 +    /**
195 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
196 +     * specified collection.  The priority queue has an initial
197 +     * capacity of 110% of the size of the specified collection or 1
198 +     * if the collection is empty.  This priority queue will be sorted
199 +     * according to the same comparator as the given collection, or
200 +     * according to its elements' natural order if the collection is
201 +     * sorted according to its elements' natural order.
202 +     *
203 +     * @param c the collection whose elements are to be placed
204 +     *        into this priority queue.
205 +     * @throws ClassCastException if elements of the specified collection
206 +     *         cannot be compared to one another according to the priority
207 +     *         queue's ordering.
208 +     * @throws NullPointerException if <tt>c</tt> or any element within it
209 +     * is <tt>null</tt>
210 +     */
211 +    public PriorityQueue(PriorityQueue<? extends E> c) {
212 +        initializeArray(c);
213 +        comparator = (Comparator<? super E>)c.comparator();
214 +        fillFromSorted(c);
215 +    }
216 +
217 +    /**
218 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 +     * specified collection.  The priority queue has an initial
220 +     * capacity of 110% of the size of the specified collection or 1
221 +     * if the collection is empty.  This priority queue will be sorted
222 +     * according to the same comparator as the given collection, or
223 +     * according to its elements' natural order if the collection is
224 +     * sorted according to its elements' natural order.
225 +     *
226 +     * @param c the collection whose elements are to be placed
227 +     *        into this priority queue.
228 +     * @throws ClassCastException if elements of the specified collection
229 +     *         cannot be compared to one another according to the priority
230 +     *         queue's ordering.
231 +     * @throws NullPointerException if <tt>c</tt> or any element within it
232 +     * is <tt>null</tt>
233 +     */
234 +    public PriorityQueue(SortedSet<? extends E> c) {
235 +        initializeArray(c);
236 +        comparator = (Comparator<? super E>)c.comparator();
237 +        fillFromSorted(c);
238 +    }
239 +
240 +    /**
241 +     * Resize array, if necessary, to be able to hold given index
242 +     */
243 +    private void grow(int index) {
244 +        int newlen = queue.length;
245 +        if (index < newlen) // don't need to grow
246 +            return;
247 +        if (index == Integer.MAX_VALUE)
248 +            throw new OutOfMemoryError();
249 +        while (newlen <= index) {
250 +            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
251 +                newlen = Integer.MAX_VALUE;
252 +            else
253 +                newlen <<= 2;
254 +        }
255 +        Object[] newQueue = new Object[newlen];
256 +        System.arraycopy(queue, 0, newQueue, 0, queue.length);
257 +        queue = newQueue;
258 +    }
259 +            
260 +    // Queue Methods
261 +
262 +
263 +
264 +    /**
265 +     * Add the specified element to this priority queue.
266 +     *
267 +     * @return <tt>true</tt>
268 +     * @throws ClassCastException if the specified element cannot be compared
269 +     * with elements currently in the priority queue according
270 +     * to the priority queue's ordering.
271 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
272 +     */
273 +    public boolean offer(E o) {
274 +        if (o == null)
275 +            throw new NullPointerException();
276 +        modCount++;
277 +        ++size;
278 +
279 +        // Grow backing store if necessary
280 +        if (size >= queue.length)
281 +            grow(size);
282 +
283 +        queue[size] = o;
284 +        fixUp(size);
285 +        return true;
286 +    }
287 +
288      public E poll() {
289 <        return null;
289 >        if (size == 0)
290 >            return null;
291 >        return (E) remove(1);
292      }
293 +
294      public E peek() {
295 <        return null;
295 >        return (E) queue[1];
296 >    }
297 >
298 >    // Collection Methods - the first two override to update docs
299 >
300 >    /**
301 >     * Adds the specified element to this queue.
302 >     * @return <tt>true</tt> (as per the general contract of
303 >     * <tt>Collection.add</tt>).
304 >     *
305 >     * @throws NullPointerException {@inheritDoc}
306 >     * @throws ClassCastException if the specified element cannot be compared
307 >     * with elements currently in the priority queue according
308 >     * to the priority queue's ordering.
309 >     */
310 >    public boolean add(E o) {
311 >        return super.add(o);
312 >    }
313 >
314 >  
315 >    /**
316 >     * Adds all of the elements in the specified collection to this queue.
317 >     * The behavior of this operation is undefined if
318 >     * the specified collection is modified while the operation is in
319 >     * progress.  (This implies that the behavior of this call is undefined if
320 >     * the specified collection is this queue, and this queue is nonempty.)
321 >     * <p>
322 >     * This implementation iterates over the specified collection, and adds
323 >     * each object returned by the iterator to this collection, in turn.
324 >     * @throws NullPointerException {@inheritDoc}
325 >     * @throws ClassCastException if any element cannot be compared
326 >     * with elements currently in the priority queue according
327 >     * to the priority queue's ordering.
328 >     */
329 >    public boolean addAll(Collection<? extends E> c) {
330 >        return super.addAll(c);
331      }
332  
333 <    public boolean isEmpty() {
333 >
334 > /**
335 >     * Removes a single instance of the specified element from this
336 >     * queue, if it is present.  More formally,
337 >     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
338 >     * o.equals(e))</tt>, if the queue contains one or more such
339 >     * elements.  Returns <tt>true</tt> if the queue contained the
340 >     * specified element (or equivalently, if the queue changed as a
341 >     * result of the call).
342 >     *
343 >     * <p>This implementation iterates over the queue looking for the
344 >     * specified element.  If it finds the element, it removes the element
345 >     * from the queue using the iterator's remove method.<p>
346 >     *
347 >     */
348 >    public boolean remove(Object o) {
349 >        if (o == null)
350 >            return false;
351 >
352 >        if (comparator == null) {
353 >            for (int i = 1; i <= size; i++) {
354 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
355 >                    remove(i);
356 >                    return true;
357 >                }
358 >            }
359 >        } else {
360 >            for (int i = 1; i <= size; i++) {
361 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
362 >                    remove(i);
363 >                    return true;
364 >                }
365 >            }
366 >        }
367          return false;
368      }
369 +
370 +    /**
371 +     * Returns an iterator over the elements in this queue. The iterator
372 +     * does not return the elements in any particular order.
373 +     *
374 +     * @return an iterator over the elements in this queue.
375 +     */
376 +    public Iterator<E> iterator() {
377 +        return new Itr();
378 +    }
379 +
380 +    private class Itr implements Iterator<E> {
381 +        /**
382 +         * Index (into queue array) of element to be returned by
383 +         * subsequent call to next.
384 +         */
385 +        private int cursor = 1;
386 +
387 +        /**
388 +         * Index of element returned by most recent call to next or
389 +         * previous.  Reset to 0 if this element is deleted by a call
390 +         * to remove.
391 +         */
392 +        private int lastRet = 0;
393 +
394 +        /**
395 +         * The modCount value that the iterator believes that the backing
396 +         * List should have.  If this expectation is violated, the iterator
397 +         * has detected concurrent modification.
398 +         */
399 +        private int expectedModCount = modCount;
400 +
401 +        public boolean hasNext() {
402 +            return cursor <= size;
403 +        }
404 +
405 +        public E next() {
406 +            checkForComodification();
407 +            if (cursor > size)
408 +                throw new NoSuchElementException();
409 +            E result = (E) queue[cursor];
410 +            lastRet = cursor++;
411 +            return result;
412 +        }
413 +
414 +        public void remove() {
415 +            if (lastRet == 0)
416 +                throw new IllegalStateException();
417 +            checkForComodification();
418 +
419 +            PriorityQueue.this.remove(lastRet);
420 +            if (lastRet < cursor)
421 +                cursor--;
422 +            lastRet = 0;
423 +            expectedModCount = modCount;
424 +        }
425 +
426 +        final void checkForComodification() {
427 +            if (modCount != expectedModCount)
428 +                throw new ConcurrentModificationException();
429 +        }
430 +    }
431 +
432      public int size() {
433 <        return 0;
433 >        return size;
434 >    }
435 >
436 >    /**
437 >     * Remove all elements from the priority queue.
438 >     */
439 >    public void clear() {
440 >        modCount++;
441 >
442 >        // Null out element references to prevent memory leak
443 >        for (int i=1; i<=size; i++)
444 >            queue[i] = null;
445 >
446 >        size = 0;
447      }
448 <    public Object[] toArray() {
449 <        return null;
448 >
449 >    /**
450 >     * Removes and returns the ith element from queue.  Recall
451 >     * that queue is one-based, so 1 <= i <= size.
452 >     *
453 >     * XXX: Could further special-case i==size, but is it worth it?
454 >     * XXX: Could special-case i==0, but is it worth it?
455 >     */
456 >    private E remove(int i) {
457 >        assert i <= size;
458 >        modCount++;
459 >
460 >        E result = (E) queue[i];
461 >        queue[i] = queue[size];
462 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
463 >        if (i <= size)
464 >            fixDown(i);
465 >        return result;
466 >    }
467 >
468 >    /**
469 >     * Establishes the heap invariant (described above) assuming the heap
470 >     * satisfies the invariant except possibly for the leaf-node indexed by k
471 >     * (which may have a nextExecutionTime less than its parent's).
472 >     *
473 >     * This method functions by "promoting" queue[k] up the hierarchy
474 >     * (by swapping it with its parent) repeatedly until queue[k]
475 >     * is greater than or equal to its parent.
476 >     */
477 >    private void fixUp(int k) {
478 >        if (comparator == null) {
479 >            while (k > 1) {
480 >                int j = k >> 1;
481 >                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
482 >                    break;
483 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
484 >                k = j;
485 >            }
486 >        } else {
487 >            while (k > 1) {
488 >                int j = k >> 1;
489 >                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
490 >                    break;
491 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
492 >                k = j;
493 >            }
494 >        }
495      }
496  
497 <    public <T> T[] toArray(T[] array) {
498 <        return null;
497 >    /**
498 >     * Establishes the heap invariant (described above) in the subtree
499 >     * rooted at k, which is assumed to satisfy the heap invariant except
500 >     * possibly for node k itself (which may be greater than its children).
501 >     *
502 >     * This method functions by "demoting" queue[k] down the hierarchy
503 >     * (by swapping it with its smaller child) repeatedly until queue[k]
504 >     * is less than or equal to its children.
505 >     */
506 >    private void fixDown(int k) {
507 >        int j;
508 >        if (comparator == null) {
509 >            while ((j = k << 1) <= size) {
510 >                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
511 >                    j++; // j indexes smallest kid
512 >                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
513 >                    break;
514 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
515 >                k = j;
516 >            }
517 >        } else {
518 >            while ((j = k << 1) <= size) {
519 >                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
520 >                    j++; // j indexes smallest kid
521 >                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
522 >                    break;
523 >                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
524 >                k = j;
525 >            }
526 >        }
527 >    }
528 >
529 >
530 >    /**
531 >     * Returns the comparator used to order this collection, or <tt>null</tt>
532 >     * if this collection is sorted according to its elements natural ordering
533 >     * (using <tt>Comparable</tt>).
534 >     *
535 >     * @return the comparator used to order this collection, or <tt>null</tt>
536 >     * if this collection is sorted according to its elements natural ordering.
537 >     */
538 >    public Comparator<? super E> comparator() {
539 >        return comparator;
540 >    }
541 >
542 >    /**
543 >     * Save the state of the instance to a stream (that
544 >     * is, serialize it).
545 >     *
546 >     * @serialData The length of the array backing the instance is
547 >     * emitted (int), followed by all of its elements (each an
548 >     * <tt>Object</tt>) in the proper order.
549 >     * @param s the stream
550 >     */
551 >    private void writeObject(java.io.ObjectOutputStream s)
552 >        throws java.io.IOException{
553 >        // Write out element count, and any hidden stuff
554 >        s.defaultWriteObject();
555 >
556 >        // Write out array length
557 >        s.writeInt(queue.length);
558 >
559 >        // Write out all elements in the proper order.
560 >        for (int i=0; i<size; i++)
561 >            s.writeObject(queue[i]);
562 >    }
563 >
564 >    /**
565 >     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
566 >     * deserialize it).
567 >     * @param s the stream
568 >     */
569 >    private void readObject(java.io.ObjectInputStream s)
570 >        throws java.io.IOException, ClassNotFoundException {
571 >        // Read in size, and any hidden stuff
572 >        s.defaultReadObject();
573 >
574 >        // Read in array length and allocate array
575 >        int arrayLength = s.readInt();
576 >        queue = new Object[arrayLength];
577 >
578 >        // Read in all elements in the proper order.
579 >        for (int i=0; i<size; i++)
580 >            queue[i] = s.readObject();
581      }
582  
583   }
584 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines