ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.30 by dl, Mon Aug 25 18:33:03 2003 UTC vs.
Revision 1.50 by dl, Wed Jun 2 23:45:46 2004 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9  
10   /**
11 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
12 < * This queue orders
13 < * elements according to an order specified at construction time, which is
14 < * specified in the same manner as {@link java.util.TreeSet} and
15 < * {@link java.util.TreeMap}: elements are ordered
16 < * either according to their <i>natural order</i> (see {@link Comparable}), or
17 < * according to a {@link java.util.Comparator}, depending on which
18 < * constructor is used.
19 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 < * respect to the specified ordering.
14 < * If multiple elements are tied for least value, the
15 < * head is one of those elements. A priority queue does not permit
16 < * <tt>null</tt> elements.
17 < *
18 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 < * return the head of the queue.
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  This queue orders elements according to an order specified
13 > * at construction time, which is specified either according to their
14 > * <i>natural order</i> (see {@link Comparable}), or according to a
15 > * {@link java.util.Comparator}, depending on which constructor is
16 > * used. A priority queue does not permit <tt>null</tt> elements.
17 > * A priority queue relying on natural ordering also does not
18 > * permit insertion of non-comparable objects (doing so may result
19 > * in <tt>ClassCastException</tt>).
20   *
21 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 < * not delete, the head of the queue.
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27   *
28 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
29 < * size of the array used internally to store the elements on the
30 < * queue.
31 < * It is always at least as large as the queue size.  As
32 < * elements are added to a priority queue, its capacity grows
33 < * automatically.  The details of the growth policy are not specified.
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34   *
35 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.
38 > * The
39 > * Iterator provided in method {@link #iterator()} is <em>not</em>
40   * guaranteed to traverse the elements of the PriorityQueue in any
41   * particular order. If you need ordered traversal, consider using
42   * <tt>Arrays.sort(pq.toArray())</tt>.
# Line 37 | Line 45
45   * Multiple threads should not access a <tt>PriorityQueue</tt>
46   * instance concurrently if any of the threads modifies the list
47   * structurally. Instead, use the thread-safe {@link
48 < * java.util.concurrent.BlockingPriorityQueue} class.
48 > * java.util.concurrent.PriorityBlockingQueue} class.
49   *
50   *
51   * <p>Implementation note: this implementation provides O(log(n)) time
# Line 51 | Line 59
59   * <a href="{@docRoot}/../guide/collections/index.html">
60   * Java Collections Framework</a>.
61   * @since 1.5
62 + * @version %I%, %G%
63   * @author Josh Bloch
64 + * @param <E> the type of elements held in this collection
65   */
66   public class PriorityQueue<E> extends AbstractQueue<E>
67 <    implements Queue<E>, java.io.Serializable {
67 >    implements java.io.Serializable {
68  
69 <    static final long serialVersionUID = -7720805057305804111L;
69 >    private static final long serialVersionUID = -7720805057305804111L;
70  
71      private static final int DEFAULT_INITIAL_CAPACITY = 11;
72  
# Line 150 | Line 160 | public class PriorityQueue<E> extends Ab
160      /**
161       * Initially fill elements of the queue array under the
162       * knowledge that it is sorted or is another PQ, in which
163 <     * case we can just place the elements without fixups.
163 >     * case we can just place the elements in the order presented.
164       */
165      private void fillFromSorted(Collection<? extends E> c) {
166          for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
167              queue[++size] = i.next();
168      }
169  
160
170      /**
171 <     * Initially fill elements of the queue array that is
172 <     * not to our knowledge sorted, so we must add them
173 <     * one by one.
171 >     * Initially fill elements of the queue array that is not to our knowledge
172 >     * sorted, so we must rearrange the elements to guarantee the heap
173 >     * invariant.
174       */
175      private void fillFromUnsorted(Collection<? extends E> c) {
176          for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
177 <            add(i.next());
177 >            queue[++size] = i.next();
178 >        heapify();
179      }
180  
181      /**
# Line 191 | Line 201 | public class PriorityQueue<E> extends Ab
201      public PriorityQueue(Collection<? extends E> c) {
202          initializeArray(c);
203          if (c instanceof SortedSet) {
204 <            // @fixme double-cast workaround for compiler
195 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
204 >            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
205              comparator = (Comparator<? super E>)s.comparator();
206              fillFromSorted(s);
207          } else if (c instanceof PriorityQueue) {
# Line 271 | Line 280 | public class PriorityQueue<E> extends Ab
280          queue = newQueue;
281      }
282              
274    // Queue Methods
275
276
283  
284      /**
285 <     * Add the specified element to this priority queue.
285 >     * Inserts the specified element into this priority queue.
286       *
287       * @return <tt>true</tt>
288       * @throws ClassCastException if the specified element cannot be compared
# Line 299 | Line 305 | public class PriorityQueue<E> extends Ab
305          return true;
306      }
307  
308 <    public E poll() {
308 >    public E peek() {
309          if (size == 0)
310              return null;
305        return (E) remove(1);
306    }
307
308    public E peek() {
311          return (E) queue[1];
312      }
313  
# Line 316 | Line 318 | public class PriorityQueue<E> extends Ab
318       * @return <tt>true</tt> (as per the general contract of
319       * <tt>Collection.add</tt>).
320       *
321 <     * @throws NullPointerException {@inheritDoc}
321 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
322       * @throws ClassCastException if the specified element cannot be compared
323       * with elements currently in the priority queue according
324       * to the priority queue's ordering.
325       */
326      public boolean add(E o) {
327 <        return super.add(o);
327 >        return offer(o);
328      }
329  
328  
330      /**
330     * Adds all of the elements in the specified collection to this queue.
331     * The behavior of this operation is undefined if
332     * the specified collection is modified while the operation is in
333     * progress.  (This implies that the behavior of this call is undefined if
334     * the specified collection is this queue, and this queue is nonempty.)
335     * <p>
336     * This implementation iterates over the specified collection, and adds
337     * each object returned by the iterator to this collection, in turn.
338     * @throws NullPointerException {@inheritDoc}
339     * @throws ClassCastException if any element cannot be compared
340     * with elements currently in the priority queue according
341     * to the priority queue's ordering.
342     */
343    public boolean addAll(Collection<? extends E> c) {
344        return super.addAll(c);
345    }
346
347
348 /**
331       * Removes a single instance of the specified element from this
332 <     * queue, if it is present.  More formally,
351 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
352 <     * o.equals(e))</tt>, if the queue contains one or more such
353 <     * elements.  Returns <tt>true</tt> if the queue contained the
354 <     * specified element (or equivalently, if the queue changed as a
355 <     * result of the call).
356 <     *
357 <     * <p>This implementation iterates over the queue looking for the
358 <     * specified element.  If it finds the element, it removes the element
359 <     * from the queue using the iterator's remove method.<p>
360 <     *
332 >     * queue, if it is present.
333       */
334      public boolean remove(Object o) {
335          if (o == null)
# Line 366 | Line 338 | public class PriorityQueue<E> extends Ab
338          if (comparator == null) {
339              for (int i = 1; i <= size; i++) {
340                  if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
341 <                    remove(i);
341 >                    removeAt(i);
342                      return true;
343                  }
344              }
345          } else {
346              for (int i = 1; i <= size; i++) {
347                  if (comparator.compare((E)queue[i], (E)o) == 0) {
348 <                    remove(i);
348 >                    removeAt(i);
349                      return true;
350                  }
351              }
# Line 392 | Line 364 | public class PriorityQueue<E> extends Ab
364      }
365  
366      private class Itr implements Iterator<E> {
367 +
368          /**
369           * Index (into queue array) of element to be returned by
370           * subsequent call to next.
# Line 399 | Line 372 | public class PriorityQueue<E> extends Ab
372          private int cursor = 1;
373  
374          /**
375 <         * Index of element returned by most recent call to next or
376 <         * previous.  Reset to 0 if this element is deleted by a call
377 <         * to remove.
375 >         * Index of element returned by most recent call to next,
376 >         * unless that element came from the forgetMeNot list.
377 >         * Reset to 0 if element is deleted by a call to remove.
378           */
379          private int lastRet = 0;
380  
# Line 412 | Line 385 | public class PriorityQueue<E> extends Ab
385           */
386          private int expectedModCount = modCount;
387  
388 +        /**
389 +         * A list of elements that were moved from the unvisited portion of
390 +         * the heap into the visited portion as a result of "unlucky" element
391 +         * removals during the iteration.  (Unlucky element removals are those
392 +         * that require a fixup instead of a fixdown.)  We must visit all of
393 +         * the elements in this list to complete the iteration.  We do this
394 +         * after we've completed the "normal" iteration.
395 +         *
396 +         * We expect that most iterations, even those involving removals,
397 +         * will not use need to store elements in this field.
398 +         */
399 +        private ArrayList<E> forgetMeNot = null;
400 +
401 +        /**
402 +         * Element returned by the most recent call to next iff that
403 +         * element was drawn from the forgetMeNot list.
404 +         */
405 +        private Object lastRetElt = null;
406 +
407          public boolean hasNext() {
408 <            return cursor <= size;
408 >            return cursor <= size || forgetMeNot != null;
409          }
410  
411          public E next() {
412              checkForComodification();
413 <            if (cursor > size)
413 >            E result;
414 >            if (cursor <= size) {
415 >                result = (E) queue[cursor];
416 >                lastRet = cursor++;
417 >            }
418 >            else if (forgetMeNot == null)
419                  throw new NoSuchElementException();
420 <            E result = (E) queue[cursor];
421 <            lastRet = cursor++;
420 >            else {
421 >                int remaining = forgetMeNot.size();
422 >                result = forgetMeNot.remove(remaining - 1);
423 >                if (remaining == 1)
424 >                    forgetMeNot = null;
425 >                lastRet = 0;
426 >                lastRetElt = result;
427 >            }
428              return result;
429          }
430  
431          public void remove() {
429            if (lastRet == 0)
430                throw new IllegalStateException();
432              checkForComodification();
433  
434 <            PriorityQueue.this.remove(lastRet);
435 <            if (lastRet < cursor)
436 <                cursor--;
437 <            lastRet = 0;
434 >            if (lastRet != 0) {
435 >                E moved = PriorityQueue.this.removeAt(lastRet);
436 >                lastRet = 0;
437 >                if (moved == null) {
438 >                    cursor--;
439 >                } else {
440 >                    if (forgetMeNot == null)
441 >                        forgetMeNot = new ArrayList<E>();
442 >                    forgetMeNot.add(moved);
443 >                }
444 >            } else if (lastRetElt != null) {
445 >                PriorityQueue.this.remove(lastRetElt);
446 >                lastRetElt = null;
447 >            } else {
448 >                throw new IllegalStateException();
449 >            }
450 >
451              expectedModCount = modCount;
452          }
453  
# Line 448 | Line 462 | public class PriorityQueue<E> extends Ab
462      }
463  
464      /**
465 <     * Remove all elements from the priority queue.
465 >     * Removes all elements from the priority queue.
466 >     * The queue will be empty after this call returns.
467       */
468      public void clear() {
469          modCount++;
# Line 460 | Line 475 | public class PriorityQueue<E> extends Ab
475          size = 0;
476      }
477  
478 +    public E poll() {
479 +        if (size == 0)
480 +            return null;
481 +        modCount++;
482 +
483 +        E result = (E) queue[1];
484 +        queue[1] = queue[size];
485 +        queue[size--] = null;  // Drop extra ref to prevent memory leak
486 +        if (size > 1)
487 +            fixDown(1);
488 +
489 +        return result;
490 +    }
491 +
492      /**
493 <     * Removes and returns the ith element from queue.  Recall
494 <     * that queue is one-based, so 1 <= i <= size.
493 >     * Removes and returns the ith element from queue.  (Recall that queue
494 >     * is one-based, so 1 <= i <= size.)
495       *
496 <     * XXX: Could further special-case i==size, but is it worth it?
497 <     * XXX: Could special-case i==0, but is it worth it?
496 >     * Normally this method leaves the elements at positions from 1 up to i-1,
497 >     * inclusive, untouched.  Under these circumstances, it returns null.
498 >     * Occasionally, in order to maintain the heap invariant, it must move
499 >     * the last element of the list to some index in the range [2, i-1],
500 >     * and move the element previously at position (i/2) to position i.
501 >     * Under these circumstances, this method returns the element that was
502 >     * previously at the end of the list and is now at some position between
503 >     * 2 and i-1 inclusive.
504       */
505 <    private E remove(int i) {
506 <        assert i <= size;
505 >    private E removeAt(int i) {
506 >        assert i > 0 && i <= size;
507          modCount++;
508  
509 <        E result = (E) queue[i];
510 <        queue[i] = queue[size];
509 >        E moved = (E) queue[size];
510 >        queue[i] = moved;
511          queue[size--] = null;  // Drop extra ref to prevent memory leak
512 <        if (i <= size)
512 >        if (i <= size) {
513              fixDown(i);
514 <        return result;
514 >            if (queue[i] == moved) {
515 >                fixUp(i);
516 >                if (queue[i] != moved)
517 >                    return moved;
518 >            }
519 >        }
520 >        return null;
521      }
522  
523      /**
# Line 499 | Line 540 | public class PriorityQueue<E> extends Ab
540              }
541          } else {
542              while (k > 1) {
543 <                int j = k >> 1;
543 >                int j = k >>> 1;
544                  if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
545                      break;
546                  Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
# Line 520 | Line 561 | public class PriorityQueue<E> extends Ab
561      private void fixDown(int k) {
562          int j;
563          if (comparator == null) {
564 <            while ((j = k << 1) <= size) {
565 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
564 >            while ((j = k << 1) <= size && (j > 0)) {
565 >                if (j<size &&
566 >                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
567                      j++; // j indexes smallest kid
568 +
569                  if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
570                      break;
571                  Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
572                  k = j;
573              }
574          } else {
575 <            while ((j = k << 1) <= size) {
576 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
575 >            while ((j = k << 1) <= size && (j > 0)) {
576 >                if (j<size &&
577 >                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
578                      j++; // j indexes smallest kid
579                  if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
580                      break;
# Line 540 | Line 584 | public class PriorityQueue<E> extends Ab
584          }
585      }
586  
587 +    /**
588 +     * Establishes the heap invariant (described above) in the entire tree,
589 +     * assuming nothing about the order of the elements prior to the call.
590 +     */
591 +    private void heapify() {
592 +        for (int i = size/2; i >= 1; i--)
593 +            fixDown(i);
594 +    }
595  
596      /**
597       * Returns the comparator used to order this collection, or <tt>null</tt>
# Line 571 | Line 623 | public class PriorityQueue<E> extends Ab
623          s.writeInt(queue.length);
624  
625          // Write out all elements in the proper order.
626 <        for (int i=0; i<size; i++)
626 >        for (int i=1; i<=size; i++)
627              s.writeObject(queue[i]);
628      }
629  
# Line 590 | Line 642 | public class PriorityQueue<E> extends Ab
642          queue = new Object[arrayLength];
643  
644          // Read in all elements in the proper order.
645 <        for (int i=0; i<size; i++)
646 <            queue[i] = s.readObject();
645 >        for (int i=1; i<=size; i++)
646 >            queue[i] = (E) s.readObject();
647      }
648  
649   }
598

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines