ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.35 by dl, Wed Aug 27 10:27:07 2003 UTC vs.
Revision 1.61 by jsr166, Tue Feb 7 20:54:24 2006 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9  
10   /**
11 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
12 < * This queue orders
13 < * elements according to an order specified at construction time, which is
14 < * specified in the same manner as {@link java.util.TreeSet} and
15 < * {@link java.util.TreeMap}: elements are ordered
16 < * either according to their <i>natural order</i> (see {@link Comparable}), or
17 < * according to a {@link java.util.Comparator}, depending on which
18 < * constructor is used.
12 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 < * respect to the specified ordering.
14 < * If multiple elements are tied for least value, the
15 < * head is one of those elements. A priority queue does not permit
16 < * <tt>null</tt> elements.
17 < *
18 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 < * return the head of the queue.
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  The elements of the priority queue are ordered according to
13 > * their {@linkplain Comparable natural ordering}, or by a {@link
14 > * Comparator} provided at queue construction time, depending on which
15 > * constructor is used.  A priority queue does not permit
16 > * <tt>null</tt> elements.  A priority queue relying on natural
17 > * ordering also does not permit insertion of non-comparable objects
18 > * (doing so may result in <tt>ClassCastException</tt>).
19   *
20 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
21 < * not delete, the head of the queue.
20 > * <p>The <em>head</em> of this queue is the <em>least</em> element
21 > * with respect to the specified ordering.  If multiple elements are
22 > * tied for least value, the head is one of those elements -- ties are
23 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
24 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
25 > * element at the head of the queue.
26   *
27 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
28 < * size of the array used internally to store the elements on the
29 < * queue.
30 < * It is always at least as large as the queue size.  As
31 < * elements are added to a priority queue, its capacity grows
32 < * automatically.  The details of the growth policy are not specified.
27 > * <p>A priority queue is unbounded, but has an internal
28 > * <i>capacity</i> governing the size of an array used to store the
29 > * elements on the queue.  It is always at least as large as the queue
30 > * size.  As elements are added to a priority queue, its capacity
31 > * grows automatically.  The details of the growth policy are not
32 > * specified.
33   *
34 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
35 < * guaranteed to traverse the elements of the PriorityQueue in any
36 < * particular order. If you need ordered traversal, consider using
37 < * <tt>Arrays.sort(pq.toArray())</tt>.
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
40   *
41   * <p> <strong>Note that this implementation is not synchronized.</strong>
42   * Multiple threads should not access a <tt>PriorityQueue</tt>
# Line 39 | Line 44
44   * structurally. Instead, use the thread-safe {@link
45   * java.util.concurrent.PriorityBlockingQueue} class.
46   *
42 *
47   * <p>Implementation note: this implementation provides O(log(n)) time
48   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49   * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
# Line 51 | Line 55
55   * <a href="{@docRoot}/../guide/collections/index.html">
56   * Java Collections Framework</a>.
57   * @since 1.5
58 + * @version 1.8, 08/27/05
59   * @author Josh Bloch
60 + * @param <E> the type of elements held in this collection
61   */
62   public class PriorityQueue<E> extends AbstractQueue<E>
63 <    implements Queue<E>, java.io.Serializable {
63 >    implements java.io.Serializable {
64  
65      private static final long serialVersionUID = -7720805057305804111L;
66  
67      private static final int DEFAULT_INITIAL_CAPACITY = 11;
68  
69      /**
70 <     * Priority queue represented as a balanced binary heap: the two children
71 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
72 <     * ordered by comparator, or by the elements' natural ordering, if
73 <     * comparator is null:  For each node n in the heap and each descendant d
74 <     * of n, n <= d.
75 <     *
70 <     * The element with the lowest value is in queue[1], assuming the queue is
71 <     * nonempty.  (A one-based array is used in preference to the traditional
72 <     * zero-based array to simplify parent and child calculations.)
73 <     *
74 <     * queue.length must be >= 2, even if size == 0.
70 >     * Priority queue represented as a balanced binary heap: the two
71 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
72 >     * priority queue is ordered by comparator, or by the elements'
73 >     * natural ordering, if comparator is null: For each node n in the
74 >     * heap and each descendant d of n, n <= d.  The element with the
75 >     * lowest value is in queue[0], assuming the queue is nonempty.
76       */
77      private transient Object[] queue;
78  
# Line 93 | Line 94 | public class PriorityQueue<E> extends Ab
94      private transient int modCount = 0;
95  
96      /**
97 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
98 <     * (11) that orders its elements according to their natural
99 <     * ordering (using <tt>Comparable</tt>).
97 >     * Creates a <tt>PriorityQueue</tt> with the default initial
98 >     * capacity (11) that orders its elements according to their
99 >     * {@linkplain Comparable natural ordering}.
100       */
101      public PriorityQueue() {
102          this(DEFAULT_INITIAL_CAPACITY, null);
103      }
104  
105      /**
106 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
107 <     * that orders its elements according to their natural ordering
108 <     * (using <tt>Comparable</tt>).
106 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
107 >     * capacity that orders its elements according to their
108 >     * {@linkplain Comparable natural ordering}.
109       *
110 <     * @param initialCapacity the initial capacity for this priority queue.
110 >     * @param initialCapacity the initial capacity for this priority queue
111       * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112       * than 1
113       */
# Line 118 | Line 119 | public class PriorityQueue<E> extends Ab
119       * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120       * that orders its elements according to the specified comparator.
121       *
122 <     * @param initialCapacity the initial capacity for this priority queue.
123 <     * @param comparator the comparator used to order this priority queue.
124 <     * If <tt>null</tt> then the order depends on the elements' natural
125 <     * ordering.
126 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
127 <     * than 1
122 >     * @param  initialCapacity the initial capacity for this priority queue
123 >     * @param  comparator the comparator that will be used to order
124 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
125 >     *         ordering</i> of the elements will be used.
126 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
127 >     *         less than 1
128       */
129 <    public PriorityQueue(int initialCapacity,
129 >    public PriorityQueue(int initialCapacity,
130                           Comparator<? super E> comparator) {
131 +        // Note: This restriction of at least one is not actually needed,
132 +        // but continues for 1.5 compatibility
133          if (initialCapacity < 1)
134              throw new IllegalArgumentException();
135 <        this.queue = new Object[initialCapacity + 1];
135 >        this.queue = new Object[initialCapacity];
136          this.comparator = comparator;
137      }
138  
139      /**
137     * Common code to initialize underlying queue array across
138     * constructors below.
139     */
140    private void initializeArray(Collection<? extends E> c) {
141        int sz = c.size();
142        int initialCapacity = (int)Math.min((sz * 110L) / 100,
143                                            Integer.MAX_VALUE - 1);
144        if (initialCapacity < 1)
145            initialCapacity = 1;
146
147        this.queue = new Object[initialCapacity + 1];
148    }
149
150    /**
151     * Initially fill elements of the queue array under the
152     * knowledge that it is sorted or is another PQ, in which
153     * case we can just place the elements without fixups.
154     */
155    private void fillFromSorted(Collection<? extends E> c) {
156        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
157            queue[++size] = i.next();
158    }
159
160
161    /**
162     * Initially fill elements of the queue array that is
163     * not to our knowledge sorted, so we must add them
164     * one by one.
165     */
166    private void fillFromUnsorted(Collection<? extends E> c) {
167        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
168            add(i.next());
169    }
170
171    /**
140       * Creates a <tt>PriorityQueue</tt> containing the elements in the
141 <     * specified collection.  The priority queue has an initial
174 <     * capacity of 110% of the size of the specified collection or 1
175 <     * if the collection is empty.  If the specified collection is an
141 >     * specified collection.   If the specified collection is an
142       * instance of a {@link java.util.SortedSet} or is another
143 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
144 <     * according to the same comparator, or according to its elements'
145 <     * natural order if the collection is sorted according to its
180 <     * elements' natural order.  Otherwise, the priority queue is
181 <     * ordered according to its elements' natural order.
143 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
144 >     * according to the same ordering.  Otherwise, this priority queue
145 >     * will be ordered according to the natural ordering of its elements.
146       *
147 <     * @param c the collection whose elements are to be placed
148 <     *        into this priority queue.
147 >     * @param  c the collection whose elements are to be placed
148 >     *         into this priority queue
149       * @throws ClassCastException if elements of the specified collection
150       *         cannot be compared to one another according to the priority
151 <     *         queue's ordering.
152 <     * @throws NullPointerException if <tt>c</tt> or any element within it
153 <     * is <tt>null</tt>
151 >     *         queue's ordering
152 >     * @throws NullPointerException if the specified collection or any
153 >     *         of its elements are null
154       */
155      public PriorityQueue(Collection<? extends E> c) {
156 <        initializeArray(c);
157 <        if (c instanceof SortedSet) {
158 <            // @fixme double-cast workaround for compiler
159 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
160 <            comparator = (Comparator<? super E>)s.comparator();
161 <            fillFromSorted(s);
162 <        } else if (c instanceof PriorityQueue) {
163 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
200 <            comparator = (Comparator<? super E>)s.comparator();
201 <            fillFromSorted(s);
202 <        } else {
156 >        initFromCollection(c);
157 >        if (c instanceof SortedSet)
158 >            comparator = (Comparator<? super E>)
159 >                ((SortedSet<? extends E>)c).comparator();
160 >        else if (c instanceof PriorityQueue)
161 >            comparator = (Comparator<? super E>)
162 >                ((PriorityQueue<? extends E>)c).comparator();
163 >        else {
164              comparator = null;
165 <            fillFromUnsorted(c);
165 >            heapify();
166          }
167      }
168  
169      /**
170       * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 <     * specified collection.  The priority queue has an initial
172 <     * capacity of 110% of the size of the specified collection or 1
173 <     * if the collection is empty.  This priority queue will be sorted
174 <     * according to the same comparator as the given collection, or
175 <     * according to its elements' natural order if the collection is
176 <     * sorted according to its elements' natural order.
177 <     *
178 <     * @param c the collection whose elements are to be placed
179 <     *        into this priority queue.
180 <     * @throws ClassCastException if elements of the specified collection
181 <     *         cannot be compared to one another according to the priority
221 <     *         queue's ordering.
222 <     * @throws NullPointerException if <tt>c</tt> or any element within it
223 <     * is <tt>null</tt>
171 >     * specified priority queue.  This priority queue will be
172 >     * ordered according to the same ordering as the given priority
173 >     * queue.
174 >     *
175 >     * @param  c the priority queue whose elements are to be placed
176 >     *         into this priority queue
177 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
178 >     *         compared to one another according to <tt>c</tt>'s
179 >     *         ordering
180 >     * @throws NullPointerException if the specified priority queue or any
181 >     *         of its elements are null
182       */
183      public PriorityQueue(PriorityQueue<? extends E> c) {
226        initializeArray(c);
184          comparator = (Comparator<? super E>)c.comparator();
185 <        fillFromSorted(c);
185 >        initFromCollection(c);
186      }
187  
188      /**
189       * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 <     * specified collection.  The priority queue has an initial
191 <     * capacity of 110% of the size of the specified collection or 1
235 <     * if the collection is empty.  This priority queue will be sorted
236 <     * according to the same comparator as the given collection, or
237 <     * according to its elements' natural order if the collection is
238 <     * sorted according to its elements' natural order.
190 >     * specified sorted set.  This priority queue will be ordered
191 >     * according to the same ordering as the given sorted set.
192       *
193 <     * @param c the collection whose elements are to be placed
194 <     *        into this priority queue.
195 <     * @throws ClassCastException if elements of the specified collection
196 <     *         cannot be compared to one another according to the priority
197 <     *         queue's ordering.
198 <     * @throws NullPointerException if <tt>c</tt> or any element within it
199 <     * is <tt>null</tt>
193 >     * @param  c the sorted set whose elements are to be placed
194 >     *         into this priority queue.
195 >     * @throws ClassCastException if elements of the specified sorted
196 >     *         set cannot be compared to one another according to the
197 >     *         sorted set's ordering
198 >     * @throws NullPointerException if the specified sorted set or any
199 >     *         of its elements are null
200       */
201      public PriorityQueue(SortedSet<? extends E> c) {
249        initializeArray(c);
202          comparator = (Comparator<? super E>)c.comparator();
203 <        fillFromSorted(c);
203 >        initFromCollection(c);
204      }
205  
206      /**
207 <     * Resize array, if necessary, to be able to hold given index
207 >     * Initialize queue array with elements from the given Collection.
208 >     * @param c the collection
209       */
210 <    private void grow(int index) {
211 <        int newlen = queue.length;
212 <        if (index < newlen) // don't need to grow
213 <            return;
214 <        if (index == Integer.MAX_VALUE)
215 <            throw new OutOfMemoryError();
216 <        while (newlen <= index) {
264 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
265 <                newlen = Integer.MAX_VALUE;
266 <            else
267 <                newlen <<= 2;
268 <        }
269 <        Object[] newQueue = new Object[newlen];
270 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
271 <        queue = newQueue;
210 >    private void initFromCollection(Collection<? extends E> c) {
211 >        Object[] a = c.toArray();
212 >        // If c.toArray incorrectly doesn't return Object[], copy it.
213 >        if (a.getClass() != Object[].class)
214 >            a = Arrays.copyOf(a, a.length, Object[].class);
215 >        queue = a;
216 >        size = a.length;
217      }
273            
274    // Queue Methods
218  
219 +    /**
220 +     * Increases the capacity of the array.
221 +     *
222 +     * @param minCapacity the desired minimum capacity
223 +     */
224 +    private void grow(int minCapacity) {
225 +        if (minCapacity < 0) // overflow
226 +            throw new OutOfMemoryError();
227 +        int oldCapacity = queue.length;
228 +        // Double size if small; else grow by 50%
229 +        int newCapacity = ((oldCapacity < 64)?
230 +                           ((oldCapacity + 1) * 2):
231 +                           ((oldCapacity / 2) * 3));
232 +        if (newCapacity < 0) // overflow
233 +            newCapacity = Integer.MAX_VALUE;
234 +        if (newCapacity < minCapacity)
235 +            newCapacity = minCapacity;
236 +        queue = Arrays.copyOf(queue, newCapacity);
237 +    }
238  
239 +    /**
240 +     * Inserts the specified element into this priority queue.
241 +     *
242 +     * @return <tt>true</tt> (as specified by {@link Collection#add})
243 +     * @throws ClassCastException if the specified element cannot be
244 +     *         compared with elements currently in this priority queue
245 +     *         according to the priority queue's ordering
246 +     * @throws NullPointerException if the specified element is null
247 +     */
248 +    public boolean add(E e) {
249 +        return offer(e);
250 +    }
251  
252      /**
253 <     * Add the specified element to this priority queue.
253 >     * Inserts the specified element into this priority queue.
254       *
255 <     * @return <tt>true</tt>
256 <     * @throws ClassCastException if the specified element cannot be compared
257 <     * with elements currently in the priority queue according
258 <     * to the priority queue's ordering.
259 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
255 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
256 >     * @throws ClassCastException if the specified element cannot be
257 >     *         compared with elements currently in this priority queue
258 >     *         according to the priority queue's ordering
259 >     * @throws NullPointerException if the specified element is null
260       */
261 <    public boolean offer(E o) {
262 <        if (o == null)
261 >    public boolean offer(E e) {
262 >        if (e == null)
263              throw new NullPointerException();
264          modCount++;
265 <        ++size;
266 <
267 <        // Grow backing store if necessary
268 <        if (size >= queue.length)
269 <            grow(size);
270 <
271 <        queue[size] = o;
272 <        fixUp(size);
265 >        int i = size;
266 >        if (i >= queue.length)
267 >            grow(i + 1);
268 >        size = i + 1;
269 >        if (i == 0)
270 >            queue[0] = e;
271 >        else
272 >            siftUp(i, e);
273          return true;
274      }
275  
276 <    public E poll() {
276 >    public E peek() {
277          if (size == 0)
278              return null;
279 <        return (E) remove(1);
279 >        return (E) queue[0];
280      }
281  
282 <    public E peek() {
283 <        return (E) queue[1];
282 >    private int indexOf(Object o) {
283 >        if (o != null) {
284 >            for (int i = 0; i < size; i++)
285 >                if (o.equals(queue[i]))
286 >                    return i;
287 >        }
288 >        return -1;
289      }
290  
312    // Collection Methods - the first two override to update docs
313
291      /**
292 <     * Adds the specified element to this queue.
293 <     * @return <tt>true</tt> (as per the general contract of
294 <     * <tt>Collection.add</tt>).
292 >     * Removes a single instance of the specified element from this queue,
293 >     * if it is present.  More formally, removes an element <tt>e</tt> such
294 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
295 >     * elements.  Returns true if this queue contained the specified element
296 >     * (or equivalently, if this queue changed as a result of the call).
297       *
298 <     * @throws NullPointerException {@inheritDoc}
299 <     * @throws ClassCastException if the specified element cannot be compared
321 <     * with elements currently in the priority queue according
322 <     * to the priority queue's ordering.
298 >     * @param o element to be removed from this queue, if present
299 >     * @return <tt>true</tt> if this queue changed as a result of the call
300       */
301 <    public boolean add(E o) {
302 <        return super.add(o);
301 >    public boolean remove(Object o) {
302 >        int i = indexOf(o);
303 >        if (i == -1)
304 >            return false;
305 >        else {
306 >            removeAt(i);
307 >            return true;
308 >        }
309      }
310  
328  
311      /**
312 <     * Adds all of the elements in the specified collection to this queue.
313 <     * The behavior of this operation is undefined if
314 <     * the specified collection is modified while the operation is in
315 <     * progress.  (This implies that the behavior of this call is undefined if
316 <     * the specified collection is this queue, and this queue is nonempty.)
317 <     * <p>
318 <     * This implementation iterates over the specified collection, and adds
319 <     * each object returned by the iterator to this collection, in turn.
320 <     * @throws NullPointerException {@inheritDoc}
321 <     * @throws ClassCastException if any element cannot be compared
322 <     * with elements currently in the priority queue according
323 <     * to the priority queue's ordering.
324 <     */
325 <    public boolean addAll(Collection<? extends E> c) {
344 <        return super.addAll(c);
312 >     * Version of remove using reference equality, not equals.
313 >     * Needed by iterator.remove.
314 >     *
315 >     * @param o element to be removed from this queue, if present
316 >     * @return <tt>true</tt> if removed
317 >     */
318 >    boolean removeEq(Object o) {
319 >        for (int i = 0; i < size; i++) {
320 >            if (o == queue[i]) {
321 >                removeAt(i);
322 >                return true;
323 >            }
324 >        }
325 >        return false;
326      }
327  
328 +    /**
329 +     * Returns <tt>true</tt> if this queue contains the specified element.
330 +     * More formally, returns <tt>true</tt> if and only if this queue contains
331 +     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
332 +     *
333 +     * @param o object to be checked for containment in this queue
334 +     * @return <tt>true</tt> if this queue contains the specified element
335 +     */
336 +    public boolean contains(Object o) {
337 +        return indexOf(o) != -1;
338 +    }
339  
340 < /**
341 <     * Removes a single instance of the specified element from this
342 <     * queue, if it is present.  More formally,
343 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
344 <     * o.equals(e))</tt>, if the queue contains one or more such
345 <     * elements.  Returns <tt>true</tt> if the queue contained the
346 <     * specified element (or equivalently, if the queue changed as a
347 <     * result of the call).
348 <     *
349 <     * <p>This implementation iterates over the queue looking for the
350 <     * specified element.  If it finds the element, it removes the element
351 <     * from the queue using the iterator's remove method.<p>
352 <     *
361 <     */
362 <    public boolean remove(Object o) {
363 <        if (o == null)
364 <            return false;
340 >    /**
341 >     * Returns an array containing all of the elements in this queue,
342 >     * The elements are in no particular order.
343 >     *
344 >     * <p>The returned array will be "safe" in that no references to it are
345 >     * maintained by this list.  (In other words, this method must allocate
346 >     * a new array).  The caller is thus free to modify the returned array.
347 >     *
348 >     * @return an array containing all of the elements in this queue
349 >     */
350 >    public Object[] toArray() {
351 >        return Arrays.copyOf(queue, size);
352 >    }
353  
354 <        if (comparator == null) {
355 <            for (int i = 1; i <= size; i++) {
356 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
357 <                    remove(i);
358 <                    return true;
359 <                }
360 <            }
361 <        } else {
362 <            for (int i = 1; i <= size; i++) {
363 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
364 <                    remove(i);
365 <                    return true;
366 <                }
367 <            }
368 <        }
369 <        return false;
354 >    /**
355 >     * Returns an array containing all of the elements in this queue.
356 >     * The elements are in no particular order.  The runtime type of
357 >     * the returned array is that of the specified array.  If the queue
358 >     * fits in the specified array, it is returned therein.
359 >     * Otherwise, a new array is allocated with the runtime type of
360 >     * the specified array and the size of this queue.
361 >     *
362 >     * <p>If the queue fits in the specified array with room to spare
363 >     * (i.e., the array has more elements than the queue), the element in
364 >     * the array immediately following the end of the collection is set to
365 >     * <tt>null</tt>.  (This is useful in determining the length of the
366 >     * queue <i>only</i> if the caller knows that the queue does not contain
367 >     * any null elements.)
368 >     *
369 >     * @param a the array into which the elements of the queue are to
370 >     *          be stored, if it is big enough; otherwise, a new array of the
371 >     *          same runtime type is allocated for this purpose.
372 >     * @return an array containing the elements of the queue
373 >     * @throws ArrayStoreException if the runtime type of the specified array
374 >     *         is not a supertype of the runtime type of every element in
375 >     *         this queue
376 >     * @throws NullPointerException if the specified array is null
377 >     */
378 >    public <T> T[] toArray(T[] a) {
379 >        if (a.length < size)
380 >            // Make a new array of a's runtime type, but my contents:
381 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
382 >        System.arraycopy(queue, 0, a, 0, size);
383 >        if (a.length > size)
384 >            a[size] = null;
385 >        return a;
386      }
387  
388      /**
389       * Returns an iterator over the elements in this queue. The iterator
390       * does not return the elements in any particular order.
391       *
392 <     * @return an iterator over the elements in this queue.
392 >     * @return an iterator over the elements in this queue
393       */
394      public Iterator<E> iterator() {
395          return new Itr();
396      }
397  
398 <    private class Itr implements Iterator<E> {
395 <
398 >    private final class Itr implements Iterator<E> {
399          /**
400           * Index (into queue array) of element to be returned by
401           * subsequent call to next.
402           */
403 <        private int cursor = 1;
403 >        private int cursor = 0;
404  
405          /**
406 <         * Index of element returned by most recent call to next or
407 <         * previous.  Reset to 0 if this element is deleted by a call
408 <         * to remove.
406 >         * Index of element returned by most recent call to next,
407 >         * unless that element came from the forgetMeNot list.
408 >         * Set to -1 if element is deleted by a call to remove.
409           */
410 <        private int lastRet = 0;
410 >        private int lastRet = -1;
411 >
412 >        /**
413 >         * A queue of elements that were moved from the unvisited portion of
414 >         * the heap into the visited portion as a result of "unlucky" element
415 >         * removals during the iteration.  (Unlucky element removals are those
416 >         * that require a siftup instead of a siftdown.)  We must visit all of
417 >         * the elements in this list to complete the iteration.  We do this
418 >         * after we've completed the "normal" iteration.
419 >         *
420 >         * We expect that most iterations, even those involving removals,
421 >         * will not use need to store elements in this field.
422 >         */
423 >        private ArrayDeque<E> forgetMeNot = null;
424 >
425 >        /**
426 >         * Element returned by the most recent call to next iff that
427 >         * element was drawn from the forgetMeNot list.
428 >         */
429 >        private E lastRetElt = null;
430  
431          /**
432           * The modCount value that the iterator believes that the backing
# Line 413 | Line 435 | public class PriorityQueue<E> extends Ab
435           */
436          private int expectedModCount = modCount;
437  
416        // Workarounds until version that better handles remove() installed.
417        // These are used to copy-on-write the array upon first remove
418        private Object[] q = queue;
419        private int qsize = size;
420
438          public boolean hasNext() {
439 <            return cursor <= qsize;
439 >            return cursor < size ||
440 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
441          }
442  
443          public E next() {
444 <            checkForComodification();
445 <            if (cursor > qsize)
446 <                throw new NoSuchElementException();
447 <            E result = (E) q[cursor];
448 <            lastRet = cursor++;
449 <            return result;
444 >            if (expectedModCount != modCount)
445 >                throw new ConcurrentModificationException();
446 >            if (cursor < size)
447 >                return (E) queue[lastRet = cursor++];
448 >            if (forgetMeNot != null) {
449 >                lastRet = -1;
450 >                lastRetElt = forgetMeNot.poll();
451 >                if (lastRetElt != null)
452 >                    return lastRetElt;
453 >            }
454 >            throw new NoSuchElementException();
455          }
456  
457          public void remove() {
458 <            if (lastRet == 0)
458 >            if (expectedModCount != modCount)
459 >                throw new ConcurrentModificationException();
460 >            if (lastRet == -1 && lastRetElt == null)
461                  throw new IllegalStateException();
462 <            checkForComodification();
463 <
464 <            // Copy on first remove
465 <            if (q == queue) {
466 <                q = new Object[queue.length];
467 <                System.arraycopy(queue, 0, q, 0, queue.length);
462 >            if (lastRet != -1) {
463 >                E moved = PriorityQueue.this.removeAt(lastRet);
464 >                lastRet = -1;
465 >                if (moved == null)
466 >                    cursor--;
467 >                else {
468 >                    if (forgetMeNot == null)
469 >                        forgetMeNot = new ArrayDeque<E>();
470 >                    forgetMeNot.add(moved);
471 >                }
472 >            } else {
473 >                PriorityQueue.this.removeEq(lastRetElt);
474 >                lastRetElt = null;
475              }
444            PriorityQueue.this.remove(q[lastRet]);
445
446            lastRet = 0;
476              expectedModCount = modCount;
477          }
478  
450        final void checkForComodification() {
451            if (modCount != expectedModCount)
452                throw new ConcurrentModificationException();
453        }
479      }
480  
481      public int size() {
# Line 458 | Line 483 | public class PriorityQueue<E> extends Ab
483      }
484  
485      /**
486 <     * Remove all elements from the priority queue.
486 >     * Removes all of the elements from this priority queue.
487 >     * The queue will be empty after this call returns.
488       */
489      public void clear() {
490          modCount++;
491 <
466 <        // Null out element references to prevent memory leak
467 <        for (int i=1; i<=size; i++)
491 >        for (int i = 0; i < size; i++)
492              queue[i] = null;
469
493          size = 0;
494      }
495  
496 +    public E poll() {
497 +        if (size == 0)
498 +            return null;
499 +        int s = --size;
500 +        modCount++;
501 +        E result = (E)queue[0];
502 +        E x = (E)queue[s];
503 +        queue[s] = null;
504 +        if (s != 0)
505 +            siftDown(0, x);
506 +        return result;
507 +    }
508 +
509      /**
510 <     * Removes and returns the ith element from queue.  Recall
475 <     * that queue is one-based, so 1 <= i <= size.
510 >     * Removes the ith element from queue.
511       *
512 +     * Normally this method leaves the elements at up to i-1,
513 +     * inclusive, untouched.  Under these circumstances, it returns
514 +     * null.  Occasionally, in order to maintain the heap invariant,
515 +     * it must swap a later element of the list with one earlier than
516 +     * i.  Under these circumstances, this method returns the element
517 +     * that was previously at the end of the list and is now at some
518 +     * position before i. This fact is used by iterator.remove so as to
519 +     * avoid missing traverseing elements.
520       */
521 <    private E remove(int i) {
522 <        assert i <= size;
521 >    private E removeAt(int i) {
522 >        assert i >= 0 && i < size;
523          modCount++;
524 <
525 <        E result = (E) queue[i];
526 <        queue[i] = queue[size];
527 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
528 <        if (i <= size) {
529 <            fixDown(i);
530 <            fixUp(i);
524 >        int s = --size;
525 >        if (s == i) // removed last element
526 >            queue[i] = null;
527 >        else {
528 >            E moved = (E) queue[s];
529 >            queue[s] = null;
530 >            siftDown(i, moved);
531 >            if (queue[i] == moved) {
532 >                siftUp(i, moved);
533 >                if (queue[i] != moved)
534 >                    return moved;
535 >            }
536          }
537 <
490 <        return result;
537 >        return null;
538      }
539  
540      /**
541 <     * Establishes the heap invariant (described above) assuming the heap
542 <     * satisfies the invariant except possibly for the leaf-node indexed by k
543 <     * (which may have a nextExecutionTime less than its parent's).
544 <     *
545 <     * This method functions by "promoting" queue[k] up the hierarchy
546 <     * (by swapping it with its parent) repeatedly until queue[k]
547 <     * is greater than or equal to its parent.
548 <     */
549 <    private void fixUp(int k) {
550 <        if (comparator == null) {
551 <            while (k > 1) {
552 <                int j = k >> 1;
553 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
554 <                    break;
555 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
556 <                k = j;
557 <            }
558 <        } else {
559 <            while (k > 1) {
560 <                int j = k >>> 1;
561 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
562 <                    break;
563 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
564 <                k = j;
565 <            }
541 >     * Inserts item x at position k, maintaining heap invariant by
542 >     * promoting x up the tree until it is greater than or equal to
543 >     * its parent, or is the root.
544 >     *
545 >     * To simplify and speed up coercions and comparisons. the
546 >     * Comparable and Comparator versions are separated into different
547 >     * methods that are otherwise identical. (Similarly for siftDown.)
548 >     *
549 >     * @param k the position to fill
550 >     * @param x the item to insert
551 >     */
552 >    private void siftUp(int k, E x) {
553 >        if (comparator != null)
554 >            siftUpUsingComparator(k, x);
555 >        else
556 >            siftUpComparable(k, x);
557 >    }
558 >
559 >    private void siftUpComparable(int k, E x) {
560 >        Comparable<? super E> key = (Comparable<? super E>) x;
561 >        while (k > 0) {
562 >            int parent = (k - 1) >>> 1;
563 >            Object e = queue[parent];
564 >            if (key.compareTo((E)e) >= 0)
565 >                break;
566 >            queue[k] = e;
567 >            k = parent;
568          }
569 +        queue[k] = key;
570 +    }
571 +
572 +    private void siftUpUsingComparator(int k, E x) {
573 +        while (k > 0) {
574 +            int parent = (k - 1) >>> 1;
575 +            Object e = queue[parent];
576 +            if (comparator.compare(x, (E)e) >= 0)
577 +                break;
578 +            queue[k] = e;
579 +            k = parent;
580 +        }
581 +        queue[k] = x;
582      }
583  
584      /**
585 <     * Establishes the heap invariant (described above) in the subtree
586 <     * rooted at k, which is assumed to satisfy the heap invariant except
587 <     * possibly for node k itself (which may be greater than its children).
588 <     *
589 <     * This method functions by "demoting" queue[k] down the hierarchy
590 <     * (by swapping it with its smaller child) repeatedly until queue[k]
591 <     * is less than or equal to its children.
592 <     */
593 <    private void fixDown(int k) {
594 <        int j;
595 <        if (comparator == null) {
596 <            while ((j = k << 1) <= size && (j > 0)) {
597 <                if (j<size &&
598 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
599 <                    j++; // j indexes smallest kid
600 <
601 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
602 <                    break;
603 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
604 <                k = j;
605 <            }
606 <        } else {
607 <            while ((j = k << 1) <= size && (j > 0)) {
608 <                if (j<size &&
609 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
610 <                    j++; // j indexes smallest kid
611 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
612 <                    break;
551 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
552 <                k = j;
553 <            }
585 >     * Inserts item x at position k, maintaining heap invariant by
586 >     * demoting x down the tree repeatedly until it is less than or
587 >     * equal to its children or is a leaf.
588 >     *
589 >     * @param k the position to fill
590 >     * @param x the item to insert
591 >     */
592 >    private void siftDown(int k, E x) {
593 >        if (comparator != null)
594 >            siftDownUsingComparator(k, x);
595 >        else
596 >            siftDownComparable(k, x);
597 >    }
598 >
599 >    private void siftDownComparable(int k, E x) {
600 >        Comparable<? super E> key = (Comparable<? super E>)x;
601 >        int half = size >>> 1;        // loop while a non-leaf
602 >        while (k < half) {
603 >            int child = (k << 1) + 1; // assume left child is least
604 >            Object c = queue[child];
605 >            int right = child + 1;
606 >            if (right < size &&
607 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
608 >                c = queue[child = right];
609 >            if (key.compareTo((E)c) <= 0)
610 >                break;
611 >            queue[k] = c;
612 >            k = child;
613          }
614 +        queue[k] = key;
615 +    }
616  
617 +    private void siftDownUsingComparator(int k, E x) {
618 +        int half = size >>> 1;
619 +        while (k < half) {
620 +            int child = (k << 1) + 1;
621 +            Object c = queue[child];
622 +            int right = child + 1;
623 +            if (right < size &&
624 +                comparator.compare((E)c, (E)queue[right]) > 0)
625 +                c = queue[child = right];
626 +            if (comparator.compare(x, (E)c) <= 0)
627 +                break;
628 +            queue[k] = c;
629 +            k = child;
630 +        }
631 +        queue[k] = x;
632      }
633  
634 +    /**
635 +     * Establishes the heap invariant (described above) in the entire tree,
636 +     * assuming nothing about the order of the elements prior to the call.
637 +     */
638 +    private void heapify() {
639 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
640 +            siftDown(i, (E)queue[i]);
641 +    }
642  
643      /**
644 <     * Returns the comparator used to order this collection, or <tt>null</tt>
645 <     * if this collection is sorted according to its elements natural ordering
646 <     * (using <tt>Comparable</tt>).
644 >     * Returns the comparator used to order the elements in this
645 >     * queue, or <tt>null</tt> if this queue is sorted according to
646 >     * the {@linkplain Comparable natural ordering} of its elements.
647       *
648 <     * @return the comparator used to order this collection, or <tt>null</tt>
649 <     * if this collection is sorted according to its elements natural ordering.
648 >     * @return the comparator used to order this queue, or
649 >     *         <tt>null</tt> if this queue is sorted according to the
650 >     *         natural ordering of its elements.
651       */
652      public Comparator<? super E> comparator() {
653          return comparator;
# Line 583 | Line 668 | public class PriorityQueue<E> extends Ab
668          s.defaultWriteObject();
669  
670          // Write out array length
671 <        s.writeInt(queue.length);
671 >        // For compatibility with 1.5 version, must be at least 2.
672 >        s.writeInt(Math.max(2, queue.length));
673  
674          // Write out all elements in the proper order.
675          for (int i=0; i<size; i++)
# Line 591 | Line 677 | public class PriorityQueue<E> extends Ab
677      }
678  
679      /**
680 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
681 <     * deserialize it).
680 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
681 >     * (that is, deserialize it).
682       * @param s the stream
683       */
684      private void readObject(java.io.ObjectInputStream s)
# Line 606 | Line 692 | public class PriorityQueue<E> extends Ab
692  
693          // Read in all elements in the proper order.
694          for (int i=0; i<size; i++)
695 <            queue[i] = s.readObject();
695 >            queue[i] = (E) s.readObject();
696      }
697  
698   }
613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines