ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.36 by dl, Sat Aug 30 11:40:04 2003 UTC

# Line 1 | Line 1
1 < package java.util;
2 <
3 < import java.util.*;
1 > package java.util;
2  
3   /**
4 < * An unbounded (resizable) priority queue based on a priority
5 < * heap.The take operation returns the least element with respect to
6 < * the given ordering. (If more than one element is tied for least
7 < * value, one of them is arbitrarily chosen to be returned -- no
8 < * guarantees are made for ordering across ties.) Ordering follows the
9 < * java.util.Collection conventions: Either the elements must be
10 < * Comparable, or a Comparator must be supplied. Comparison failures
11 < * throw ClassCastExceptions during insertions and extractions.
12 < **/
13 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
14 <    public PriorityQueue(int initialCapacity) {}
15 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
4 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 > * This queue orders elements according to an order specified at construction
6 > * time, which is specified in the same manner as {@link java.util.TreeSet}
7 > * and {@link java.util.TreeMap}: elements are ordered either according to
8 > * their <i>natural order</i> (see {@link Comparable}), or according to a
9 > * {@link java.util.Comparator}, depending on which constructor is used.
10 > * <p>The <em>head</em> of this queue is the <em>least</em> element with
11 > * respect to the specified ordering.  If multiple elements are tied for least
12 > * value, the head is one of those elements. A priority queue does not permit
13 > * <tt>null</tt> elements.
14 > *
15 > * <p>The {@link #remove()} and {@link #poll()} methods remove and
16 > * return the head of the queue.
17 > *
18 > * <p>The {@link #element()} and {@link #peek()} methods return, but do
19 > * not delete, the head of the queue.
20 > *
21 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
22 > * size of the array used internally to store the elements on the
23 > * queue.
24 > * It is always at least as large as the queue size.  As
25 > * elements are added to a priority queue, its capacity grows
26 > * automatically.  The details of the growth policy are not specified.
27 > *
28 > * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
29 > * guaranteed to traverse the elements of the PriorityQueue in any
30 > * particular order. If you need ordered traversal, consider using
31 > * <tt>Arrays.sort(pq.toArray())</tt>.
32 > *
33 > * <p> <strong>Note that this implementation is not synchronized.</strong>
34 > * Multiple threads should not access a <tt>PriorityQueue</tt>
35 > * instance concurrently if any of the threads modifies the list
36 > * structurally. Instead, use the thread-safe {@link
37 > * java.util.concurrent.PriorityBlockingQueue} class.
38 > *
39 > *
40 > * <p>Implementation note: this implementation provides O(log(n)) time
41 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
42 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
43 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
44 > * constant time for the retrieval methods (<tt>peek</tt>,
45 > * <tt>element</tt>, and <tt>size</tt>).
46 > *
47 > * <p>This class is a member of the
48 > * <a href="{@docRoot}/../guide/collections/index.html">
49 > * Java Collections Framework</a>.
50 > * @since 1.5
51 > * @author Josh Bloch
52 > */
53 > public class PriorityQueue<E> extends AbstractQueue<E>
54 >    implements Queue<E>, java.io.Serializable {
55  
56 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
56 >    private static final long serialVersionUID = -7720805057305804111L;
57  
58 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
58 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
59  
60 <    public boolean add(E x) {
61 <        return false;
60 >    /**
61 >     * Priority queue represented as a balanced binary heap: the two children
62 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
63 >     * ordered by comparator, or by the elements' natural ordering, if
64 >     * comparator is null:  For each node n in the heap and each descendant d
65 >     * of n, n <= d.
66 >     *
67 >     * The element with the lowest value is in queue[1], assuming the queue is
68 >     * nonempty.  (A one-based array is used in preference to the traditional
69 >     * zero-based array to simplify parent and child calculations.)
70 >     *
71 >     * queue.length must be >= 2, even if size == 0.
72 >     */
73 >    private transient Object[] queue;
74 >
75 >    /**
76 >     * The number of elements in the priority queue.
77 >     */
78 >    private int size = 0;
79 >
80 >    /**
81 >     * The comparator, or null if priority queue uses elements'
82 >     * natural ordering.
83 >     */
84 >    private final Comparator<? super E> comparator;
85 >
86 >    /**
87 >     * The number of times this priority queue has been
88 >     * <i>structurally modified</i>.  See AbstractList for gory details.
89 >     */
90 >    private transient int modCount = 0;
91 >
92 >    /**
93 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
94 >     * (11) that orders its elements according to their natural
95 >     * ordering (using <tt>Comparable</tt>).
96 >     */
97 >    public PriorityQueue() {
98 >        this(DEFAULT_INITIAL_CAPACITY, null);
99      }
100 <    public boolean offer(E x) {
101 <        return false;
100 >
101 >    /**
102 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
103 >     * that orders its elements according to their natural ordering
104 >     * (using <tt>Comparable</tt>).
105 >     *
106 >     * @param initialCapacity the initial capacity for this priority queue.
107 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
108 >     * than 1
109 >     */
110 >    public PriorityQueue(int initialCapacity) {
111 >        this(initialCapacity, null);
112      }
113 <    public boolean remove(Object x) {
114 <        return false;
113 >
114 >    /**
115 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
116 >     * that orders its elements according to the specified comparator.
117 >     *
118 >     * @param initialCapacity the initial capacity for this priority queue.
119 >     * @param comparator the comparator used to order this priority queue.
120 >     * If <tt>null</tt> then the order depends on the elements' natural
121 >     * ordering.
122 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
123 >     * than 1
124 >     */
125 >    public PriorityQueue(int initialCapacity,
126 >                         Comparator<? super E> comparator) {
127 >        if (initialCapacity < 1)
128 >            throw new IllegalArgumentException();
129 >        this.queue = new Object[initialCapacity + 1];
130 >        this.comparator = comparator;
131      }
132  
133 <    public E remove() {
134 <        return null;
133 >    /**
134 >     * Common code to initialize underlying queue array across
135 >     * constructors below.
136 >     */
137 >    private void initializeArray(Collection<? extends E> c) {
138 >        int sz = c.size();
139 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
140 >                                            Integer.MAX_VALUE - 1);
141 >        if (initialCapacity < 1)
142 >            initialCapacity = 1;
143 >
144 >        this.queue = new Object[initialCapacity + 1];
145      }
146 <    public Iterator<E> iterator() {
147 <      return null;
146 >
147 >    /**
148 >     * Initially fill elements of the queue array under the
149 >     * knowledge that it is sorted or is another PQ, in which
150 >     * case we can just place the elements in the order presented.
151 >     */
152 >    private void fillFromSorted(Collection<? extends E> c) {
153 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 >            queue[++size] = i.next();
155      }
156  
157 <    public E element() {
158 <        return null;
157 >    /**
158 >     * Initially fill elements of the queue array that is not to our knowledge
159 >     * sorted, so we must rearrange the elements to guarantee the heap
160 >     * invariant.
161 >     */
162 >    private void fillFromUnsorted(Collection<? extends E> c) {
163 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
164 >            queue[++size] = i.next();
165 >        heapify();
166 >    }
167 >
168 >    /**
169 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
170 >     * specified collection.  The priority queue has an initial
171 >     * capacity of 110% of the size of the specified collection or 1
172 >     * if the collection is empty.  If the specified collection is an
173 >     * instance of a {@link java.util.SortedSet} or is another
174 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
175 >     * according to the same comparator, or according to its elements'
176 >     * natural order if the collection is sorted according to its
177 >     * elements' natural order.  Otherwise, the priority queue is
178 >     * ordered according to its elements' natural order.
179 >     *
180 >     * @param c the collection whose elements are to be placed
181 >     *        into this priority queue.
182 >     * @throws ClassCastException if elements of the specified collection
183 >     *         cannot be compared to one another according to the priority
184 >     *         queue's ordering.
185 >     * @throws NullPointerException if <tt>c</tt> or any element within it
186 >     * is <tt>null</tt>
187 >     */
188 >    public PriorityQueue(Collection<? extends E> c) {
189 >        initializeArray(c);
190 >        if (c instanceof SortedSet) {
191 >            // @fixme double-cast workaround for compiler
192 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
193 >            comparator = (Comparator<? super E>)s.comparator();
194 >            fillFromSorted(s);
195 >        } else if (c instanceof PriorityQueue) {
196 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197 >            comparator = (Comparator<? super E>)s.comparator();
198 >            fillFromSorted(s);
199 >        } else {
200 >            comparator = null;
201 >            fillFromUnsorted(c);
202 >        }
203 >    }
204 >
205 >    /**
206 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
207 >     * specified collection.  The priority queue has an initial
208 >     * capacity of 110% of the size of the specified collection or 1
209 >     * if the collection is empty.  This priority queue will be sorted
210 >     * according to the same comparator as the given collection, or
211 >     * according to its elements' natural order if the collection is
212 >     * sorted according to its elements' natural order.
213 >     *
214 >     * @param c the collection whose elements are to be placed
215 >     *        into this priority queue.
216 >     * @throws ClassCastException if elements of the specified collection
217 >     *         cannot be compared to one another according to the priority
218 >     *         queue's ordering.
219 >     * @throws NullPointerException if <tt>c</tt> or any element within it
220 >     * is <tt>null</tt>
221 >     */
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        initializeArray(c);
224 >        comparator = (Comparator<? super E>)c.comparator();
225 >        fillFromSorted(c);
226 >    }
227 >
228 >    /**
229 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
230 >     * specified collection.  The priority queue has an initial
231 >     * capacity of 110% of the size of the specified collection or 1
232 >     * if the collection is empty.  This priority queue will be sorted
233 >     * according to the same comparator as the given collection, or
234 >     * according to its elements' natural order if the collection is
235 >     * sorted according to its elements' natural order.
236 >     *
237 >     * @param c the collection whose elements are to be placed
238 >     *        into this priority queue.
239 >     * @throws ClassCastException if elements of the specified collection
240 >     *         cannot be compared to one another according to the priority
241 >     *         queue's ordering.
242 >     * @throws NullPointerException if <tt>c</tt> or any element within it
243 >     * is <tt>null</tt>
244 >     */
245 >    public PriorityQueue(SortedSet<? extends E> c) {
246 >        initializeArray(c);
247 >        comparator = (Comparator<? super E>)c.comparator();
248 >        fillFromSorted(c);
249 >    }
250 >
251 >    /**
252 >     * Resize array, if necessary, to be able to hold given index
253 >     */
254 >    private void grow(int index) {
255 >        int newlen = queue.length;
256 >        if (index < newlen) // don't need to grow
257 >            return;
258 >        if (index == Integer.MAX_VALUE)
259 >            throw new OutOfMemoryError();
260 >        while (newlen <= index) {
261 >            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
262 >                newlen = Integer.MAX_VALUE;
263 >            else
264 >                newlen <<= 2;
265 >        }
266 >        Object[] newQueue = new Object[newlen];
267 >        System.arraycopy(queue, 0, newQueue, 0, queue.length);
268 >        queue = newQueue;
269      }
270 +            
271 +
272 +    // Queue Methods
273 +
274 +    /**
275 +     * Add the specified element to this priority queue.
276 +     *
277 +     * @return <tt>true</tt>
278 +     * @throws ClassCastException if the specified element cannot be compared
279 +     * with elements currently in the priority queue according
280 +     * to the priority queue's ordering.
281 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
282 +     */
283 +    public boolean offer(E o) {
284 +        if (o == null)
285 +            throw new NullPointerException();
286 +        modCount++;
287 +        ++size;
288 +
289 +        // Grow backing store if necessary
290 +        if (size >= queue.length)
291 +            grow(size);
292 +
293 +        queue[size] = o;
294 +        fixUp(size);
295 +        return true;
296 +    }
297 +
298      public E poll() {
299 <        return null;
299 >        if (size == 0)
300 >            return null;
301 >        return remove();
302      }
303 +
304      public E peek() {
305 <        return null;
305 >        return (E) queue[1];
306 >    }
307 >
308 >    // Collection Methods - the first two override to update docs
309 >
310 >    /**
311 >     * Adds the specified element to this queue.
312 >     * @return <tt>true</tt> (as per the general contract of
313 >     * <tt>Collection.add</tt>).
314 >     *
315 >     * @throws NullPointerException {@inheritDoc}
316 >     * @throws ClassCastException if the specified element cannot be compared
317 >     * with elements currently in the priority queue according
318 >     * to the priority queue's ordering.
319 >     */
320 >    public boolean add(E o) {
321 >        return super.add(o);
322 >    }
323 >
324 >  
325 >    /**
326 >     * Adds all of the elements in the specified collection to this queue.
327 >     * The behavior of this operation is undefined if
328 >     * the specified collection is modified while the operation is in
329 >     * progress.  (This implies that the behavior of this call is undefined if
330 >     * the specified collection is this queue, and this queue is nonempty.)
331 >     * <p>
332 >     * This implementation iterates over the specified collection, and adds
333 >     * each object returned by the iterator to this collection, in turn.
334 >     * @throws NullPointerException {@inheritDoc}
335 >     * @throws ClassCastException if any element cannot be compared
336 >     * with elements currently in the priority queue according
337 >     * to the priority queue's ordering.
338 >     */
339 >    public boolean addAll(Collection<? extends E> c) {
340 >        return super.addAll(c);
341      }
342  
343 <    public boolean isEmpty() {
343 >
344 >    /**
345 >     * Removes a single instance of the specified element from this
346 >     * queue, if it is present.  More formally,
347 >     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
348 >     * o.equals(e))</tt>, if the queue contains one or more such
349 >     * elements.  Returns <tt>true</tt> if the queue contained the
350 >     * specified element (or equivalently, if the queue changed as a
351 >     * result of the call).
352 >     *
353 >     * <p>This implementation iterates over the queue looking for the
354 >     * specified element.  If it finds the element, it removes the element
355 >     * from the queue using the iterator's remove method.<p>
356 >     *
357 >     */
358 >    public boolean remove(Object o) {
359 >        if (o == null)
360 >            return false;
361 >
362 >        if (comparator == null) {
363 >            for (int i = 1; i <= size; i++) {
364 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
365 >                    removeAt(i);
366 >                    return true;
367 >                }
368 >            }
369 >        } else {
370 >            for (int i = 1; i <= size; i++) {
371 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
372 >                    removeAt(i);
373 >                    return true;
374 >                }
375 >            }
376 >        }
377          return false;
378      }
379 +
380 +    /**
381 +     * Returns an iterator over the elements in this queue. The iterator
382 +     * does not return the elements in any particular order.
383 +     *
384 +     * @return an iterator over the elements in this queue.
385 +     */
386 +    public Iterator<E> iterator() {
387 +        return new Itr();
388 +    }
389 +
390 +    private class Itr implements Iterator<E> {
391 +
392 +        /**
393 +         * Index (into queue array) of element to be returned by
394 +         * subsequent call to next.
395 +         */
396 +        private int cursor = 1;
397 +
398 +        /**
399 +         * Index of element returned by most recent call to next,
400 +         * unless that element came from the forgetMeNot list.
401 +         * Reset to 0 if element is deleted by a call to remove.
402 +         */
403 +        private int lastRet = 0;
404 +
405 +        /**
406 +         * The modCount value that the iterator believes that the backing
407 +         * List should have.  If this expectation is violated, the iterator
408 +         * has detected concurrent modification.
409 +         */
410 +        private int expectedModCount = modCount;
411 +
412 +        /**
413 +         * A list of elements that were moved from the unvisited portion of
414 +         * the heap into the visited portion as a result of "unlucky" element
415 +         * removals during the iteration.  (Unlucky element removals are those
416 +         * that require a fixup instead of a fixdown.)  We must visit all of
417 +         * the elements in this list to complete the iteration.  We do this
418 +         * after we've completed the "normal" iteration.
419 +         *
420 +         * We expect that most iterations, even those involving removals,
421 +         * will not use need to store elements in this field.
422 +         */
423 +        private ArrayList<E> forgetMeNot = null;
424 +
425 +        /**
426 +         * Element returned by the most recent call to next iff that
427 +         * element was drawn from the forgetMeNot list.
428 +         */
429 +        private Object lastRetElt = null;
430 +
431 +        public boolean hasNext() {
432 +            return cursor <= size || forgetMeNot != null;
433 +        }
434 +
435 +        public E next() {
436 +            checkForComodification();
437 +            E result;
438 +            if (cursor <= size) {
439 +                result = (E) queue[cursor];
440 +                lastRet = cursor++;
441 +            }
442 +            else if (forgetMeNot == null)
443 +                throw new NoSuchElementException();
444 +            else {
445 +                int remaining = forgetMeNot.size();
446 +                result = forgetMeNot.remove(remaining - 1);
447 +                if (remaining == 1)
448 +                    forgetMeNot = null;
449 +                lastRet = 0;
450 +                lastRetElt = result;
451 +            }
452 +            return result;
453 +        }
454 +
455 +        public void remove() {
456 +            checkForComodification();
457 +
458 +            if (lastRet != 0) {
459 +                E moved = PriorityQueue.this.removeAt(lastRet);
460 +                lastRet = 0;
461 +                if (moved == null) {
462 +                    cursor--;
463 +                } else {
464 +                    if (forgetMeNot == null)
465 +                        forgetMeNot = new ArrayList();
466 +                    forgetMeNot.add(moved);
467 +                }
468 +            } else if (lastRetElt != null) {
469 +                PriorityQueue.this.remove(lastRetElt);
470 +                lastRetElt = null;
471 +            } else {
472 +                throw new IllegalStateException();
473 +            }
474 +
475 +            expectedModCount = modCount;
476 +        }
477 +
478 +        final void checkForComodification() {
479 +            if (modCount != expectedModCount)
480 +                throw new ConcurrentModificationException();
481 +        }
482 +    }
483 +
484      public int size() {
485 <        return 0;
485 >        return size;
486      }
487 <    public Object[] toArray() {
488 <        return null;
487 >
488 >    /**
489 >     * Remove all elements from the priority queue.
490 >     */
491 >    public void clear() {
492 >        modCount++;
493 >
494 >        // Null out element references to prevent memory leak
495 >        for (int i=1; i<=size; i++)
496 >            queue[i] = null;
497 >
498 >        size = 0;
499 >    }
500 >
501 >    /**
502 >     * Removes and returns the first element from queue.
503 >     */
504 >    public E remove() {
505 >        if (size == 0)
506 >            throw new NoSuchElementException();
507 >        modCount++;
508 >
509 >        E result = (E) queue[1];
510 >        queue[1] = queue[size];
511 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
512 >        if (size > 1)
513 >            fixDown(1);
514 >
515 >        return result;
516      }
517  
518 <    public <T> T[] toArray(T[] array) {
518 >    /**
519 >     * Removes and returns the ith element from queue.  (Recall that queue
520 >     * is one-based, so 1 <= i <= size.)
521 >     *
522 >     * Normally this method leaves the elements at positions from 1 up to i-1,
523 >     * inclusive, untouched.  Under these circumstances, it returns null.
524 >     * Occasionally, in order to maintain the heap invariant, it must move
525 >     * the last element of the list to some index in the range [2, i-1],
526 >     * and move the element previously at position (i/2) to position i.
527 >     * Under these circumstances, this method returns the element that was
528 >     * previously at the end of the list and is now at some position between
529 >     * 2 and i-1 inclusive.
530 >     */
531 >    private E removeAt(int i) {
532 >        assert i > 0 && i <= size;
533 >        modCount++;
534 >
535 >        E moved = (E) queue[size];
536 >        queue[i] = moved;
537 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
538 >        if (i <= size) {
539 >            fixDown(i);
540 >            if (queue[i] == moved) {
541 >                fixUp(i);
542 >                if (queue[i] != moved)
543 >                    return moved;
544 >            }
545 >        }
546          return null;
547      }
548  
549 +    /**
550 +     * Establishes the heap invariant (described above) assuming the heap
551 +     * satisfies the invariant except possibly for the leaf-node indexed by k
552 +     * (which may have a nextExecutionTime less than its parent's).
553 +     *
554 +     * This method functions by "promoting" queue[k] up the hierarchy
555 +     * (by swapping it with its parent) repeatedly until queue[k]
556 +     * is greater than or equal to its parent.
557 +     */
558 +    private void fixUp(int k) {
559 +        if (comparator == null) {
560 +            while (k > 1) {
561 +                int j = k >> 1;
562 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
563 +                    break;
564 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
565 +                k = j;
566 +            }
567 +        } else {
568 +            while (k > 1) {
569 +                int j = k >>> 1;
570 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
571 +                    break;
572 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
573 +                k = j;
574 +            }
575 +        }
576 +    }
577 +
578 +    /**
579 +     * Establishes the heap invariant (described above) in the subtree
580 +     * rooted at k, which is assumed to satisfy the heap invariant except
581 +     * possibly for node k itself (which may be greater than its children).
582 +     *
583 +     * This method functions by "demoting" queue[k] down the hierarchy
584 +     * (by swapping it with its smaller child) repeatedly until queue[k]
585 +     * is less than or equal to its children.
586 +     */
587 +    private void fixDown(int k) {
588 +        int j;
589 +        if (comparator == null) {
590 +            while ((j = k << 1) <= size && (j > 0)) {
591 +                if (j<size &&
592 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
593 +                    j++; // j indexes smallest kid
594 +
595 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
596 +                    break;
597 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
598 +                k = j;
599 +            }
600 +        } else {
601 +            while ((j = k << 1) <= size && (j > 0)) {
602 +                if (j<size &&
603 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
604 +                    j++; // j indexes smallest kid
605 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
606 +                    break;
607 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
608 +                k = j;
609 +            }
610 +        }
611 +    }
612 +
613 +    /**
614 +     * Establishes the heap invariant (described above) in the entire tree,
615 +     * assuming nothing about the order of the elements prior to the call.
616 +     */
617 +    private void heapify() {
618 +        for (int i = size/2; i >= 1; i--)
619 +            fixDown(i);
620 +    }
621 +
622 +    /**
623 +     * Returns the comparator used to order this collection, or <tt>null</tt>
624 +     * if this collection is sorted according to its elements natural ordering
625 +     * (using <tt>Comparable</tt>).
626 +     *
627 +     * @return the comparator used to order this collection, or <tt>null</tt>
628 +     * if this collection is sorted according to its elements natural ordering.
629 +     */
630 +    public Comparator<? super E> comparator() {
631 +        return comparator;
632 +    }
633 +
634 +    /**
635 +     * Save the state of the instance to a stream (that
636 +     * is, serialize it).
637 +     *
638 +     * @serialData The length of the array backing the instance is
639 +     * emitted (int), followed by all of its elements (each an
640 +     * <tt>Object</tt>) in the proper order.
641 +     * @param s the stream
642 +     */
643 +    private void writeObject(java.io.ObjectOutputStream s)
644 +        throws java.io.IOException{
645 +        // Write out element count, and any hidden stuff
646 +        s.defaultWriteObject();
647 +
648 +        // Write out array length
649 +        s.writeInt(queue.length);
650 +
651 +        // Write out all elements in the proper order.
652 +        for (int i=0; i<size; i++)
653 +            s.writeObject(queue[i]);
654 +    }
655 +
656 +    /**
657 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
658 +     * deserialize it).
659 +     * @param s the stream
660 +     */
661 +    private void readObject(java.io.ObjectInputStream s)
662 +        throws java.io.IOException, ClassNotFoundException {
663 +        // Read in size, and any hidden stuff
664 +        s.defaultReadObject();
665 +
666 +        // Read in array length and allocate array
667 +        int arrayLength = s.readInt();
668 +        queue = new Object[arrayLength];
669 +
670 +        // Read in all elements in the proper order.
671 +        for (int i=0; i<size; i++)
672 +            queue[i] = s.readObject();
673 +    }
674 +
675   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines