ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.25 by tim, Wed Aug 6 18:42:49 2003 UTC vs.
Revision 1.36 by dl, Sat Aug 30 11:40:04 2003 UTC

# Line 1 | Line 1
1   package java.util;
2  
3   /**
4 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
5 < * This queue orders
6 < * elements according to an order specified at construction time, which is
7 < * specified in the same manner as {@link java.util.TreeSet} and
8 < * {@link java.util.TreeMap}: elements are ordered
9 < * either according to their <i>natural order</i> (see {@link Comparable}), or
10 < * according to a {@link java.util.Comparator}, depending on which
11 < * constructor is used.
4 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 > * This queue orders elements according to an order specified at construction
6 > * time, which is specified in the same manner as {@link java.util.TreeSet}
7 > * and {@link java.util.TreeMap}: elements are ordered either according to
8 > * their <i>natural order</i> (see {@link Comparable}), or according to a
9 > * {@link java.util.Comparator}, depending on which constructor is used.
10   * <p>The <em>head</em> of this queue is the <em>least</em> element with
11 < * respect to the specified ordering.
12 < * If multiple elements are tied for least value, the
15 < * head is one of those elements. A priority queue does not permit
11 > * respect to the specified ordering.  If multiple elements are tied for least
12 > * value, the head is one of those elements. A priority queue does not permit
13   * <tt>null</tt> elements.
14   *
15   * <p>The {@link #remove()} and {@link #poll()} methods remove and
# Line 28 | Line 25
25   * elements are added to a priority queue, its capacity grows
26   * automatically.  The details of the growth policy are not specified.
27   *
28 + * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
29 + * guaranteed to traverse the elements of the PriorityQueue in any
30 + * particular order. If you need ordered traversal, consider using
31 + * <tt>Arrays.sort(pq.toArray())</tt>.
32 + *
33 + * <p> <strong>Note that this implementation is not synchronized.</strong>
34 + * Multiple threads should not access a <tt>PriorityQueue</tt>
35 + * instance concurrently if any of the threads modifies the list
36 + * structurally. Instead, use the thread-safe {@link
37 + * java.util.concurrent.PriorityBlockingQueue} class.
38 + *
39 + *
40   * <p>Implementation note: this implementation provides O(log(n)) time
41   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
42   * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
# Line 44 | Line 53
53   public class PriorityQueue<E> extends AbstractQueue<E>
54      implements Queue<E>, java.io.Serializable {
55  
56 +    private static final long serialVersionUID = -7720805057305804111L;
57 +
58      private static final int DEFAULT_INITIAL_CAPACITY = 11;
59  
60      /**
# Line 136 | Line 147 | public class PriorityQueue<E> extends Ab
147      /**
148       * Initially fill elements of the queue array under the
149       * knowledge that it is sorted or is another PQ, in which
150 <     * case we can just place the elements without fixups.
150 >     * case we can just place the elements in the order presented.
151       */
152      private void fillFromSorted(Collection<? extends E> c) {
153          for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154              queue[++size] = i.next();
155      }
156  
146
157      /**
158 <     * Initially fill elements of the queue array that is
159 <     * not to our knowledge sorted, so we must add them
160 <     * one by one.
158 >     * Initially fill elements of the queue array that is not to our knowledge
159 >     * sorted, so we must rearrange the elements to guarantee the heap
160 >     * invariant.
161       */
162      private void fillFromUnsorted(Collection<? extends E> c) {
163          for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
164 <            add(i.next());
164 >            queue[++size] = i.next();
165 >        heapify();
166      }
167  
168      /**
# Line 176 | Line 187 | public class PriorityQueue<E> extends Ab
187       */
188      public PriorityQueue(Collection<? extends E> c) {
189          initializeArray(c);
190 <        if (c instanceof SortedSet<? extends E>) {
191 <            SortedSet<? extends E> s = (SortedSet<? extends E>) c;
190 >        if (c instanceof SortedSet) {
191 >            // @fixme double-cast workaround for compiler
192 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
193              comparator = (Comparator<? super E>)s.comparator();
194              fillFromSorted(s);
195 <        }
184 <        else if (c instanceof PriorityQueue<? extends E>) {
195 >        } else if (c instanceof PriorityQueue) {
196              PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197              comparator = (Comparator<? super E>)s.comparator();
198              fillFromSorted(s);
199 <        }
189 <        else {
199 >        } else {
200              comparator = null;
201              fillFromUnsorted(c);
202          }
# Line 258 | Line 268 | public class PriorityQueue<E> extends Ab
268          queue = newQueue;
269      }
270              
261    // Queue Methods
262
271  
272 +    // Queue Methods
273  
274      /**
275       * Add the specified element to this priority queue.
# Line 289 | Line 298 | public class PriorityQueue<E> extends Ab
298      public E poll() {
299          if (size == 0)
300              return null;
301 <        return (E) remove(1);
301 >        return remove();
302      }
303  
304      public E peek() {
# Line 332 | Line 341 | public class PriorityQueue<E> extends Ab
341      }
342  
343  
344 < /**
344 >    /**
345       * Removes a single instance of the specified element from this
346       * queue, if it is present.  More formally,
347       * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
# Line 353 | Line 362 | public class PriorityQueue<E> extends Ab
362          if (comparator == null) {
363              for (int i = 1; i <= size; i++) {
364                  if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
365 <                    remove(i);
365 >                    removeAt(i);
366                      return true;
367                  }
368              }
369          } else {
370              for (int i = 1; i <= size; i++) {
371                  if (comparator.compare((E)queue[i], (E)o) == 0) {
372 <                    remove(i);
372 >                    removeAt(i);
373                      return true;
374                  }
375              }
# Line 379 | Line 388 | public class PriorityQueue<E> extends Ab
388      }
389  
390      private class Itr implements Iterator<E> {
391 +
392          /**
393           * Index (into queue array) of element to be returned by
394           * subsequent call to next.
# Line 386 | Line 396 | public class PriorityQueue<E> extends Ab
396          private int cursor = 1;
397  
398          /**
399 <         * Index of element returned by most recent call to next or
400 <         * previous.  Reset to 0 if this element is deleted by a call
401 <         * to remove.
399 >         * Index of element returned by most recent call to next,
400 >         * unless that element came from the forgetMeNot list.
401 >         * Reset to 0 if element is deleted by a call to remove.
402           */
403          private int lastRet = 0;
404  
# Line 399 | Line 409 | public class PriorityQueue<E> extends Ab
409           */
410          private int expectedModCount = modCount;
411  
412 +        /**
413 +         * A list of elements that were moved from the unvisited portion of
414 +         * the heap into the visited portion as a result of "unlucky" element
415 +         * removals during the iteration.  (Unlucky element removals are those
416 +         * that require a fixup instead of a fixdown.)  We must visit all of
417 +         * the elements in this list to complete the iteration.  We do this
418 +         * after we've completed the "normal" iteration.
419 +         *
420 +         * We expect that most iterations, even those involving removals,
421 +         * will not use need to store elements in this field.
422 +         */
423 +        private ArrayList<E> forgetMeNot = null;
424 +
425 +        /**
426 +         * Element returned by the most recent call to next iff that
427 +         * element was drawn from the forgetMeNot list.
428 +         */
429 +        private Object lastRetElt = null;
430 +
431          public boolean hasNext() {
432 <            return cursor <= size;
432 >            return cursor <= size || forgetMeNot != null;
433          }
434  
435          public E next() {
436              checkForComodification();
437 <            if (cursor > size)
437 >            E result;
438 >            if (cursor <= size) {
439 >                result = (E) queue[cursor];
440 >                lastRet = cursor++;
441 >            }
442 >            else if (forgetMeNot == null)
443                  throw new NoSuchElementException();
444 <            E result = (E) queue[cursor];
445 <            lastRet = cursor++;
444 >            else {
445 >                int remaining = forgetMeNot.size();
446 >                result = forgetMeNot.remove(remaining - 1);
447 >                if (remaining == 1)
448 >                    forgetMeNot = null;
449 >                lastRet = 0;
450 >                lastRetElt = result;
451 >            }
452              return result;
453          }
454  
455          public void remove() {
416            if (lastRet == 0)
417                throw new IllegalStateException();
456              checkForComodification();
457  
458 <            PriorityQueue.this.remove(lastRet);
459 <            if (lastRet < cursor)
460 <                cursor--;
461 <            lastRet = 0;
458 >            if (lastRet != 0) {
459 >                E moved = PriorityQueue.this.removeAt(lastRet);
460 >                lastRet = 0;
461 >                if (moved == null) {
462 >                    cursor--;
463 >                } else {
464 >                    if (forgetMeNot == null)
465 >                        forgetMeNot = new ArrayList();
466 >                    forgetMeNot.add(moved);
467 >                }
468 >            } else if (lastRetElt != null) {
469 >                PriorityQueue.this.remove(lastRetElt);
470 >                lastRetElt = null;
471 >            } else {
472 >                throw new IllegalStateException();
473 >            }
474 >
475              expectedModCount = modCount;
476          }
477  
# Line 448 | Line 499 | public class PriorityQueue<E> extends Ab
499      }
500  
501      /**
502 <     * Removes and returns the ith element from queue.  Recall
503 <     * that queue is one-based, so 1 <= i <= size.
502 >     * Removes and returns the first element from queue.
503 >     */
504 >    public E remove() {
505 >        if (size == 0)
506 >            throw new NoSuchElementException();
507 >        modCount++;
508 >
509 >        E result = (E) queue[1];
510 >        queue[1] = queue[size];
511 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
512 >        if (size > 1)
513 >            fixDown(1);
514 >
515 >        return result;
516 >    }
517 >
518 >    /**
519 >     * Removes and returns the ith element from queue.  (Recall that queue
520 >     * is one-based, so 1 <= i <= size.)
521       *
522 <     * XXX: Could further special-case i==size, but is it worth it?
523 <     * XXX: Could special-case i==0, but is it worth it?
522 >     * Normally this method leaves the elements at positions from 1 up to i-1,
523 >     * inclusive, untouched.  Under these circumstances, it returns null.
524 >     * Occasionally, in order to maintain the heap invariant, it must move
525 >     * the last element of the list to some index in the range [2, i-1],
526 >     * and move the element previously at position (i/2) to position i.
527 >     * Under these circumstances, this method returns the element that was
528 >     * previously at the end of the list and is now at some position between
529 >     * 2 and i-1 inclusive.
530       */
531 <    private E remove(int i) {
532 <        assert i <= size;
531 >    private E removeAt(int i) {
532 >        assert i > 0 && i <= size;
533          modCount++;
534  
535 <        E result = (E) queue[i];
536 <        queue[i] = queue[size];
535 >        E moved = (E) queue[size];
536 >        queue[i] = moved;
537          queue[size--] = null;  // Drop extra ref to prevent memory leak
538 <        if (i <= size)
538 >        if (i <= size) {
539              fixDown(i);
540 <        return result;
540 >            if (queue[i] == moved) {
541 >                fixUp(i);
542 >                if (queue[i] != moved)
543 >                    return moved;
544 >            }
545 >        }
546 >        return null;
547      }
548  
549      /**
# Line 486 | Line 566 | public class PriorityQueue<E> extends Ab
566              }
567          } else {
568              while (k > 1) {
569 <                int j = k >> 1;
569 >                int j = k >>> 1;
570                  if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
571                      break;
572                  Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
# Line 507 | Line 587 | public class PriorityQueue<E> extends Ab
587      private void fixDown(int k) {
588          int j;
589          if (comparator == null) {
590 <            while ((j = k << 1) <= size) {
591 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
590 >            while ((j = k << 1) <= size && (j > 0)) {
591 >                if (j<size &&
592 >                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
593                      j++; // j indexes smallest kid
594 +
595                  if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
596                      break;
597                  Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
598                  k = j;
599              }
600          } else {
601 <            while ((j = k << 1) <= size) {
602 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
601 >            while ((j = k << 1) <= size && (j > 0)) {
602 >                if (j<size &&
603 >                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
604                      j++; // j indexes smallest kid
605                  if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
606                      break;
# Line 527 | Line 610 | public class PriorityQueue<E> extends Ab
610          }
611      }
612  
613 +    /**
614 +     * Establishes the heap invariant (described above) in the entire tree,
615 +     * assuming nothing about the order of the elements prior to the call.
616 +     */
617 +    private void heapify() {
618 +        for (int i = size/2; i >= 1; i--)
619 +            fixDown(i);
620 +    }
621  
622      /**
623       * Returns the comparator used to order this collection, or <tt>null</tt>
# Line 582 | Line 673 | public class PriorityQueue<E> extends Ab
673      }
674  
675   }
585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines