ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.39 by dl, Sun Sep 7 15:06:19 2003 UTC vs.
Revision 1.73 by jsr166, Tue Jun 21 19:29:21 2011 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28   /**
29   * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 < * This queue orders elements according to an order specified at construction
31 < * time, which is specified in the same manner as {@link java.util.TreeSet}
32 < * and {@link java.util.TreeMap}: elements are ordered either according to
33 < * their <i>natural order</i> (see {@link Comparable}), or according to a
34 < * {@link java.util.Comparator}, depending on which constructor is used.
35 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
36 < * respect to the specified ordering.  If multiple elements are tied for least
37 < * value, the head is one of those elements. A priority queue does not permit
38 < * <tt>null</tt> elements.
39 < *
40 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
41 < * return the head of the queue.
42 < *
43 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
44 < * not delete, the head of the queue.
45 < *
46 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
47 < * size of the array used internally to store the elements on the
48 < * queue.
49 < * It is always at least as large as the queue size.  As
50 < * elements are added to a priority queue, its capacity grows
51 < * automatically.  The details of the growth policy are not specified.
52 < *
53 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
54 < * guaranteed to traverse the elements of the PriorityQueue in any
55 < * particular order. If you need ordered traversal, consider using
56 < * <tt>Arrays.sort(pq.toArray())</tt>.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58   *
59   * <p> <strong>Note that this implementation is not synchronized.</strong>
60 < * Multiple threads should not access a <tt>PriorityQueue</tt>
61 < * instance concurrently if any of the threads modifies the list
62 < * structurally. Instead, use the thread-safe {@link
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63   * java.util.concurrent.PriorityBlockingQueue} class.
64   *
65 < *
66 < * <p>Implementation note: this implementation provides O(log(n)) time
67 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
68 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
69 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
70 < * constant time for the retrieval methods (<tt>peek</tt>,
52 < * <tt>element</tt>, and <tt>size</tt>).
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @version %I%, %G%
78 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <    implements Queue<E>, java.io.Serializable {
81 >    implements java.io.Serializable {
82  
83      private static final long serialVersionUID = -7720805057305804111L;
84  
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap and each descendant d
92 <     * of n, n <= d.
93 <     *
75 <     * The element with the lowest value is in queue[1], assuming the queue is
76 <     * nonempty.  (A one-based array is used in preference to the traditional
77 <     * zero-based array to simplify parent and child calculations.)
78 <     *
79 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95      private transient Object[] queue;
96  
# Line 98 | Line 112 | public class PriorityQueue<E> extends Ab
112      private transient int modCount = 0;
113  
114      /**
115 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
116 <     * (11) that orders its elements according to their natural
117 <     * ordering (using <tt>Comparable</tt>).
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120          this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
125 <     * that orders its elements according to their natural ordering
126 <     * (using <tt>Comparable</tt>).
127 <     *
128 <     * @param initialCapacity the initial capacity for this priority queue.
129 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
130 <     * than 1
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     * If <tt>null</tt> then the order depends on the elements' natural
143 <     * ordering.
144 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
145 <     * than 1
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146       */
147 <    public PriorityQueue(int initialCapacity,
147 >    public PriorityQueue(int initialCapacity,
148                           Comparator<? super E> comparator) {
149 +        // Note: This restriction of at least one is not actually needed,
150 +        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152              throw new IllegalArgumentException();
153 <        this.queue = new Object[initialCapacity + 1];
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Common code to initialize underlying queue array across
159 <     * constructors below.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164 >     *
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167 >     * @throws ClassCastException if elements of the specified collection
168 >     *         cannot be compared to one another according to the priority
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172       */
173 <    private void initializeArray(Collection<? extends E> c) {
174 <        int sz = c.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <
180 <        this.queue = new Object[initialCapacity + 1];
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189      }
190  
191      /**
192 <     * Initially fill elements of the queue array under the
193 <     * knowledge that it is sorted or is another PQ, in which
194 <     * case we can just place the elements in the order presented.
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204       */
205 <    private void fillFromSorted(Collection<? extends E> c) {
206 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
207 <            queue[++size] = i.next();
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209      }
210  
211      /**
212 <     * Initially fill elements of the queue array that is not to our knowledge
213 <     * sorted, so we must rearrange the elements to guarantee the heap
214 <     * invariant.
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223       */
224 <    private void fillFromUnsorted(Collection<? extends E> c) {
225 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
226 <            queue[++size] = i.next();
227 <        heapify();
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228      }
229  
230 <    /**
231 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
232 <     * specified collection.  The priority queue has an initial
233 <     * capacity of 110% of the size of the specified collection or 1
180 <     * if the collection is empty.  If the specified collection is an
181 <     * instance of a {@link java.util.SortedSet} or is another
182 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
183 <     * according to the same comparator, or according to its elements'
184 <     * natural order if the collection is sorted according to its
185 <     * elements' natural order.  Otherwise, the priority queue is
186 <     * ordered according to its elements' natural order.
187 <     *
188 <     * @param c the collection whose elements are to be placed
189 <     *        into this priority queue.
190 <     * @throws ClassCastException if elements of the specified collection
191 <     *         cannot be compared to one another according to the priority
192 <     *         queue's ordering.
193 <     * @throws NullPointerException if <tt>c</tt> or any element within it
194 <     * is <tt>null</tt>
195 <     */
196 <    public PriorityQueue(Collection<? extends E> c) {
197 <        initializeArray(c);
198 <        if (c instanceof SortedSet) {
199 <            // @fixme double-cast workaround for compiler
200 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
201 <            comparator = (Comparator<? super E>)s.comparator();
202 <            fillFromSorted(s);
203 <        } else if (c instanceof PriorityQueue) {
204 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 <            comparator = (Comparator<? super E>)s.comparator();
206 <            fillFromSorted(s);
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234          } else {
235 <            comparator = null;
209 <            fillFromUnsorted(c);
235 >            initFromCollection(c);
236          }
237      }
238  
239 +    private void initElementsFromCollection(Collection<? extends E> c) {
240 +        Object[] a = c.toArray();
241 +        // If c.toArray incorrectly doesn't return Object[], copy it.
242 +        if (a.getClass() != Object[].class)
243 +            a = Arrays.copyOf(a, a.length, Object[].class);
244 +        int len = a.length;
245 +        if (len == 1 || this.comparator != null)
246 +            for (int i = 0; i < len; i++)
247 +                if (a[i] == null)
248 +                    throw new NullPointerException();
249 +        this.queue = a;
250 +        this.size = a.length;
251 +    }
252 +
253      /**
254 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
215 <     * specified collection.  The priority queue has an initial
216 <     * capacity of 110% of the size of the specified collection or 1
217 <     * if the collection is empty.  This priority queue will be sorted
218 <     * according to the same comparator as the given collection, or
219 <     * according to its elements' natural order if the collection is
220 <     * sorted according to its elements' natural order.
254 >     * Initializes queue array with elements from the given Collection.
255       *
256 <     * @param c the collection whose elements are to be placed
223 <     *        into this priority queue.
224 <     * @throws ClassCastException if elements of the specified collection
225 <     *         cannot be compared to one another according to the priority
226 <     *         queue's ordering.
227 <     * @throws NullPointerException if <tt>c</tt> or any element within it
228 <     * is <tt>null</tt>
256 >     * @param c the collection
257       */
258 <    public PriorityQueue(PriorityQueue<? extends E> c) {
259 <        initializeArray(c);
260 <        comparator = (Comparator<? super E>)c.comparator();
233 <        fillFromSorted(c);
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261      }
262  
263      /**
264 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
265 <     * specified collection.  The priority queue has an initial
266 <     * capacity of 110% of the size of the specified collection or 1
267 <     * if the collection is empty.  This priority queue will be sorted
241 <     * according to the same comparator as the given collection, or
242 <     * according to its elements' natural order if the collection is
243 <     * sorted according to its elements' natural order.
244 <     *
245 <     * @param c the collection whose elements are to be placed
246 <     *        into this priority queue.
247 <     * @throws ClassCastException if elements of the specified collection
248 <     *         cannot be compared to one another according to the priority
249 <     *         queue's ordering.
250 <     * @throws NullPointerException if <tt>c</tt> or any element within it
251 <     * is <tt>null</tt>
264 >     * The maximum size of array to allocate.
265 >     * Some VMs reserve some header words in an array.
266 >     * Attempts to allocate larger arrays may result in
267 >     * OutOfMemoryError: Requested array size exceeds VM limit
268       */
269 <    public PriorityQueue(SortedSet<? extends E> c) {
254 <        initializeArray(c);
255 <        comparator = (Comparator<? super E>)c.comparator();
256 <        fillFromSorted(c);
257 <    }
269 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270  
271      /**
272 <     * Resize array, if necessary, to be able to hold given index
272 >     * Increases the capacity of the array.
273 >     *
274 >     * @param minCapacity the desired minimum capacity
275       */
276 <    private void grow(int index) {
277 <        int newlen = queue.length;
278 <        if (index < newlen) // don't need to grow
279 <            return;
280 <        if (index == Integer.MAX_VALUE)
276 >    private void grow(int minCapacity) {
277 >        int oldCapacity = queue.length;
278 >        // Double size if small; else grow by 50%
279 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 >                                         (oldCapacity + 2) :
281 >                                         (oldCapacity >> 1));
282 >        // overflow-conscious code
283 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 >            newCapacity = hugeCapacity(minCapacity);
285 >        queue = Arrays.copyOf(queue, newCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290              throw new OutOfMemoryError();
291 <        while (newlen <= index) {
292 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
293 <                newlen = Integer.MAX_VALUE;
271 <            else
272 <                newlen <<= 2;
273 <        }
274 <        Object[] newQueue = new Object[newlen];
275 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
276 <        queue = newQueue;
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294      }
278            
295  
296 <    // Queue Methods
296 >    /**
297 >     * Inserts the specified element into this priority queue.
298 >     *
299 >     * @return {@code true} (as specified by {@link Collection#add})
300 >     * @throws ClassCastException if the specified element cannot be
301 >     *         compared with elements currently in this priority queue
302 >     *         according to the priority queue's ordering
303 >     * @throws NullPointerException if the specified element is null
304 >     */
305 >    public boolean add(E e) {
306 >        return offer(e);
307 >    }
308  
309      /**
310 <     * Add the specified element to this priority queue.
310 >     * Inserts the specified element into this priority queue.
311       *
312 <     * @return <tt>true</tt>
313 <     * @throws ClassCastException if the specified element cannot be compared
314 <     * with elements currently in the priority queue according
315 <     * to the priority queue's ordering.
316 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
312 >     * @return {@code true} (as specified by {@link Queue#offer})
313 >     * @throws ClassCastException if the specified element cannot be
314 >     *         compared with elements currently in this priority queue
315 >     *         according to the priority queue's ordering
316 >     * @throws NullPointerException if the specified element is null
317       */
318 <    public boolean offer(E o) {
319 <        if (o == null)
318 >    public boolean offer(E e) {
319 >        if (e == null)
320              throw new NullPointerException();
321          modCount++;
322 <        ++size;
323 <
324 <        // Grow backing store if necessary
325 <        if (size >= queue.length)
326 <            grow(size);
327 <
328 <        queue[size] = o;
329 <        fixUp(size);
322 >        int i = size;
323 >        if (i >= queue.length)
324 >            grow(i + 1);
325 >        size = i + 1;
326 >        if (i == 0)
327 >            queue[0] = e;
328 >        else
329 >            siftUp(i, e);
330          return true;
331      }
332  
306    public E poll() {
307        if (size == 0)
308            return null;
309        return remove();
310    }
311
333      public E peek() {
334 <        return (E) queue[1];
334 >        return (size == 0) ? null : (E) queue[0];
335      }
336  
337 <    // Collection Methods - the first two override to update docs
337 >    private int indexOf(Object o) {
338 >        if (o != null) {
339 >            for (int i = 0; i < size; i++)
340 >                if (o.equals(queue[i]))
341 >                    return i;
342 >        }
343 >        return -1;
344 >    }
345  
346      /**
347 <     * Adds the specified element to this queue.
348 <     * @return <tt>true</tt> (as per the general contract of
349 <     * <tt>Collection.add</tt>).
347 >     * Removes a single instance of the specified element from this queue,
348 >     * if it is present.  More formally, removes an element {@code e} such
349 >     * that {@code o.equals(e)}, if this queue contains one or more such
350 >     * elements.  Returns {@code true} if and only if this queue contained
351 >     * the specified element (or equivalently, if this queue changed as a
352 >     * result of the call).
353       *
354 <     * @throws NullPointerException {@inheritDoc}
355 <     * @throws ClassCastException if the specified element cannot be compared
325 <     * with elements currently in the priority queue according
326 <     * to the priority queue's ordering.
354 >     * @param o element to be removed from this queue, if present
355 >     * @return {@code true} if this queue changed as a result of the call
356       */
357 <    public boolean add(E o) {
358 <        return super.add(o);
357 >    public boolean remove(Object o) {
358 >        int i = indexOf(o);
359 >        if (i == -1)
360 >            return false;
361 >        else {
362 >            removeAt(i);
363 >            return true;
364 >        }
365      }
366  
332  
367      /**
368 <     * Adds all of the elements in the specified collection to this queue.
369 <     * The behavior of this operation is undefined if
370 <     * the specified collection is modified while the operation is in
371 <     * progress.  (This implies that the behavior of this call is undefined if
372 <     * the specified collection is this queue, and this queue is nonempty.)
339 <     * <p>
340 <     * This implementation iterates over the specified collection, and adds
341 <     * each object returned by the iterator to this collection, in turn.
342 <     * @throws NullPointerException {@inheritDoc}
343 <     * @throws ClassCastException if any element cannot be compared
344 <     * with elements currently in the priority queue according
345 <     * to the priority queue's ordering.
368 >     * Version of remove using reference equality, not equals.
369 >     * Needed by iterator.remove.
370 >     *
371 >     * @param o element to be removed from this queue, if present
372 >     * @return {@code true} if removed
373       */
374 <    public boolean addAll(Collection<? extends E> c) {
375 <        return super.addAll(c);
374 >    boolean removeEq(Object o) {
375 >        for (int i = 0; i < size; i++) {
376 >            if (o == queue[i]) {
377 >                removeAt(i);
378 >                return true;
379 >            }
380 >        }
381 >        return false;
382      }
383  
384 +    /**
385 +     * Returns {@code true} if this queue contains the specified element.
386 +     * More formally, returns {@code true} if and only if this queue contains
387 +     * at least one element {@code e} such that {@code o.equals(e)}.
388 +     *
389 +     * @param o object to be checked for containment in this queue
390 +     * @return {@code true} if this queue contains the specified element
391 +     */
392 +    public boolean contains(Object o) {
393 +        return indexOf(o) != -1;
394 +    }
395  
396      /**
397 <     * Removes a single instance of the specified element from this
398 <     * queue, if it is present.  More formally,
399 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
400 <     * o.equals(e))</tt>, if the queue contains one or more such
401 <     * elements.  Returns <tt>true</tt> if the queue contained the
402 <     * specified element (or equivalently, if the queue changed as a
359 <     * result of the call).
397 >     * Returns an array containing all of the elements in this queue.
398 >     * The elements are in no particular order.
399 >     *
400 >     * <p>The returned array will be "safe" in that no references to it are
401 >     * maintained by this queue.  (In other words, this method must allocate
402 >     * a new array).  The caller is thus free to modify the returned array.
403       *
404 <     * <p>This implementation iterates over the queue looking for the
405 <     * specified element.  If it finds the element, it removes the element
363 <     * from the queue using the iterator's remove method.<p>
404 >     * <p>This method acts as bridge between array-based and collection-based
405 >     * APIs.
406       *
407 +     * @return an array containing all of the elements in this queue
408       */
409 <    public boolean remove(Object o) {
410 <        if (o == null)
411 <            return false;
409 >    public Object[] toArray() {
410 >        return Arrays.copyOf(queue, size);
411 >    }
412  
413 <        if (comparator == null) {
414 <            for (int i = 1; i <= size; i++) {
415 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
416 <                    removeAt(i);
417 <                    return true;
418 <                }
419 <            }
420 <        } else {
421 <            for (int i = 1; i <= size; i++) {
422 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
423 <                    removeAt(i);
424 <                    return true;
425 <                }
426 <            }
427 <        }
428 <        return false;
413 >    /**
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420 >     *
421 >     * <p>If the queue fits in the specified array with room to spare
422 >     * (i.e., the array has more elements than the queue), the element in
423 >     * the array immediately following the end of the collection is set to
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of <tt>String</tt>:
434 >     *
435 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
438 >     * <tt>toArray()</tt>.
439 >     *
440 >     * @param a the array into which the elements of the queue are to
441 >     *          be stored, if it is big enough; otherwise, a new array of the
442 >     *          same runtime type is allocated for this purpose.
443 >     * @return an array containing all of the elements in this queue
444 >     * @throws ArrayStoreException if the runtime type of the specified array
445 >     *         is not a supertype of the runtime type of every element in
446 >     *         this queue
447 >     * @throws NullPointerException if the specified array is null
448 >     */
449 >    public <T> T[] toArray(T[] a) {
450 >        if (a.length < size)
451 >            // Make a new array of a's runtime type, but my contents:
452 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
453 >        System.arraycopy(queue, 0, a, 0, size);
454 >        if (a.length > size)
455 >            a[size] = null;
456 >        return a;
457      }
458  
459      /**
460       * Returns an iterator over the elements in this queue. The iterator
461       * does not return the elements in any particular order.
462       *
463 <     * @return an iterator over the elements in this queue.
463 >     * @return an iterator over the elements in this queue
464       */
465      public Iterator<E> iterator() {
466          return new Itr();
467      }
468  
469 <    private class Itr implements Iterator<E> {
399 <
469 >    private final class Itr implements Iterator<E> {
470          /**
471           * Index (into queue array) of element to be returned by
472           * subsequent call to next.
473           */
474 <        private int cursor = 1;
474 >        private int cursor = 0;
475  
476          /**
477           * Index of element returned by most recent call to next,
478           * unless that element came from the forgetMeNot list.
479 <         * Reset to 0 if element is deleted by a call to remove.
479 >         * Set to -1 if element is deleted by a call to remove.
480           */
481 <        private int lastRet = 0;
481 >        private int lastRet = -1;
482  
483          /**
484 <         * The modCount value that the iterator believes that the backing
415 <         * List should have.  If this expectation is violated, the iterator
416 <         * has detected concurrent modification.
417 <         */
418 <        private int expectedModCount = modCount;
419 <
420 <        /**
421 <         * A list of elements that were moved from the unvisited portion of
484 >         * A queue of elements that were moved from the unvisited portion of
485           * the heap into the visited portion as a result of "unlucky" element
486           * removals during the iteration.  (Unlucky element removals are those
487 <         * that require a fixup instead of a fixdown.)  We must visit all of
487 >         * that require a siftup instead of a siftdown.)  We must visit all of
488           * the elements in this list to complete the iteration.  We do this
489           * after we've completed the "normal" iteration.
490           *
491           * We expect that most iterations, even those involving removals,
492 <         * will not use need to store elements in this field.
492 >         * will not need to store elements in this field.
493           */
494 <        private ArrayList<E> forgetMeNot = null;
494 >        private ArrayDeque<E> forgetMeNot = null;
495  
496          /**
497           * Element returned by the most recent call to next iff that
498           * element was drawn from the forgetMeNot list.
499           */
500 <        private Object lastRetElt = null;
500 >        private E lastRetElt = null;
501 >
502 >        /**
503 >         * The modCount value that the iterator believes that the backing
504 >         * Queue should have.  If this expectation is violated, the iterator
505 >         * has detected concurrent modification.
506 >         */
507 >        private int expectedModCount = modCount;
508  
509          public boolean hasNext() {
510 <            return cursor <= size || forgetMeNot != null;
510 >            return cursor < size ||
511 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
512          }
513  
514          public E next() {
515 <            checkForComodification();
516 <            E result;
517 <            if (cursor <= size) {
518 <                result = (E) queue[cursor];
519 <                lastRet = cursor++;
520 <            }
521 <            else if (forgetMeNot == null)
522 <                throw new NoSuchElementException();
523 <            else {
453 <                int remaining = forgetMeNot.size();
454 <                result = forgetMeNot.remove(remaining - 1);
455 <                if (remaining == 1)
456 <                    forgetMeNot = null;
457 <                lastRet = 0;
458 <                lastRetElt = result;
515 >            if (expectedModCount != modCount)
516 >                throw new ConcurrentModificationException();
517 >            if (cursor < size)
518 >                return (E) queue[lastRet = cursor++];
519 >            if (forgetMeNot != null) {
520 >                lastRet = -1;
521 >                lastRetElt = forgetMeNot.poll();
522 >                if (lastRetElt != null)
523 >                    return lastRetElt;
524              }
525 <            return result;
525 >            throw new NoSuchElementException();
526          }
527  
528          public void remove() {
529 <            checkForComodification();
530 <
531 <            if (lastRet != 0) {
529 >            if (expectedModCount != modCount)
530 >                throw new ConcurrentModificationException();
531 >            if (lastRet != -1) {
532                  E moved = PriorityQueue.this.removeAt(lastRet);
533 <                lastRet = 0;
534 <                if (moved == null) {
533 >                lastRet = -1;
534 >                if (moved == null)
535                      cursor--;
536 <                } else {
536 >                else {
537                      if (forgetMeNot == null)
538 <                        forgetMeNot = new ArrayList<E>();
538 >                        forgetMeNot = new ArrayDeque<E>();
539                      forgetMeNot.add(moved);
540                  }
541              } else if (lastRetElt != null) {
542 <                PriorityQueue.this.remove(lastRetElt);
542 >                PriorityQueue.this.removeEq(lastRetElt);
543                  lastRetElt = null;
544              } else {
545                  throw new IllegalStateException();
546              }
482
547              expectedModCount = modCount;
548          }
485
486        final void checkForComodification() {
487            if (modCount != expectedModCount)
488                throw new ConcurrentModificationException();
489        }
549      }
550  
551      public int size() {
# Line 494 | Line 553 | public class PriorityQueue<E> extends Ab
553      }
554  
555      /**
556 <     * Remove all elements from the priority queue.
556 >     * Removes all of the elements from this priority queue.
557 >     * The queue will be empty after this call returns.
558       */
559      public void clear() {
560          modCount++;
561 <
502 <        // Null out element references to prevent memory leak
503 <        for (int i=1; i<=size; i++)
561 >        for (int i = 0; i < size; i++)
562              queue[i] = null;
505
563          size = 0;
564      }
565  
566 <    /**
510 <     * Removes and returns the first element from queue.
511 <     */
512 <    public E remove() {
566 >    public E poll() {
567          if (size == 0)
568 <            throw new NoSuchElementException();
568 >            return null;
569 >        int s = --size;
570          modCount++;
571 <
572 <        E result = (E) queue[1];
573 <        queue[1] = queue[size];
574 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
575 <        if (size > 1)
521 <            fixDown(1);
522 <
571 >        E result = (E) queue[0];
572 >        E x = (E) queue[s];
573 >        queue[s] = null;
574 >        if (s != 0)
575 >            siftDown(0, x);
576          return result;
577      }
578  
579      /**
580 <     * Removes and returns the ith element from queue.  (Recall that queue
528 <     * is one-based, so 1 <= i <= size.)
580 >     * Removes the ith element from queue.
581       *
582 <     * Normally this method leaves the elements at positions from 1 up to i-1,
583 <     * inclusive, untouched.  Under these circumstances, it returns null.
584 <     * Occasionally, in order to maintain the heap invariant, it must move
585 <     * the last element of the list to some index in the range [2, i-1],
586 <     * and move the element previously at position (i/2) to position i.
587 <     * Under these circumstances, this method returns the element that was
588 <     * previously at the end of the list and is now at some position between
589 <     * 2 and i-1 inclusive.
582 >     * Normally this method leaves the elements at up to i-1,
583 >     * inclusive, untouched.  Under these circumstances, it returns
584 >     * null.  Occasionally, in order to maintain the heap invariant,
585 >     * it must swap a later element of the list with one earlier than
586 >     * i.  Under these circumstances, this method returns the element
587 >     * that was previously at the end of the list and is now at some
588 >     * position before i. This fact is used by iterator.remove so as to
589 >     * avoid missing traversing elements.
590       */
591 <    private E removeAt(int i) {
592 <        assert i > 0 && i <= size;
591 >    private E removeAt(int i) {
592 >        assert i >= 0 && i < size;
593          modCount++;
594 <
595 <        E moved = (E) queue[size];
596 <        queue[i] = moved;
597 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
598 <        if (i <= size) {
599 <            fixDown(i);
594 >        int s = --size;
595 >        if (s == i) // removed last element
596 >            queue[i] = null;
597 >        else {
598 >            E moved = (E) queue[s];
599 >            queue[s] = null;
600 >            siftDown(i, moved);
601              if (queue[i] == moved) {
602 <                fixUp(i);
602 >                siftUp(i, moved);
603                  if (queue[i] != moved)
604                      return moved;
605              }
# Line 555 | Line 608 | public class PriorityQueue<E> extends Ab
608      }
609  
610      /**
611 <     * Establishes the heap invariant (described above) assuming the heap
612 <     * satisfies the invariant except possibly for the leaf-node indexed by k
613 <     * (which may have a nextExecutionTime less than its parent's).
614 <     *
615 <     * This method functions by "promoting" queue[k] up the hierarchy
616 <     * (by swapping it with its parent) repeatedly until queue[k]
617 <     * is greater than or equal to its parent.
618 <     */
619 <    private void fixUp(int k) {
620 <        if (comparator == null) {
621 <            while (k > 1) {
622 <                int j = k >> 1;
623 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
624 <                    break;
625 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
626 <                k = j;
627 <            }
628 <        } else {
629 <            while (k > 1) {
630 <                int j = k >>> 1;
631 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
632 <                    break;
633 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
634 <                k = j;
635 <            }
611 >     * Inserts item x at position k, maintaining heap invariant by
612 >     * promoting x up the tree until it is greater than or equal to
613 >     * its parent, or is the root.
614 >     *
615 >     * To simplify and speed up coercions and comparisons. the
616 >     * Comparable and Comparator versions are separated into different
617 >     * methods that are otherwise identical. (Similarly for siftDown.)
618 >     *
619 >     * @param k the position to fill
620 >     * @param x the item to insert
621 >     */
622 >    private void siftUp(int k, E x) {
623 >        if (comparator != null)
624 >            siftUpUsingComparator(k, x);
625 >        else
626 >            siftUpComparable(k, x);
627 >    }
628 >
629 >    private void siftUpComparable(int k, E x) {
630 >        Comparable<? super E> key = (Comparable<? super E>) x;
631 >        while (k > 0) {
632 >            int parent = (k - 1) >>> 1;
633 >            Object e = queue[parent];
634 >            if (key.compareTo((E) e) >= 0)
635 >                break;
636 >            queue[k] = e;
637 >            k = parent;
638 >        }
639 >        queue[k] = key;
640 >    }
641 >
642 >    private void siftUpUsingComparator(int k, E x) {
643 >        while (k > 0) {
644 >            int parent = (k - 1) >>> 1;
645 >            Object e = queue[parent];
646 >            if (comparator.compare(x, (E) e) >= 0)
647 >                break;
648 >            queue[k] = e;
649 >            k = parent;
650          }
651 +        queue[k] = x;
652      }
653  
654      /**
655 <     * Establishes the heap invariant (described above) in the subtree
656 <     * rooted at k, which is assumed to satisfy the heap invariant except
657 <     * possibly for node k itself (which may be greater than its children).
658 <     *
659 <     * This method functions by "demoting" queue[k] down the hierarchy
660 <     * (by swapping it with its smaller child) repeatedly until queue[k]
661 <     * is less than or equal to its children.
662 <     */
663 <    private void fixDown(int k) {
664 <        int j;
665 <        if (comparator == null) {
666 <            while ((j = k << 1) <= size && (j > 0)) {
667 <                if (j<size &&
668 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
669 <                    j++; // j indexes smallest kid
670 <
671 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
672 <                    break;
673 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
674 <                k = j;
675 <            }
676 <        } else {
677 <            while ((j = k << 1) <= size && (j > 0)) {
678 <                if (j<size &&
679 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
680 <                    j++; // j indexes smallest kid
681 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
682 <                    break;
615 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
616 <                k = j;
617 <            }
655 >     * Inserts item x at position k, maintaining heap invariant by
656 >     * demoting x down the tree repeatedly until it is less than or
657 >     * equal to its children or is a leaf.
658 >     *
659 >     * @param k the position to fill
660 >     * @param x the item to insert
661 >     */
662 >    private void siftDown(int k, E x) {
663 >        if (comparator != null)
664 >            siftDownUsingComparator(k, x);
665 >        else
666 >            siftDownComparable(k, x);
667 >    }
668 >
669 >    private void siftDownComparable(int k, E x) {
670 >        Comparable<? super E> key = (Comparable<? super E>)x;
671 >        int half = size >>> 1;        // loop while a non-leaf
672 >        while (k < half) {
673 >            int child = (k << 1) + 1; // assume left child is least
674 >            Object c = queue[child];
675 >            int right = child + 1;
676 >            if (right < size &&
677 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
678 >                c = queue[child = right];
679 >            if (key.compareTo((E) c) <= 0)
680 >                break;
681 >            queue[k] = c;
682 >            k = child;
683          }
684 +        queue[k] = key;
685 +    }
686 +
687 +    private void siftDownUsingComparator(int k, E x) {
688 +        int half = size >>> 1;
689 +        while (k < half) {
690 +            int child = (k << 1) + 1;
691 +            Object c = queue[child];
692 +            int right = child + 1;
693 +            if (right < size &&
694 +                comparator.compare((E) c, (E) queue[right]) > 0)
695 +                c = queue[child = right];
696 +            if (comparator.compare(x, (E) c) <= 0)
697 +                break;
698 +            queue[k] = c;
699 +            k = child;
700 +        }
701 +        queue[k] = x;
702      }
703  
704      /**
# Line 623 | Line 706 | public class PriorityQueue<E> extends Ab
706       * assuming nothing about the order of the elements prior to the call.
707       */
708      private void heapify() {
709 <        for (int i = size/2; i >= 1; i--)
710 <            fixDown(i);
709 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
710 >            siftDown(i, (E) queue[i]);
711      }
712  
713      /**
714 <     * Returns the comparator used to order this collection, or <tt>null</tt>
715 <     * if this collection is sorted according to its elements natural ordering
716 <     * (using <tt>Comparable</tt>).
714 >     * Returns the comparator used to order the elements in this
715 >     * queue, or {@code null} if this queue is sorted according to
716 >     * the {@linkplain Comparable natural ordering} of its elements.
717       *
718 <     * @return the comparator used to order this collection, or <tt>null</tt>
719 <     * if this collection is sorted according to its elements natural ordering.
718 >     * @return the comparator used to order this queue, or
719 >     *         {@code null} if this queue is sorted according to the
720 >     *         natural ordering of its elements
721       */
722      public Comparator<? super E> comparator() {
723          return comparator;
724      }
725  
726      /**
727 <     * Save the state of the instance to a stream (that
728 <     * is, serialize it).
727 >     * Saves the state of the instance to a stream (that
728 >     * is, serializes it).
729       *
730       * @serialData The length of the array backing the instance is
731 <     * emitted (int), followed by all of its elements (each an
732 <     * <tt>Object</tt>) in the proper order.
731 >     *             emitted (int), followed by all of its elements
732 >     *             (each an {@code Object}) in the proper order.
733       * @param s the stream
734       */
735      private void writeObject(java.io.ObjectOutputStream s)
# Line 653 | Line 737 | public class PriorityQueue<E> extends Ab
737          // Write out element count, and any hidden stuff
738          s.defaultWriteObject();
739  
740 <        // Write out array length
741 <        s.writeInt(queue.length);
740 >        // Write out array length, for compatibility with 1.5 version
741 >        s.writeInt(Math.max(2, size + 1));
742  
743 <        // Write out all elements in the proper order.
744 <        for (int i=1; i<=size; i++)
743 >        // Write out all elements in the "proper order".
744 >        for (int i = 0; i < size; i++)
745              s.writeObject(queue[i]);
746      }
747  
748      /**
749 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
750 <     * deserialize it).
749 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
750 >     * (that is, deserializes it).
751 >     *
752       * @param s the stream
753       */
754      private void readObject(java.io.ObjectInputStream s)
# Line 671 | Line 756 | public class PriorityQueue<E> extends Ab
756          // Read in size, and any hidden stuff
757          s.defaultReadObject();
758  
759 <        // Read in array length and allocate array
760 <        int arrayLength = s.readInt();
676 <        queue = new Object[arrayLength];
677 <
678 <        // Read in all elements in the proper order.
679 <        for (int i=1; i<=size; i++)
680 <            queue[i] = (E) s.readObject();
681 <    }
759 >        // Read in (and discard) array length
760 >        s.readInt();
761  
762 +        queue = new Object[size];
763 +
764 +        // Read in all elements.
765 +        for (int i = 0; i < size; i++)
766 +            queue[i] = s.readObject();
767 +
768 +        // Elements are guaranteed to be in "proper order", but the
769 +        // spec has never explained what that might be.
770 +        heapify();
771 +    }
772   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines