ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.36 by dl, Sat Aug 30 11:40:04 2003 UTC vs.
Revision 1.112 by jsr166, Tue Nov 29 18:11:28 2016 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29  
30   /**
31   * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 < * This queue orders elements according to an order specified at construction
33 < * time, which is specified in the same manner as {@link java.util.TreeSet}
34 < * and {@link java.util.TreeMap}: elements are ordered either according to
35 < * their <i>natural order</i> (see {@link Comparable}), or according to a
36 < * {@link java.util.Comparator}, depending on which constructor is used.
37 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
38 < * respect to the specified ordering.  If multiple elements are tied for least
39 < * value, the head is one of those elements. A priority queue does not permit
40 < * <tt>null</tt> elements.
41 < *
42 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
43 < * return the head of the queue.
44 < *
45 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
46 < * not delete, the head of the queue.
47 < *
48 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
49 < * size of the array used internally to store the elements on the
50 < * queue.
51 < * It is always at least as large as the queue size.  As
52 < * elements are added to a priority queue, its capacity grows
53 < * automatically.  The details of the growth policy are not specified.
54 < *
55 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
56 < * guaranteed to traverse the elements of the PriorityQueue in any
57 < * particular order. If you need ordered traversal, consider using
58 < * <tt>Arrays.sort(pq.toArray())</tt>.
59 < *
60 < * <p> <strong>Note that this implementation is not synchronized.</strong>
61 < * Multiple threads should not access a <tt>PriorityQueue</tt>
62 < * instance concurrently if any of the threads modifies the list
63 < * structurally. Instead, use the thread-safe {@link
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
58 > * are <em>not</em> guaranteed to traverse the elements of
59 > * the priority queue in any particular order. If you need ordered
60 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 > *
62 > * <p><strong>Note that this implementation is not synchronized.</strong>
63 > * Multiple threads should not access a {@code PriorityQueue}
64 > * instance concurrently if any of the threads modifies the queue.
65 > * Instead, use the thread-safe {@link
66   * java.util.concurrent.PriorityBlockingQueue} class.
67   *
68 < *
69 < * <p>Implementation note: this implementation provides O(log(n)) time
70 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
71 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
72 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
73 < * constant time for the retrieval methods (<tt>peek</tt>,
45 < * <tt>element</tt>, and <tt>size</tt>).
68 > * <p>Implementation note: this implementation provides
69 > * O(log(n)) time for the enqueuing and dequeuing methods
70 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 > * methods; and constant time for the retrieval methods
73 > * ({@code peek}, {@code element}, and {@code size}).
74   *
75   * <p>This class is a member of the
76 < * <a href="{@docRoot}/../guide/collections/index.html">
76 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77   * Java Collections Framework</a>.
78 + *
79   * @since 1.5
80 < * @author Josh Bloch
80 > * @author Josh Bloch, Doug Lea
81 > * @param <E> the type of elements held in this queue
82   */
83   public class PriorityQueue<E> extends AbstractQueue<E>
84 <    implements Queue<E>, java.io.Serializable {
84 >    implements java.io.Serializable {
85  
86      private static final long serialVersionUID = -7720805057305804111L;
87  
88      private static final int DEFAULT_INITIAL_CAPACITY = 11;
89  
90      /**
91 <     * Priority queue represented as a balanced binary heap: the two children
92 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
93 <     * ordered by comparator, or by the elements' natural ordering, if
94 <     * comparator is null:  For each node n in the heap and each descendant d
95 <     * of n, n <= d.
96 <     *
67 <     * The element with the lowest value is in queue[1], assuming the queue is
68 <     * nonempty.  (A one-based array is used in preference to the traditional
69 <     * zero-based array to simplify parent and child calculations.)
70 <     *
71 <     * queue.length must be >= 2, even if size == 0.
91 >     * Priority queue represented as a balanced binary heap: the two
92 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
93 >     * priority queue is ordered by comparator, or by the elements'
94 >     * natural ordering, if comparator is null: For each node n in the
95 >     * heap and each descendant d of n, n <= d.  The element with the
96 >     * lowest value is in queue[0], assuming the queue is nonempty.
97       */
98 <    private transient Object[] queue;
98 >    transient Object[] queue; // non-private to simplify nested class access
99  
100      /**
101       * The number of elements in the priority queue.
102       */
103 <    private int size = 0;
103 >    int size;
104  
105      /**
106       * The comparator, or null if priority queue uses elements'
# Line 87 | Line 112 | public class PriorityQueue<E> extends Ab
112       * The number of times this priority queue has been
113       * <i>structurally modified</i>.  See AbstractList for gory details.
114       */
115 <    private transient int modCount = 0;
115 >    transient int modCount;     // non-private to simplify nested class access
116  
117      /**
118 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
119 <     * (11) that orders its elements according to their natural
120 <     * ordering (using <tt>Comparable</tt>).
118 >     * Creates a {@code PriorityQueue} with the default initial
119 >     * capacity (11) that orders its elements according to their
120 >     * {@linkplain Comparable natural ordering}.
121       */
122      public PriorityQueue() {
123          this(DEFAULT_INITIAL_CAPACITY, null);
124      }
125  
126      /**
127 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
128 <     * that orders its elements according to their natural ordering
129 <     * (using <tt>Comparable</tt>).
130 <     *
131 <     * @param initialCapacity the initial capacity for this priority queue.
132 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
133 <     * than 1
127 >     * Creates a {@code PriorityQueue} with the specified initial
128 >     * capacity that orders its elements according to their
129 >     * {@linkplain Comparable natural ordering}.
130 >     *
131 >     * @param initialCapacity the initial capacity for this priority queue
132 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
133 >     *         than 1
134       */
135      public PriorityQueue(int initialCapacity) {
136          this(initialCapacity, null);
137      }
138  
139      /**
140 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
140 >     * Creates a {@code PriorityQueue} with the default initial capacity and
141 >     * whose elements are ordered according to the specified comparator.
142 >     *
143 >     * @param  comparator the comparator that will be used to order this
144 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
145 >     *         natural ordering} of the elements will be used.
146 >     * @since 1.8
147 >     */
148 >    public PriorityQueue(Comparator<? super E> comparator) {
149 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
150 >    }
151 >
152 >    /**
153 >     * Creates a {@code PriorityQueue} with the specified initial capacity
154       * that orders its elements according to the specified comparator.
155       *
156 <     * @param initialCapacity the initial capacity for this priority queue.
157 <     * @param comparator the comparator used to order this priority queue.
158 <     * If <tt>null</tt> then the order depends on the elements' natural
159 <     * ordering.
160 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
161 <     * than 1
156 >     * @param  initialCapacity the initial capacity for this priority queue
157 >     * @param  comparator the comparator that will be used to order this
158 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
159 >     *         natural ordering} of the elements will be used.
160 >     * @throws IllegalArgumentException if {@code initialCapacity} is
161 >     *         less than 1
162       */
163 <    public PriorityQueue(int initialCapacity,
163 >    public PriorityQueue(int initialCapacity,
164                           Comparator<? super E> comparator) {
165 +        // Note: This restriction of at least one is not actually needed,
166 +        // but continues for 1.5 compatibility
167          if (initialCapacity < 1)
168              throw new IllegalArgumentException();
169 <        this.queue = new Object[initialCapacity + 1];
169 >        this.queue = new Object[initialCapacity];
170          this.comparator = comparator;
171      }
172  
173      /**
174 <     * Common code to initialize underlying queue array across
175 <     * constructors below.
174 >     * Creates a {@code PriorityQueue} containing the elements in the
175 >     * specified collection.  If the specified collection is an instance of
176 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
177 >     * priority queue will be ordered according to the same ordering.
178 >     * Otherwise, this priority queue will be ordered according to the
179 >     * {@linkplain Comparable natural ordering} of its elements.
180 >     *
181 >     * @param  c the collection whose elements are to be placed
182 >     *         into this priority queue
183 >     * @throws ClassCastException if elements of the specified collection
184 >     *         cannot be compared to one another according to the priority
185 >     *         queue's ordering
186 >     * @throws NullPointerException if the specified collection or any
187 >     *         of its elements are null
188       */
189 <    private void initializeArray(Collection<? extends E> c) {
190 <        int sz = c.size();
191 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
192 <                                            Integer.MAX_VALUE - 1);
193 <        if (initialCapacity < 1)
194 <            initialCapacity = 1;
195 <
196 <        this.queue = new Object[initialCapacity + 1];
189 >    @SuppressWarnings("unchecked")
190 >    public PriorityQueue(Collection<? extends E> c) {
191 >        if (c instanceof SortedSet<?>) {
192 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
193 >            this.comparator = (Comparator<? super E>) ss.comparator();
194 >            initElementsFromCollection(ss);
195 >        }
196 >        else if (c instanceof PriorityQueue<?>) {
197 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) pq.comparator();
199 >            initFromPriorityQueue(pq);
200 >        }
201 >        else {
202 >            this.comparator = null;
203 >            initFromCollection(c);
204 >        }
205      }
206  
207      /**
208 <     * Initially fill elements of the queue array under the
209 <     * knowledge that it is sorted or is another PQ, in which
210 <     * case we can just place the elements in the order presented.
208 >     * Creates a {@code PriorityQueue} containing the elements in the
209 >     * specified priority queue.  This priority queue will be
210 >     * ordered according to the same ordering as the given priority
211 >     * queue.
212 >     *
213 >     * @param  c the priority queue whose elements are to be placed
214 >     *         into this priority queue
215 >     * @throws ClassCastException if elements of {@code c} cannot be
216 >     *         compared to one another according to {@code c}'s
217 >     *         ordering
218 >     * @throws NullPointerException if the specified priority queue or any
219 >     *         of its elements are null
220       */
221 <    private void fillFromSorted(Collection<? extends E> c) {
222 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
223 <            queue[++size] = i.next();
221 >    @SuppressWarnings("unchecked")
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226  
227      /**
228 <     * Initially fill elements of the queue array that is not to our knowledge
229 <     * sorted, so we must rearrange the elements to guarantee the heap
230 <     * invariant.
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239       */
240 <    private void fillFromUnsorted(Collection<? extends E> c) {
241 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
242 <            queue[++size] = i.next();
243 <        heapify();
240 >    @SuppressWarnings("unchecked")
241 >    public PriorityQueue(SortedSet<? extends E> c) {
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244      }
245  
246 <    /**
247 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
248 <     * specified collection.  The priority queue has an initial
249 <     * capacity of 110% of the size of the specified collection or 1
172 <     * if the collection is empty.  If the specified collection is an
173 <     * instance of a {@link java.util.SortedSet} or is another
174 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
175 <     * according to the same comparator, or according to its elements'
176 <     * natural order if the collection is sorted according to its
177 <     * elements' natural order.  Otherwise, the priority queue is
178 <     * ordered according to its elements' natural order.
179 <     *
180 <     * @param c the collection whose elements are to be placed
181 <     *        into this priority queue.
182 <     * @throws ClassCastException if elements of the specified collection
183 <     *         cannot be compared to one another according to the priority
184 <     *         queue's ordering.
185 <     * @throws NullPointerException if <tt>c</tt> or any element within it
186 <     * is <tt>null</tt>
187 <     */
188 <    public PriorityQueue(Collection<? extends E> c) {
189 <        initializeArray(c);
190 <        if (c instanceof SortedSet) {
191 <            // @fixme double-cast workaround for compiler
192 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
193 <            comparator = (Comparator<? super E>)s.comparator();
194 <            fillFromSorted(s);
195 <        } else if (c instanceof PriorityQueue) {
196 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197 <            comparator = (Comparator<? super E>)s.comparator();
198 <            fillFromSorted(s);
246 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
247 >        if (c.getClass() == PriorityQueue.class) {
248 >            this.queue = c.toArray();
249 >            this.size = c.size();
250          } else {
251 <            comparator = null;
201 <            fillFromUnsorted(c);
251 >            initFromCollection(c);
252          }
253      }
254  
255 +    private void initElementsFromCollection(Collection<? extends E> c) {
256 +        Object[] a = c.toArray();
257 +        // If c.toArray incorrectly doesn't return Object[], copy it.
258 +        if (a.getClass() != Object[].class)
259 +            a = Arrays.copyOf(a, a.length, Object[].class);
260 +        int len = a.length;
261 +        if (len == 1 || this.comparator != null)
262 +            for (Object e : a)
263 +                if (e == null)
264 +                    throw new NullPointerException();
265 +        this.queue = a;
266 +        this.size = a.length;
267 +    }
268 +
269      /**
270 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
207 <     * specified collection.  The priority queue has an initial
208 <     * capacity of 110% of the size of the specified collection or 1
209 <     * if the collection is empty.  This priority queue will be sorted
210 <     * according to the same comparator as the given collection, or
211 <     * according to its elements' natural order if the collection is
212 <     * sorted according to its elements' natural order.
270 >     * Initializes queue array with elements from the given Collection.
271       *
272 <     * @param c the collection whose elements are to be placed
215 <     *        into this priority queue.
216 <     * @throws ClassCastException if elements of the specified collection
217 <     *         cannot be compared to one another according to the priority
218 <     *         queue's ordering.
219 <     * @throws NullPointerException if <tt>c</tt> or any element within it
220 <     * is <tt>null</tt>
272 >     * @param c the collection
273       */
274 <    public PriorityQueue(PriorityQueue<? extends E> c) {
275 <        initializeArray(c);
276 <        comparator = (Comparator<? super E>)c.comparator();
225 <        fillFromSorted(c);
274 >    private void initFromCollection(Collection<? extends E> c) {
275 >        initElementsFromCollection(c);
276 >        heapify();
277      }
278  
279      /**
280 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
281 <     * specified collection.  The priority queue has an initial
282 <     * capacity of 110% of the size of the specified collection or 1
283 <     * if the collection is empty.  This priority queue will be sorted
233 <     * according to the same comparator as the given collection, or
234 <     * according to its elements' natural order if the collection is
235 <     * sorted according to its elements' natural order.
236 <     *
237 <     * @param c the collection whose elements are to be placed
238 <     *        into this priority queue.
239 <     * @throws ClassCastException if elements of the specified collection
240 <     *         cannot be compared to one another according to the priority
241 <     *         queue's ordering.
242 <     * @throws NullPointerException if <tt>c</tt> or any element within it
243 <     * is <tt>null</tt>
280 >     * The maximum size of array to allocate.
281 >     * Some VMs reserve some header words in an array.
282 >     * Attempts to allocate larger arrays may result in
283 >     * OutOfMemoryError: Requested array size exceeds VM limit
284       */
285 <    public PriorityQueue(SortedSet<? extends E> c) {
246 <        initializeArray(c);
247 <        comparator = (Comparator<? super E>)c.comparator();
248 <        fillFromSorted(c);
249 <    }
285 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
286  
287      /**
288 <     * Resize array, if necessary, to be able to hold given index
288 >     * Increases the capacity of the array.
289 >     *
290 >     * @param minCapacity the desired minimum capacity
291       */
292 <    private void grow(int index) {
293 <        int newlen = queue.length;
294 <        if (index < newlen) // don't need to grow
295 <            return;
296 <        if (index == Integer.MAX_VALUE)
292 >    private void grow(int minCapacity) {
293 >        int oldCapacity = queue.length;
294 >        // Double size if small; else grow by 50%
295 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
296 >                                         (oldCapacity + 2) :
297 >                                         (oldCapacity >> 1));
298 >        // overflow-conscious code
299 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
300 >            newCapacity = hugeCapacity(minCapacity);
301 >        queue = Arrays.copyOf(queue, newCapacity);
302 >    }
303 >
304 >    private static int hugeCapacity(int minCapacity) {
305 >        if (minCapacity < 0) // overflow
306              throw new OutOfMemoryError();
307 <        while (newlen <= index) {
308 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
309 <                newlen = Integer.MAX_VALUE;
263 <            else
264 <                newlen <<= 2;
265 <        }
266 <        Object[] newQueue = new Object[newlen];
267 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
268 <        queue = newQueue;
307 >        return (minCapacity > MAX_ARRAY_SIZE) ?
308 >            Integer.MAX_VALUE :
309 >            MAX_ARRAY_SIZE;
310      }
270            
311  
312 <    // Queue Methods
312 >    /**
313 >     * Inserts the specified element into this priority queue.
314 >     *
315 >     * @return {@code true} (as specified by {@link Collection#add})
316 >     * @throws ClassCastException if the specified element cannot be
317 >     *         compared with elements currently in this priority queue
318 >     *         according to the priority queue's ordering
319 >     * @throws NullPointerException if the specified element is null
320 >     */
321 >    public boolean add(E e) {
322 >        return offer(e);
323 >    }
324  
325      /**
326 <     * Add the specified element to this priority queue.
326 >     * Inserts the specified element into this priority queue.
327       *
328 <     * @return <tt>true</tt>
329 <     * @throws ClassCastException if the specified element cannot be compared
330 <     * with elements currently in the priority queue according
331 <     * to the priority queue's ordering.
332 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
328 >     * @return {@code true} (as specified by {@link Queue#offer})
329 >     * @throws ClassCastException if the specified element cannot be
330 >     *         compared with elements currently in this priority queue
331 >     *         according to the priority queue's ordering
332 >     * @throws NullPointerException if the specified element is null
333       */
334 <    public boolean offer(E o) {
335 <        if (o == null)
334 >    public boolean offer(E e) {
335 >        if (e == null)
336              throw new NullPointerException();
337          modCount++;
338 <        ++size;
339 <
340 <        // Grow backing store if necessary
341 <        if (size >= queue.length)
342 <            grow(size);
292 <
293 <        queue[size] = o;
294 <        fixUp(size);
338 >        int i = size;
339 >        if (i >= queue.length)
340 >            grow(i + 1);
341 >        siftUp(i, e);
342 >        size = i + 1;
343          return true;
344      }
345  
346 <    public E poll() {
299 <        if (size == 0)
300 <            return null;
301 <        return remove();
302 <    }
303 <
346 >    @SuppressWarnings("unchecked")
347      public E peek() {
348 <        return (E) queue[1];
348 >        return (size == 0) ? null : (E) queue[0];
349      }
350  
351 <    // Collection Methods - the first two override to update docs
351 >    private int indexOf(Object o) {
352 >        if (o != null) {
353 >            for (int i = 0; i < size; i++)
354 >                if (o.equals(queue[i]))
355 >                    return i;
356 >        }
357 >        return -1;
358 >    }
359  
360      /**
361 <     * Adds the specified element to this queue.
362 <     * @return <tt>true</tt> (as per the general contract of
363 <     * <tt>Collection.add</tt>).
361 >     * Removes a single instance of the specified element from this queue,
362 >     * if it is present.  More formally, removes an element {@code e} such
363 >     * that {@code o.equals(e)}, if this queue contains one or more such
364 >     * elements.  Returns {@code true} if and only if this queue contained
365 >     * the specified element (or equivalently, if this queue changed as a
366 >     * result of the call).
367       *
368 <     * @throws NullPointerException {@inheritDoc}
369 <     * @throws ClassCastException if the specified element cannot be compared
317 <     * with elements currently in the priority queue according
318 <     * to the priority queue's ordering.
368 >     * @param o element to be removed from this queue, if present
369 >     * @return {@code true} if this queue changed as a result of the call
370       */
371 <    public boolean add(E o) {
372 <        return super.add(o);
371 >    public boolean remove(Object o) {
372 >        int i = indexOf(o);
373 >        if (i == -1)
374 >            return false;
375 >        else {
376 >            removeAt(i);
377 >            return true;
378 >        }
379      }
380  
324  
381      /**
382 <     * Adds all of the elements in the specified collection to this queue.
383 <     * The behavior of this operation is undefined if
384 <     * the specified collection is modified while the operation is in
385 <     * progress.  (This implies that the behavior of this call is undefined if
386 <     * the specified collection is this queue, and this queue is nonempty.)
331 <     * <p>
332 <     * This implementation iterates over the specified collection, and adds
333 <     * each object returned by the iterator to this collection, in turn.
334 <     * @throws NullPointerException {@inheritDoc}
335 <     * @throws ClassCastException if any element cannot be compared
336 <     * with elements currently in the priority queue according
337 <     * to the priority queue's ordering.
382 >     * Version of remove using reference equality, not equals.
383 >     * Needed by iterator.remove.
384 >     *
385 >     * @param o element to be removed from this queue, if present
386 >     * @return {@code true} if removed
387       */
388 <    public boolean addAll(Collection<? extends E> c) {
389 <        return super.addAll(c);
388 >    boolean removeEq(Object o) {
389 >        for (int i = 0; i < size; i++) {
390 >            if (o == queue[i]) {
391 >                removeAt(i);
392 >                return true;
393 >            }
394 >        }
395 >        return false;
396      }
397  
398 +    /**
399 +     * Returns {@code true} if this queue contains the specified element.
400 +     * More formally, returns {@code true} if and only if this queue contains
401 +     * at least one element {@code e} such that {@code o.equals(e)}.
402 +     *
403 +     * @param o object to be checked for containment in this queue
404 +     * @return {@code true} if this queue contains the specified element
405 +     */
406 +    public boolean contains(Object o) {
407 +        return indexOf(o) >= 0;
408 +    }
409  
410      /**
411 <     * Removes a single instance of the specified element from this
412 <     * queue, if it is present.  More formally,
413 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
414 <     * o.equals(e))</tt>, if the queue contains one or more such
415 <     * elements.  Returns <tt>true</tt> if the queue contained the
416 <     * specified element (or equivalently, if the queue changed as a
351 <     * result of the call).
411 >     * Returns an array containing all of the elements in this queue.
412 >     * The elements are in no particular order.
413 >     *
414 >     * <p>The returned array will be "safe" in that no references to it are
415 >     * maintained by this queue.  (In other words, this method must allocate
416 >     * a new array).  The caller is thus free to modify the returned array.
417       *
418 <     * <p>This implementation iterates over the queue looking for the
419 <     * specified element.  If it finds the element, it removes the element
355 <     * from the queue using the iterator's remove method.<p>
418 >     * <p>This method acts as bridge between array-based and collection-based
419 >     * APIs.
420       *
421 +     * @return an array containing all of the elements in this queue
422       */
423 <    public boolean remove(Object o) {
424 <        if (o == null)
425 <            return false;
423 >    public Object[] toArray() {
424 >        return Arrays.copyOf(queue, size);
425 >    }
426  
427 <        if (comparator == null) {
428 <            for (int i = 1; i <= size; i++) {
429 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
430 <                    removeAt(i);
431 <                    return true;
432 <                }
433 <            }
434 <        } else {
435 <            for (int i = 1; i <= size; i++) {
436 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
437 <                    removeAt(i);
438 <                    return true;
439 <                }
440 <            }
441 <        }
442 <        return false;
427 >    /**
428 >     * Returns an array containing all of the elements in this queue; the
429 >     * runtime type of the returned array is that of the specified array.
430 >     * The returned array elements are in no particular order.
431 >     * If the queue fits in the specified array, it is returned therein.
432 >     * Otherwise, a new array is allocated with the runtime type of the
433 >     * specified array and the size of this queue.
434 >     *
435 >     * <p>If the queue fits in the specified array with room to spare
436 >     * (i.e., the array has more elements than the queue), the element in
437 >     * the array immediately following the end of the collection is set to
438 >     * {@code null}.
439 >     *
440 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 >     * array-based and collection-based APIs.  Further, this method allows
442 >     * precise control over the runtime type of the output array, and may,
443 >     * under certain circumstances, be used to save allocation costs.
444 >     *
445 >     * <p>Suppose {@code x} is a queue known to contain only strings.
446 >     * The following code can be used to dump the queue into a newly
447 >     * allocated array of {@code String}:
448 >     *
449 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 >     *
451 >     * Note that {@code toArray(new Object[0])} is identical in function to
452 >     * {@code toArray()}.
453 >     *
454 >     * @param a the array into which the elements of the queue are to
455 >     *          be stored, if it is big enough; otherwise, a new array of the
456 >     *          same runtime type is allocated for this purpose.
457 >     * @return an array containing all of the elements in this queue
458 >     * @throws ArrayStoreException if the runtime type of the specified array
459 >     *         is not a supertype of the runtime type of every element in
460 >     *         this queue
461 >     * @throws NullPointerException if the specified array is null
462 >     */
463 >    @SuppressWarnings("unchecked")
464 >    public <T> T[] toArray(T[] a) {
465 >        final int size = this.size;
466 >        if (a.length < size)
467 >            // Make a new array of a's runtime type, but my contents:
468 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 >        System.arraycopy(queue, 0, a, 0, size);
470 >        if (a.length > size)
471 >            a[size] = null;
472 >        return a;
473      }
474  
475      /**
476       * Returns an iterator over the elements in this queue. The iterator
477       * does not return the elements in any particular order.
478       *
479 <     * @return an iterator over the elements in this queue.
479 >     * @return an iterator over the elements in this queue
480       */
481      public Iterator<E> iterator() {
482          return new Itr();
483      }
484  
485 <    private class Itr implements Iterator<E> {
391 <
485 >    private final class Itr implements Iterator<E> {
486          /**
487           * Index (into queue array) of element to be returned by
488           * subsequent call to next.
489           */
490 <        private int cursor = 1;
490 >        private int cursor;
491  
492          /**
493           * Index of element returned by most recent call to next,
494           * unless that element came from the forgetMeNot list.
495 <         * Reset to 0 if element is deleted by a call to remove.
495 >         * Set to -1 if element is deleted by a call to remove.
496           */
497 <        private int lastRet = 0;
497 >        private int lastRet = -1;
498  
499          /**
500 <         * The modCount value that the iterator believes that the backing
407 <         * List should have.  If this expectation is violated, the iterator
408 <         * has detected concurrent modification.
409 <         */
410 <        private int expectedModCount = modCount;
411 <
412 <        /**
413 <         * A list of elements that were moved from the unvisited portion of
500 >         * A queue of elements that were moved from the unvisited portion of
501           * the heap into the visited portion as a result of "unlucky" element
502           * removals during the iteration.  (Unlucky element removals are those
503 <         * that require a fixup instead of a fixdown.)  We must visit all of
503 >         * that require a siftup instead of a siftdown.)  We must visit all of
504           * the elements in this list to complete the iteration.  We do this
505           * after we've completed the "normal" iteration.
506           *
507           * We expect that most iterations, even those involving removals,
508 <         * will not use need to store elements in this field.
508 >         * will not need to store elements in this field.
509           */
510 <        private ArrayList<E> forgetMeNot = null;
510 >        private ArrayDeque<E> forgetMeNot;
511  
512          /**
513           * Element returned by the most recent call to next iff that
514           * element was drawn from the forgetMeNot list.
515           */
516 <        private Object lastRetElt = null;
516 >        private E lastRetElt;
517 >
518 >        /**
519 >         * The modCount value that the iterator believes that the backing
520 >         * Queue should have.  If this expectation is violated, the iterator
521 >         * has detected concurrent modification.
522 >         */
523 >        private int expectedModCount = modCount;
524  
525          public boolean hasNext() {
526 <            return cursor <= size || forgetMeNot != null;
526 >            return cursor < size ||
527 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
528          }
529  
530 +        @SuppressWarnings("unchecked")
531          public E next() {
532 <            checkForComodification();
533 <            E result;
534 <            if (cursor <= size) {
535 <                result = (E) queue[cursor];
536 <                lastRet = cursor++;
537 <            }
538 <            else if (forgetMeNot == null)
539 <                throw new NoSuchElementException();
540 <            else {
445 <                int remaining = forgetMeNot.size();
446 <                result = forgetMeNot.remove(remaining - 1);
447 <                if (remaining == 1)
448 <                    forgetMeNot = null;
449 <                lastRet = 0;
450 <                lastRetElt = result;
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (cursor < size)
535 >                return (E) queue[lastRet = cursor++];
536 >            if (forgetMeNot != null) {
537 >                lastRet = -1;
538 >                lastRetElt = forgetMeNot.poll();
539 >                if (lastRetElt != null)
540 >                    return lastRetElt;
541              }
542 <            return result;
542 >            throw new NoSuchElementException();
543          }
544  
545          public void remove() {
546 <            checkForComodification();
547 <
548 <            if (lastRet != 0) {
546 >            if (expectedModCount != modCount)
547 >                throw new ConcurrentModificationException();
548 >            if (lastRet != -1) {
549                  E moved = PriorityQueue.this.removeAt(lastRet);
550 <                lastRet = 0;
551 <                if (moved == null) {
550 >                lastRet = -1;
551 >                if (moved == null)
552                      cursor--;
553 <                } else {
553 >                else {
554                      if (forgetMeNot == null)
555 <                        forgetMeNot = new ArrayList();
555 >                        forgetMeNot = new ArrayDeque<>();
556                      forgetMeNot.add(moved);
557                  }
558              } else if (lastRetElt != null) {
559 <                PriorityQueue.this.remove(lastRetElt);
559 >                PriorityQueue.this.removeEq(lastRetElt);
560                  lastRetElt = null;
561              } else {
562                  throw new IllegalStateException();
563              }
474
564              expectedModCount = modCount;
565          }
477
478        final void checkForComodification() {
479            if (modCount != expectedModCount)
480                throw new ConcurrentModificationException();
481        }
566      }
567  
568      public int size() {
# Line 486 | Line 570 | public class PriorityQueue<E> extends Ab
570      }
571  
572      /**
573 <     * Remove all elements from the priority queue.
573 >     * Removes all of the elements from this priority queue.
574 >     * The queue will be empty after this call returns.
575       */
576      public void clear() {
577          modCount++;
578 <
494 <        // Null out element references to prevent memory leak
495 <        for (int i=1; i<=size; i++)
578 >        for (int i = 0; i < size; i++)
579              queue[i] = null;
497
580          size = 0;
581      }
582  
583 <    /**
584 <     * Removes and returns the first element from queue.
503 <     */
504 <    public E remove() {
583 >    @SuppressWarnings("unchecked")
584 >    public E poll() {
585          if (size == 0)
586 <            throw new NoSuchElementException();
586 >            return null;
587 >        int s = --size;
588          modCount++;
589 <
590 <        E result = (E) queue[1];
591 <        queue[1] = queue[size];
592 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
593 <        if (size > 1)
513 <            fixDown(1);
514 <
589 >        E result = (E) queue[0];
590 >        E x = (E) queue[s];
591 >        queue[s] = null;
592 >        if (s != 0)
593 >            siftDown(0, x);
594          return result;
595      }
596  
597      /**
598 <     * Removes and returns the ith element from queue.  (Recall that queue
520 <     * is one-based, so 1 <= i <= size.)
598 >     * Removes the ith element from queue.
599       *
600 <     * Normally this method leaves the elements at positions from 1 up to i-1,
601 <     * inclusive, untouched.  Under these circumstances, it returns null.
602 <     * Occasionally, in order to maintain the heap invariant, it must move
603 <     * the last element of the list to some index in the range [2, i-1],
604 <     * and move the element previously at position (i/2) to position i.
605 <     * Under these circumstances, this method returns the element that was
606 <     * previously at the end of the list and is now at some position between
607 <     * 2 and i-1 inclusive.
608 <     */
609 <    private E removeAt(int i) {
610 <        assert i > 0 && i <= size;
600 >     * Normally this method leaves the elements at up to i-1,
601 >     * inclusive, untouched.  Under these circumstances, it returns
602 >     * null.  Occasionally, in order to maintain the heap invariant,
603 >     * it must swap a later element of the list with one earlier than
604 >     * i.  Under these circumstances, this method returns the element
605 >     * that was previously at the end of the list and is now at some
606 >     * position before i. This fact is used by iterator.remove so as to
607 >     * avoid missing traversing elements.
608 >     */
609 >    @SuppressWarnings("unchecked")
610 >    E removeAt(int i) {
611 >        // assert i >= 0 && i < size;
612          modCount++;
613 <
614 <        E moved = (E) queue[size];
615 <        queue[i] = moved;
616 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
617 <        if (i <= size) {
618 <            fixDown(i);
613 >        int s = --size;
614 >        if (s == i) // removed last element
615 >            queue[i] = null;
616 >        else {
617 >            E moved = (E) queue[s];
618 >            queue[s] = null;
619 >            siftDown(i, moved);
620              if (queue[i] == moved) {
621 <                fixUp(i);
621 >                siftUp(i, moved);
622                  if (queue[i] != moved)
623                      return moved;
624              }
# Line 547 | Line 627 | public class PriorityQueue<E> extends Ab
627      }
628  
629      /**
630 <     * Establishes the heap invariant (described above) assuming the heap
631 <     * satisfies the invariant except possibly for the leaf-node indexed by k
632 <     * (which may have a nextExecutionTime less than its parent's).
633 <     *
634 <     * This method functions by "promoting" queue[k] up the hierarchy
635 <     * (by swapping it with its parent) repeatedly until queue[k]
636 <     * is greater than or equal to its parent.
637 <     */
638 <    private void fixUp(int k) {
639 <        if (comparator == null) {
640 <            while (k > 1) {
641 <                int j = k >> 1;
642 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
643 <                    break;
644 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
645 <                k = j;
646 <            }
647 <        } else {
648 <            while (k > 1) {
649 <                int j = k >>> 1;
650 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
651 <                    break;
652 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
653 <                k = j;
654 <            }
630 >     * Inserts item x at position k, maintaining heap invariant by
631 >     * promoting x up the tree until it is greater than or equal to
632 >     * its parent, or is the root.
633 >     *
634 >     * To simplify and speed up coercions and comparisons. the
635 >     * Comparable and Comparator versions are separated into different
636 >     * methods that are otherwise identical. (Similarly for siftDown.)
637 >     *
638 >     * @param k the position to fill
639 >     * @param x the item to insert
640 >     */
641 >    private void siftUp(int k, E x) {
642 >        if (comparator != null)
643 >            siftUpUsingComparator(k, x);
644 >        else
645 >            siftUpComparable(k, x);
646 >    }
647 >
648 >    @SuppressWarnings("unchecked")
649 >    private void siftUpComparable(int k, E x) {
650 >        Comparable<? super E> key = (Comparable<? super E>) x;
651 >        while (k > 0) {
652 >            int parent = (k - 1) >>> 1;
653 >            Object e = queue[parent];
654 >            if (key.compareTo((E) e) >= 0)
655 >                break;
656 >            queue[k] = e;
657 >            k = parent;
658          }
659 +        queue[k] = key;
660 +    }
661 +
662 +    @SuppressWarnings("unchecked")
663 +    private void siftUpUsingComparator(int k, E x) {
664 +        while (k > 0) {
665 +            int parent = (k - 1) >>> 1;
666 +            Object e = queue[parent];
667 +            if (comparator.compare(x, (E) e) >= 0)
668 +                break;
669 +            queue[k] = e;
670 +            k = parent;
671 +        }
672 +        queue[k] = x;
673      }
674  
675      /**
676 <     * Establishes the heap invariant (described above) in the subtree
677 <     * rooted at k, which is assumed to satisfy the heap invariant except
678 <     * possibly for node k itself (which may be greater than its children).
679 <     *
680 <     * This method functions by "demoting" queue[k] down the hierarchy
681 <     * (by swapping it with its smaller child) repeatedly until queue[k]
682 <     * is less than or equal to its children.
683 <     */
684 <    private void fixDown(int k) {
685 <        int j;
686 <        if (comparator == null) {
687 <            while ((j = k << 1) <= size && (j > 0)) {
688 <                if (j<size &&
689 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
690 <                    j++; // j indexes smallest kid
691 <
692 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
693 <                    break;
694 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
695 <                k = j;
696 <            }
697 <        } else {
698 <            while ((j = k << 1) <= size && (j > 0)) {
699 <                if (j<size &&
700 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
701 <                    j++; // j indexes smallest kid
702 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
703 <                    break;
704 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
608 <                k = j;
609 <            }
676 >     * Inserts item x at position k, maintaining heap invariant by
677 >     * demoting x down the tree repeatedly until it is less than or
678 >     * equal to its children or is a leaf.
679 >     *
680 >     * @param k the position to fill
681 >     * @param x the item to insert
682 >     */
683 >    private void siftDown(int k, E x) {
684 >        if (comparator != null)
685 >            siftDownUsingComparator(k, x);
686 >        else
687 >            siftDownComparable(k, x);
688 >    }
689 >
690 >    @SuppressWarnings("unchecked")
691 >    private void siftDownComparable(int k, E x) {
692 >        Comparable<? super E> key = (Comparable<? super E>)x;
693 >        int half = size >>> 1;        // loop while a non-leaf
694 >        while (k < half) {
695 >            int child = (k << 1) + 1; // assume left child is least
696 >            Object c = queue[child];
697 >            int right = child + 1;
698 >            if (right < size &&
699 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
700 >                c = queue[child = right];
701 >            if (key.compareTo((E) c) <= 0)
702 >                break;
703 >            queue[k] = c;
704 >            k = child;
705          }
706 +        queue[k] = key;
707 +    }
708 +
709 +    @SuppressWarnings("unchecked")
710 +    private void siftDownUsingComparator(int k, E x) {
711 +        int half = size >>> 1;
712 +        while (k < half) {
713 +            int child = (k << 1) + 1;
714 +            Object c = queue[child];
715 +            int right = child + 1;
716 +            if (right < size &&
717 +                comparator.compare((E) c, (E) queue[right]) > 0)
718 +                c = queue[child = right];
719 +            if (comparator.compare(x, (E) c) <= 0)
720 +                break;
721 +            queue[k] = c;
722 +            k = child;
723 +        }
724 +        queue[k] = x;
725      }
726  
727      /**
728       * Establishes the heap invariant (described above) in the entire tree,
729       * assuming nothing about the order of the elements prior to the call.
730 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
731       */
732 +    @SuppressWarnings("unchecked")
733      private void heapify() {
734 <        for (int i = size/2; i >= 1; i--)
735 <            fixDown(i);
734 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
735 >            siftDown(i, (E) queue[i]);
736      }
737  
738      /**
739 <     * Returns the comparator used to order this collection, or <tt>null</tt>
740 <     * if this collection is sorted according to its elements natural ordering
741 <     * (using <tt>Comparable</tt>).
739 >     * Returns the comparator used to order the elements in this
740 >     * queue, or {@code null} if this queue is sorted according to
741 >     * the {@linkplain Comparable natural ordering} of its elements.
742       *
743 <     * @return the comparator used to order this collection, or <tt>null</tt>
744 <     * if this collection is sorted according to its elements natural ordering.
743 >     * @return the comparator used to order this queue, or
744 >     *         {@code null} if this queue is sorted according to the
745 >     *         natural ordering of its elements
746       */
747      public Comparator<? super E> comparator() {
748          return comparator;
749      }
750  
751      /**
752 <     * Save the state of the instance to a stream (that
636 <     * is, serialize it).
752 >     * Saves this queue to a stream (that is, serializes it).
753       *
638     * @serialData The length of the array backing the instance is
639     * emitted (int), followed by all of its elements (each an
640     * <tt>Object</tt>) in the proper order.
754       * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756 +     * @serialData The length of the array backing the instance is
757 +     *             emitted (int), followed by all of its elements
758 +     *             (each an {@code Object}) in the proper order.
759       */
760      private void writeObject(java.io.ObjectOutputStream s)
761 <        throws java.io.IOException{
761 >        throws java.io.IOException {
762          // Write out element count, and any hidden stuff
763          s.defaultWriteObject();
764  
765 <        // Write out array length
766 <        s.writeInt(queue.length);
765 >        // Write out array length, for compatibility with 1.5 version
766 >        s.writeInt(Math.max(2, size + 1));
767  
768 <        // Write out all elements in the proper order.
769 <        for (int i=0; i<size; i++)
768 >        // Write out all elements in the "proper order".
769 >        for (int i = 0; i < size; i++)
770              s.writeObject(queue[i]);
771      }
772  
773      /**
774 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
775 <     * deserialize it).
774 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
775 >     * (that is, deserializes it).
776 >     *
777       * @param s the stream
778 +     * @throws ClassNotFoundException if the class of a serialized object
779 +     *         could not be found
780 +     * @throws java.io.IOException if an I/O error occurs
781       */
782      private void readObject(java.io.ObjectInputStream s)
783          throws java.io.IOException, ClassNotFoundException {
784          // Read in size, and any hidden stuff
785          s.defaultReadObject();
786  
787 <        // Read in array length and allocate array
788 <        int arrayLength = s.readInt();
789 <        queue = new Object[arrayLength];
787 >        // Read in (and discard) array length
788 >        s.readInt();
789 >
790 >        queue = new Object[size];
791  
792 <        // Read in all elements in the proper order.
793 <        for (int i=0; i<size; i++)
792 >        // Read in all elements.
793 >        for (int i = 0; i < size; i++)
794              queue[i] = s.readObject();
795 +
796 +        // Elements are guaranteed to be in "proper order", but the
797 +        // spec has never explained what that might be.
798 +        heapify();
799      }
800  
801 +    /**
802 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 +     * queue. The spliterator does not traverse elements in any particular order
805 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 +     *
807 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 +     * Overriding implementations should document the reporting of additional
810 +     * characteristic values.
811 +     *
812 +     * @return a {@code Spliterator} over the elements in this queue
813 +     * @since 1.8
814 +     */
815 +    public final Spliterator<E> spliterator() {
816 +        return new PriorityQueueSpliterator<>(this, 0, -1, 0);
817 +    }
818 +
819 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
820 +        /*
821 +         * This is very similar to ArrayList Spliterator, except for
822 +         * extra null checks.
823 +         */
824 +        private final PriorityQueue<E> pq;
825 +        private int index;            // current index, modified on advance/split
826 +        private int fence;            // -1 until first use
827 +        private int expectedModCount; // initialized when fence set
828 +
829 +        /** Creates new spliterator covering the given range. */
830 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
831 +                                 int expectedModCount) {
832 +            this.pq = pq;
833 +            this.index = origin;
834 +            this.fence = fence;
835 +            this.expectedModCount = expectedModCount;
836 +        }
837 +
838 +        private int getFence() { // initialize fence to size on first use
839 +            int hi;
840 +            if ((hi = fence) < 0) {
841 +                expectedModCount = pq.modCount;
842 +                hi = fence = pq.size;
843 +            }
844 +            return hi;
845 +        }
846 +
847 +        public PriorityQueueSpliterator<E> trySplit() {
848 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
849 +            return (lo >= mid) ? null :
850 +                new PriorityQueueSpliterator<>(pq, lo, index = mid,
851 +                                               expectedModCount);
852 +        }
853 +
854 +        @SuppressWarnings("unchecked")
855 +        public void forEachRemaining(Consumer<? super E> action) {
856 +            int i, hi, mc; // hoist accesses and checks from loop
857 +            PriorityQueue<E> q; Object[] a;
858 +            if (action == null)
859 +                throw new NullPointerException();
860 +            if ((q = pq) != null && (a = q.queue) != null) {
861 +                if ((hi = fence) < 0) {
862 +                    mc = q.modCount;
863 +                    hi = q.size;
864 +                }
865 +                else
866 +                    mc = expectedModCount;
867 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
868 +                    for (E e;; ++i) {
869 +                        if (i < hi) {
870 +                            if ((e = (E) a[i]) == null) // must be CME
871 +                                break;
872 +                            action.accept(e);
873 +                        }
874 +                        else if (q.modCount != mc)
875 +                            break;
876 +                        else
877 +                            return;
878 +                    }
879 +                }
880 +            }
881 +            throw new ConcurrentModificationException();
882 +        }
883 +
884 +        public boolean tryAdvance(Consumer<? super E> action) {
885 +            if (action == null)
886 +                throw new NullPointerException();
887 +            int hi = getFence(), lo = index;
888 +            if (lo >= 0 && lo < hi) {
889 +                index = lo + 1;
890 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
891 +                if (e == null)
892 +                    throw new ConcurrentModificationException();
893 +                action.accept(e);
894 +                if (pq.modCount != expectedModCount)
895 +                    throw new ConcurrentModificationException();
896 +                return true;
897 +            }
898 +            return false;
899 +        }
900 +
901 +        public long estimateSize() {
902 +            return (long) (getFence() - index);
903 +        }
904 +
905 +        public int characteristics() {
906 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
907 +        }
908 +    }
909   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines