ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.4 by tim, Mon May 19 02:45:07 2003 UTC vs.
Revision 1.132 by jsr166, Fri Aug 30 18:05:39 2019 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21 < *   1) Make it serializable.
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26 + package java.util;
27 +
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + // OPENJDK import jdk.internal.access.SharedSecrets;
31 + import jdk.internal.util.ArraysSupport;
32 +
33   /**
34 < * An unbounded priority queue based on a priority heap.  This queue orders
35 < * elements according to the order specified at creation time.  This order is
36 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
37 < * either according to their <i>natural order</i> (see {@link Comparable}), or
38 < * according to a {@link Comparator}, depending on which constructor is used.
39 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
40 < * minimal element with respect to the specified ordering.  If multiple
41 < * these elements are tied for least value, no guarantees are made as to
42 < * which of elements is returned.
43 < *
44 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
45 < * the array used to store the elements on the queue.  It is always at least
46 < * as large as the queue size.  As elements are added to a priority list,
47 < * its capacity grows automatically.  The details of the growth policy are not
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55   * specified.
56   *
57 < *<p>Implementation note: this implementation provides O(log(n)) time for
58 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
59 < * methods; linear time for the <tt>remove(Object)</tt> and
60 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt> methods.
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82 + * @since 1.5
83 + * @author Josh Bloch, Doug Lea
84 + * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88 <                              implements Queue<E>
89 < {
88 >    implements java.io.Serializable {
89 >
90 >    // OPENJDK @java.io.Serial
91 >    private static final long serialVersionUID = -7720805057305804111L;
92 >
93      private static final int DEFAULT_INITIAL_CAPACITY = 11;
94  
95      /**
96 <     * Priority queue represented as a balanced binary heap: the two children
97 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
98 <     * ordered by comparator, or by the elements' natural ordering, if
99 <     * comparator is null:  For each node n in the heap, and each descendant
100 <     * of n, d, n <= d.
101 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
96 >     * Priority queue represented as a balanced binary heap: the two
97 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
98 >     * priority queue is ordered by comparator, or by the elements'
99 >     * natural ordering, if comparator is null: For each node n in the
100 >     * heap and each descendant d of n, n <= d.  The element with the
101 >     * lowest value is in queue[0], assuming the queue is nonempty.
102       */
103 <    private E[] queue;
103 >    transient Object[] queue; // non-private to simplify nested class access
104  
105      /**
106       * The number of elements in the priority queue.
107       */
108 <    private int size = 0;
108 >    int size;
109  
110      /**
111       * The comparator, or null if priority queue uses elements'
112       * natural ordering.
113       */
114 <    private final Comparator<E> comparator;
114 >    private final Comparator<? super E> comparator;
115  
116      /**
117       * The number of times this priority queue has been
118       * <i>structurally modified</i>.  See AbstractList for gory details.
119       */
120 <    private int modCount = 0;
120 >    transient int modCount;     // non-private to simplify nested class access
121  
122      /**
123 <     * Create a new priority queue with the default initial capacity (11)
124 <     * that orders its elements according to their natural ordering.
123 >     * Creates a {@code PriorityQueue} with the default initial
124 >     * capacity (11) that orders its elements according to their
125 >     * {@linkplain Comparable natural ordering}.
126       */
127      public PriorityQueue() {
128 <        this(DEFAULT_INITIAL_CAPACITY);
128 >        this(DEFAULT_INITIAL_CAPACITY, null);
129      }
130  
131      /**
132 <     * Create a new priority queue with the specified initial capacity
133 <     * that orders its elements according to their natural ordering.
132 >     * Creates a {@code PriorityQueue} with the specified initial
133 >     * capacity that orders its elements according to their
134 >     * {@linkplain Comparable natural ordering}.
135       *
136 <     * @param initialCapacity the initial capacity for this priority queue.
136 >     * @param initialCapacity the initial capacity for this priority queue
137 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
138 >     *         than 1
139       */
140      public PriorityQueue(int initialCapacity) {
141          this(initialCapacity, null);
142      }
143  
144      /**
145 <     * Create a new priority queue with the specified initial capacity (11)
146 <     * that orders its elements according to the specified comparator.
145 >     * Creates a {@code PriorityQueue} with the default initial capacity and
146 >     * whose elements are ordered according to the specified comparator.
147       *
148 <     * @param initialCapacity the initial capacity for this priority queue.
149 <     * @param comparator the comparator used to order this priority queue.
148 >     * @param  comparator the comparator that will be used to order this
149 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
150 >     *         natural ordering} of the elements will be used.
151 >     * @since 1.8
152       */
153 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
153 >    public PriorityQueue(Comparator<? super E> comparator) {
154 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
155 >    }
156 >
157 >    /**
158 >     * Creates a {@code PriorityQueue} with the specified initial capacity
159 >     * that orders its elements according to the specified comparator.
160 >     *
161 >     * @param  initialCapacity the initial capacity for this priority queue
162 >     * @param  comparator the comparator that will be used to order this
163 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
164 >     *         natural ordering} of the elements will be used.
165 >     * @throws IllegalArgumentException if {@code initialCapacity} is
166 >     *         less than 1
167 >     */
168 >    public PriorityQueue(int initialCapacity,
169 >                         Comparator<? super E> comparator) {
170 >        // Note: This restriction of at least one is not actually needed,
171 >        // but continues for 1.5 compatibility
172          if (initialCapacity < 1)
173 <            initialCapacity = 1;
174 <        queue = new E[initialCapacity + 1];
173 >            throw new IllegalArgumentException();
174 >        this.queue = new Object[initialCapacity];
175          this.comparator = comparator;
176      }
177  
178      /**
179 <     * Create a new priority queue containing the elements in the specified
180 <     * collection.  The priority queue has an initial capacity of 110% of the
181 <     * size of the specified collection. If the specified collection
182 <     * implements the {@link Sorted} interface, the priority queue will be
183 <     * sorted according to the same comparator, or according to its elements'
184 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
179 >     * Creates a {@code PriorityQueue} containing the elements in the
180 >     * specified collection.  If the specified collection is an instance of
181 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
182 >     * priority queue will be ordered according to the same ordering.
183 >     * Otherwise, this priority queue will be ordered according to the
184 >     * {@linkplain Comparable natural ordering} of its elements.
185       *
186 <     * @param initialElements the collection whose elements are to be placed
187 <     *        into this priority queue.
186 >     * @param  c the collection whose elements are to be placed
187 >     *         into this priority queue
188       * @throws ClassCastException if elements of the specified collection
189       *         cannot be compared to one another according to the priority
190 <     *         queue's ordering.
191 <     * @throws NullPointerException if the specified collection or an
192 <     *         element of the specified collection is <tt>null</tt>.
193 <     */
194 <    public PriorityQueue(Collection<E> initialElements) {
195 <        int sz = initialElements.size();
196 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
197 <                                            Integer.MAX_VALUE - 1);
198 <        if (initialCapacity < 1)
199 <            initialCapacity = 1;
200 <        queue = new E[initialCapacity + 1];
190 >     *         queue's ordering
191 >     * @throws NullPointerException if the specified collection or any
192 >     *         of its elements are null
193 >     */
194 >    public PriorityQueue(Collection<? extends E> c) {
195 >        if (c instanceof SortedSet<?>) {
196 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
197 >            this.comparator = (Comparator<? super E>) ss.comparator();
198 >            initElementsFromCollection(ss);
199 >        }
200 >        else if (c instanceof PriorityQueue<?>) {
201 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
202 >            this.comparator = (Comparator<? super E>) pq.comparator();
203 >            initFromPriorityQueue(pq);
204 >        }
205 >        else {
206 >            this.comparator = null;
207 >            initFromCollection(c);
208 >        }
209 >    }
210  
211 <        if (initialElements instanceof Sorted) {
212 <            comparator = ((Sorted)initialElements).comparator();
213 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
214 <                queue[++size] = i.next();
211 >    /**
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified priority queue.  This priority queue will be
214 >     * ordered according to the same ordering as the given priority
215 >     * queue.
216 >     *
217 >     * @param  c the priority queue whose elements are to be placed
218 >     *         into this priority queue
219 >     * @throws ClassCastException if elements of {@code c} cannot be
220 >     *         compared to one another according to {@code c}'s
221 >     *         ordering
222 >     * @throws NullPointerException if the specified priority queue or any
223 >     *         of its elements are null
224 >     */
225 >    public PriorityQueue(PriorityQueue<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initFromPriorityQueue(c);
228 >    }
229 >
230 >    /**
231 >     * Creates a {@code PriorityQueue} containing the elements in the
232 >     * specified sorted set.   This priority queue will be ordered
233 >     * according to the same ordering as the given sorted set.
234 >     *
235 >     * @param  c the sorted set whose elements are to be placed
236 >     *         into this priority queue
237 >     * @throws ClassCastException if elements of the specified sorted
238 >     *         set cannot be compared to one another according to the
239 >     *         sorted set's ordering
240 >     * @throws NullPointerException if the specified sorted set or any
241 >     *         of its elements are null
242 >     */
243 >    public PriorityQueue(SortedSet<? extends E> c) {
244 >        this.comparator = (Comparator<? super E>) c.comparator();
245 >        initElementsFromCollection(c);
246 >    }
247 >
248 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
249 >    private static Object[] ensureNonEmpty(Object[] es) {
250 >        return (es.length > 0) ? es : new Object[1];
251 >    }
252 >
253 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
254 >        if (c.getClass() == PriorityQueue.class) {
255 >            this.queue = ensureNonEmpty(c.toArray());
256 >            this.size = c.size();
257          } else {
258 <            comparator = null;
138 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 <                add(i.next());
258 >            initFromCollection(c);
259          }
260      }
261  
262 <    // Queue Methods
262 >    private void initElementsFromCollection(Collection<? extends E> c) {
263 >        Object[] es = c.toArray();
264 >        int len = es.length;
265 >        // If c.toArray incorrectly doesn't return Object[], copy it.
266 >        if (es.getClass() != Object[].class)
267 >            es = Arrays.copyOf(es, len, Object[].class);
268 >        if (len == 1 || this.comparator != null)
269 >            for (Object e : es)
270 >                if (e == null)
271 >                    throw new NullPointerException();
272 >        this.queue = ensureNonEmpty(es);
273 >        this.size = len;
274 >    }
275  
276      /**
277 <     * Remove and return the minimal element from this priority queue if
147 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
148 <     * <i>minimal</i> is defined according to this priority queue's order.
277 >     * Initializes queue array with elements from the given Collection.
278       *
279 <     * @return the minimal element from this priority queue if it contains
151 <     *         one or more elements, otherwise <tt>null</tt>.
279 >     * @param c the collection
280       */
281 <    public E poll() {
282 <        if (size == 0)
283 <            return null;
284 <        return remove(1);
281 >    private void initFromCollection(Collection<? extends E> c) {
282 >        initElementsFromCollection(c);
283 >        heapify();
284 >    }
285 >
286 >    /**
287 >     * Increases the capacity of the array.
288 >     *
289 >     * @param minCapacity the desired minimum capacity
290 >     */
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
295 >                minCapacity - oldCapacity, /* minimum growth */
296 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
297 >                                           /* preferred growth */);
298 >        queue = Arrays.copyOf(queue, newCapacity);
299 >    }
300 >
301 >    /**
302 >     * Inserts the specified element into this priority queue.
303 >     *
304 >     * @return {@code true} (as specified by {@link Collection#add})
305 >     * @throws ClassCastException if the specified element cannot be
306 >     *         compared with elements currently in this priority queue
307 >     *         according to the priority queue's ordering
308 >     * @throws NullPointerException if the specified element is null
309 >     */
310 >    public boolean add(E e) {
311 >        return offer(e);
312      }
313  
314      /**
315 <     * Return, but do not remove, the minimal element from the priority queue,
161 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
162 <     * defined according to this priority queue's order.  This method returns
163 <     * the same object reference that would be returned by by the
164 <     * <tt>poll</tt> method.  The two methods differ in that this method
165 <     * does not remove the element from the priority queue.
315 >     * Inserts the specified element into this priority queue.
316       *
317 <     * @return the minimal element from this priority queue if it contains
318 <     *         one or more elements, otherwise <tt>null</tt>.
317 >     * @return {@code true} (as specified by {@link Queue#offer})
318 >     * @throws ClassCastException if the specified element cannot be
319 >     *         compared with elements currently in this priority queue
320 >     *         according to the priority queue's ordering
321 >     * @throws NullPointerException if the specified element is null
322       */
323 +    public boolean offer(E e) {
324 +        if (e == null)
325 +            throw new NullPointerException();
326 +        modCount++;
327 +        int i = size;
328 +        if (i >= queue.length)
329 +            grow(i + 1);
330 +        siftUp(i, e);
331 +        size = i + 1;
332 +        return true;
333 +    }
334 +
335      public E peek() {
336 <        return queue[1];
336 >        return (E) queue[0];
337      }
338  
339 <    // Collection Methods
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            final Object[] es = queue;
342 >            for (int i = 0, n = size; i < n; i++)
343 >                if (o.equals(es[i]))
344 >                    return i;
345 >        }
346 >        return -1;
347 >    }
348  
349      /**
350 <     * Removes a single instance of the specified element from this priority
351 <     * queue, if it is present.  Returns true if this collection contained the
352 <     * specified element (or equivalently, if this collection changed as a
350 >     * Removes a single instance of the specified element from this queue,
351 >     * if it is present.  More formally, removes an element {@code e} such
352 >     * that {@code o.equals(e)}, if this queue contains one or more such
353 >     * elements.  Returns {@code true} if and only if this queue contained
354 >     * the specified element (or equivalently, if this queue changed as a
355       * result of the call).
356       *
357 <     * @param o element to be removed from this collection, if present.
358 <     * @return <tt>true</tt> if this collection changed as a result of the
184 <     *         call
185 <     * @throws ClassCastException if the specified element cannot be compared
186 <     *            with elements currently in the priority queue according
187 <     *            to the priority queue's ordering.
188 <     * @throws NullPointerException if the specified element is null.
357 >     * @param o element to be removed from this queue, if present
358 >     * @return {@code true} if this queue changed as a result of the call
359       */
360 <    public boolean remove(Object element) {
361 <        if (element == null)
362 <            throw new NullPointerException();
360 >    public boolean remove(Object o) {
361 >        int i = indexOf(o);
362 >        if (i == -1)
363 >            return false;
364 >        else {
365 >            removeAt(i);
366 >            return true;
367 >        }
368 >    }
369  
370 <        if (comparator == null) {
371 <            for (int i = 1; i <= size; i++) {
372 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
373 <                    remove(i);
374 <                    return true;
375 <                }
376 <            }
377 <        } else {
378 <            for (int i = 1; i <= size; i++) {
379 <                if (comparator.compare(queue[i], (E) element) == 0) {
380 <                    remove(i);
205 <                    return true;
206 <                }
370 >    /**
371 >     * Identity-based version for use in Itr.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     */
375 >    void removeEq(Object o) {
376 >        final Object[] es = queue;
377 >        for (int i = 0, n = size; i < n; i++) {
378 >            if (o == es[i]) {
379 >                removeAt(i);
380 >                break;
381              }
382          }
209        return false;
383      }
384  
385      /**
386 <     * Returns an iterator over the elements in this priority queue.  The
387 <     * first element returned by this iterator is the same element that
388 <     * would be returned by a call to <tt>peek</tt>.
386 >     * Returns {@code true} if this queue contains the specified element.
387 >     * More formally, returns {@code true} if and only if this queue contains
388 >     * at least one element {@code e} such that {@code o.equals(e)}.
389       *
390 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
390 >     * @param o object to be checked for containment in this queue
391 >     * @return {@code true} if this queue contains the specified element
392 >     */
393 >    public boolean contains(Object o) {
394 >        return indexOf(o) >= 0;
395 >    }
396 >
397 >    /**
398 >     * Returns an array containing all of the elements in this queue.
399 >     * The elements are in no particular order.
400 >     *
401 >     * <p>The returned array will be "safe" in that no references to it are
402 >     * maintained by this queue.  (In other words, this method must allocate
403 >     * a new array).  The caller is thus free to modify the returned array.
404 >     *
405 >     * <p>This method acts as bridge between array-based and collection-based
406 >     * APIs.
407 >     *
408 >     * @return an array containing all of the elements in this queue
409 >     */
410 >    public Object[] toArray() {
411 >        return Arrays.copyOf(queue, size);
412 >    }
413 >
414 >    /**
415 >     * Returns an array containing all of the elements in this queue; the
416 >     * runtime type of the returned array is that of the specified array.
417 >     * The returned array elements are in no particular order.
418 >     * If the queue fits in the specified array, it is returned therein.
419 >     * Otherwise, a new array is allocated with the runtime type of the
420 >     * specified array and the size of this queue.
421 >     *
422 >     * <p>If the queue fits in the specified array with room to spare
423 >     * (i.e., the array has more elements than the queue), the element in
424 >     * the array immediately following the end of the collection is set to
425 >     * {@code null}.
426 >     *
427 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
428 >     * array-based and collection-based APIs.  Further, this method allows
429 >     * precise control over the runtime type of the output array, and may,
430 >     * under certain circumstances, be used to save allocation costs.
431 >     *
432 >     * <p>Suppose {@code x} is a queue known to contain only strings.
433 >     * The following code can be used to dump the queue into a newly
434 >     * allocated array of {@code String}:
435 >     *
436 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 >     *
438 >     * Note that {@code toArray(new Object[0])} is identical in function to
439 >     * {@code toArray()}.
440 >     *
441 >     * @param a the array into which the elements of the queue are to
442 >     *          be stored, if it is big enough; otherwise, a new array of the
443 >     *          same runtime type is allocated for this purpose.
444 >     * @return an array containing all of the elements in this queue
445 >     * @throws ArrayStoreException if the runtime type of the specified array
446 >     *         is not a supertype of the runtime type of every element in
447 >     *         this queue
448 >     * @throws NullPointerException if the specified array is null
449 >     */
450 >    public <T> T[] toArray(T[] a) {
451 >        final int size = this.size;
452 >        if (a.length < size)
453 >            // Make a new array of a's runtime type, but my contents:
454 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
455 >        System.arraycopy(queue, 0, a, 0, size);
456 >        if (a.length > size)
457 >            a[size] = null;
458 >        return a;
459 >    }
460 >
461 >    /**
462 >     * Returns an iterator over the elements in this queue. The iterator
463 >     * does not return the elements in any particular order.
464 >     *
465 >     * @return an iterator over the elements in this queue
466       */
467      public Iterator<E> iterator() {
468          return new Itr();
469      }
470  
471 <    private class Itr implements Iterator<E> {
471 >    private final class Itr implements Iterator<E> {
472          /**
473           * Index (into queue array) of element to be returned by
474           * subsequent call to next.
475           */
476 <        int cursor = 1;
476 >        private int cursor;
477 >
478 >        /**
479 >         * Index of element returned by most recent call to next,
480 >         * unless that element came from the forgetMeNot list.
481 >         * Set to -1 if element is deleted by a call to remove.
482 >         */
483 >        private int lastRet = -1;
484 >
485 >        /**
486 >         * A queue of elements that were moved from the unvisited portion of
487 >         * the heap into the visited portion as a result of "unlucky" element
488 >         * removals during the iteration.  (Unlucky element removals are those
489 >         * that require a siftup instead of a siftdown.)  We must visit all of
490 >         * the elements in this list to complete the iteration.  We do this
491 >         * after we've completed the "normal" iteration.
492 >         *
493 >         * We expect that most iterations, even those involving removals,
494 >         * will not need to store elements in this field.
495 >         */
496 >        private ArrayDeque<E> forgetMeNot;
497  
498          /**
499 <         * Index of element returned by most recent call to next or
500 <         * previous.  Reset to 0 if this element is deleted by a call
233 <         * to remove.
499 >         * Element returned by the most recent call to next iff that
500 >         * element was drawn from the forgetMeNot list.
501           */
502 <        int lastRet = 0;
502 >        private E lastRetElt;
503  
504          /**
505           * The modCount value that the iterator believes that the backing
506 <         * List should have.  If this expectation is violated, the iterator
506 >         * Queue should have.  If this expectation is violated, the iterator
507           * has detected concurrent modification.
508           */
509 <        int expectedModCount = modCount;
509 >        private int expectedModCount = modCount;
510 >
511 >        Itr() {}                        // prevent access constructor creation
512  
513          public boolean hasNext() {
514 <            return cursor <= size;
514 >            return cursor < size ||
515 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
516          }
517  
518          public E next() {
519 <            checkForComodification();
520 <            if (cursor > size)
521 <                throw new NoSuchElementException();
522 <            E result = queue[cursor];
523 <            lastRet = cursor++;
524 <            return result;
519 >            if (expectedModCount != modCount)
520 >                throw new ConcurrentModificationException();
521 >            if (cursor < size)
522 >                return (E) queue[lastRet = cursor++];
523 >            if (forgetMeNot != null) {
524 >                lastRet = -1;
525 >                lastRetElt = forgetMeNot.poll();
526 >                if (lastRetElt != null)
527 >                    return lastRetElt;
528 >            }
529 >            throw new NoSuchElementException();
530          }
531  
532          public void remove() {
533 <            if (lastRet == 0)
533 >            if (expectedModCount != modCount)
534 >                throw new ConcurrentModificationException();
535 >            if (lastRet != -1) {
536 >                E moved = PriorityQueue.this.removeAt(lastRet);
537 >                lastRet = -1;
538 >                if (moved == null)
539 >                    cursor--;
540 >                else {
541 >                    if (forgetMeNot == null)
542 >                        forgetMeNot = new ArrayDeque<>();
543 >                    forgetMeNot.add(moved);
544 >                }
545 >            } else if (lastRetElt != null) {
546 >                PriorityQueue.this.removeEq(lastRetElt);
547 >                lastRetElt = null;
548 >            } else {
549                  throw new IllegalStateException();
550 <            checkForComodification();
261 <
262 <            PriorityQueue.this.remove(lastRet);
263 <            if (lastRet < cursor)
264 <                cursor--;
265 <            lastRet = 0;
550 >            }
551              expectedModCount = modCount;
552          }
553 +    }
554  
555 <        final void checkForComodification() {
556 <            if (modCount != expectedModCount)
557 <                throw new ConcurrentModificationException();
555 >    public int size() {
556 >        return size;
557 >    }
558 >
559 >    /**
560 >     * Removes all of the elements from this priority queue.
561 >     * The queue will be empty after this call returns.
562 >     */
563 >    public void clear() {
564 >        modCount++;
565 >        final Object[] es = queue;
566 >        for (int i = 0, n = size; i < n; i++)
567 >            es[i] = null;
568 >        size = 0;
569 >    }
570 >
571 >    public E poll() {
572 >        final Object[] es;
573 >        final E result;
574 >
575 >        if ((result = (E) ((es = queue)[0])) != null) {
576 >            modCount++;
577 >            final int n;
578 >            final E x = (E) es[(n = --size)];
579 >            es[n] = null;
580 >            if (n > 0) {
581 >                final Comparator<? super E> cmp;
582 >                if ((cmp = comparator) == null)
583 >                    siftDownComparable(0, x, es, n);
584 >                else
585 >                    siftDownUsingComparator(0, x, es, n, cmp);
586 >            }
587          }
588 +        return result;
589      }
590  
591      /**
592 <     * Returns the number of elements in this priority queue.
592 >     * Removes the ith element from queue.
593       *
594 <     * @return the number of elements in this priority queue.
595 <     */
596 <    public int size() {
597 <        return size;
594 >     * Normally this method leaves the elements at up to i-1,
595 >     * inclusive, untouched.  Under these circumstances, it returns
596 >     * null.  Occasionally, in order to maintain the heap invariant,
597 >     * it must swap a later element of the list with one earlier than
598 >     * i.  Under these circumstances, this method returns the element
599 >     * that was previously at the end of the list and is now at some
600 >     * position before i. This fact is used by iterator.remove so as to
601 >     * avoid missing traversing elements.
602 >     */
603 >    E removeAt(int i) {
604 >        // assert i >= 0 && i < size;
605 >        final Object[] es = queue;
606 >        modCount++;
607 >        int s = --size;
608 >        if (s == i) // removed last element
609 >            es[i] = null;
610 >        else {
611 >            E moved = (E) es[s];
612 >            es[s] = null;
613 >            siftDown(i, moved);
614 >            if (es[i] == moved) {
615 >                siftUp(i, moved);
616 >                if (es[i] != moved)
617 >                    return moved;
618 >            }
619 >        }
620 >        return null;
621      }
622  
623      /**
624 <     * Add the specified element to this priority queue.
624 >     * Inserts item x at position k, maintaining heap invariant by
625 >     * promoting x up the tree until it is greater than or equal to
626 >     * its parent, or is the root.
627       *
628 <     * @param element the element to add.
629 <     * @return true
630 <     * @throws ClassCastException if the specified element cannot be compared
631 <     *            with elements currently in the priority queue according
632 <     *            to the priority queue's ordering.
633 <     * @throws NullPointerException if the specified element is null.
628 >     * To simplify and speed up coercions and comparisons, the
629 >     * Comparable and Comparator versions are separated into different
630 >     * methods that are otherwise identical. (Similarly for siftDown.)
631 >     *
632 >     * @param k the position to fill
633 >     * @param x the item to insert
634       */
635 <    public boolean offer(E element) {
636 <        if (element == null)
637 <            throw new NullPointerException();
638 <        modCount++;
635 >    private void siftUp(int k, E x) {
636 >        if (comparator != null)
637 >            siftUpUsingComparator(k, x, queue, comparator);
638 >        else
639 >            siftUpComparable(k, x, queue);
640 >    }
641  
642 <        // Grow backing store if necessary
643 <        if (++size == queue.length) {
644 <            E[] newQueue = new E[2 * queue.length];
645 <            System.arraycopy(queue, 0, newQueue, 0, size);
646 <            queue = newQueue;
642 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
643 >        Comparable<? super T> key = (Comparable<? super T>) x;
644 >        while (k > 0) {
645 >            int parent = (k - 1) >>> 1;
646 >            Object e = es[parent];
647 >            if (key.compareTo((T) e) >= 0)
648 >                break;
649 >            es[k] = e;
650 >            k = parent;
651          }
652 +        es[k] = key;
653 +    }
654  
655 <        queue[size] = element;
656 <        fixUp(size);
657 <        return true;
655 >    private static <T> void siftUpUsingComparator(
656 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
657 >        while (k > 0) {
658 >            int parent = (k - 1) >>> 1;
659 >            Object e = es[parent];
660 >            if (cmp.compare(x, (T) e) >= 0)
661 >                break;
662 >            es[k] = e;
663 >            k = parent;
664 >        }
665 >        es[k] = x;
666 >    }
667 >
668 >    /**
669 >     * Inserts item x at position k, maintaining heap invariant by
670 >     * demoting x down the tree repeatedly until it is less than or
671 >     * equal to its children or is a leaf.
672 >     *
673 >     * @param k the position to fill
674 >     * @param x the item to insert
675 >     */
676 >    private void siftDown(int k, E x) {
677 >        if (comparator != null)
678 >            siftDownUsingComparator(k, x, queue, size, comparator);
679 >        else
680 >            siftDownComparable(k, x, queue, size);
681 >    }
682 >
683 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
684 >        // assert n > 0;
685 >        Comparable<? super T> key = (Comparable<? super T>)x;
686 >        int half = n >>> 1;           // loop while a non-leaf
687 >        while (k < half) {
688 >            int child = (k << 1) + 1; // assume left child is least
689 >            Object c = es[child];
690 >            int right = child + 1;
691 >            if (right < n &&
692 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
693 >                c = es[child = right];
694 >            if (key.compareTo((T) c) <= 0)
695 >                break;
696 >            es[k] = c;
697 >            k = child;
698 >        }
699 >        es[k] = key;
700 >    }
701 >
702 >    private static <T> void siftDownUsingComparator(
703 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
704 >        // assert n > 0;
705 >        int half = n >>> 1;
706 >        while (k < half) {
707 >            int child = (k << 1) + 1;
708 >            Object c = es[child];
709 >            int right = child + 1;
710 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
711 >                c = es[child = right];
712 >            if (cmp.compare(x, (T) c) <= 0)
713 >                break;
714 >            es[k] = c;
715 >            k = child;
716 >        }
717 >        es[k] = x;
718      }
719  
720      /**
721 <     * Remove all elements from the priority queue.
721 >     * Establishes the heap invariant (described above) in the entire tree,
722 >     * assuming nothing about the order of the elements prior to the call.
723 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
724       */
725 <    public void clear() {
726 <        modCount++;
725 >    private void heapify() {
726 >        final Object[] es = queue;
727 >        int n = size, i = (n >>> 1) - 1;
728 >        final Comparator<? super E> cmp;
729 >        if ((cmp = comparator) == null)
730 >            for (; i >= 0; i--)
731 >                siftDownComparable(i, (E) es[i], es, n);
732 >        else
733 >            for (; i >= 0; i--)
734 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
735 >    }
736 >
737 >    /**
738 >     * Returns the comparator used to order the elements in this
739 >     * queue, or {@code null} if this queue is sorted according to
740 >     * the {@linkplain Comparable natural ordering} of its elements.
741 >     *
742 >     * @return the comparator used to order this queue, or
743 >     *         {@code null} if this queue is sorted according to the
744 >     *         natural ordering of its elements
745 >     */
746 >    public Comparator<? super E> comparator() {
747 >        return comparator;
748 >    }
749 >
750 >    /**
751 >     * Saves this queue to a stream (that is, serializes it).
752 >     *
753 >     * @param s the stream
754 >     * @throws java.io.IOException if an I/O error occurs
755 >     * @serialData The length of the array backing the instance is
756 >     *             emitted (int), followed by all of its elements
757 >     *             (each an {@code Object}) in the proper order.
758 >     */
759 >    // OPENJDK @java.io.Serial
760 >    private void writeObject(java.io.ObjectOutputStream s)
761 >        throws java.io.IOException {
762 >        // Write out element count, and any hidden stuff
763 >        s.defaultWriteObject();
764  
765 <        // Null out element references to prevent memory leak
766 <        for (int i=1; i<=size; i++)
319 <            queue[i] = null;
765 >        // Write out array length, for compatibility with 1.5 version
766 >        s.writeInt(Math.max(2, size + 1));
767  
768 <        size = 0;
768 >        // Write out all elements in the "proper order".
769 >        final Object[] es = queue;
770 >        for (int i = 0, n = size; i < n; i++)
771 >            s.writeObject(es[i]);
772      }
773  
774      /**
775 <     * Removes and returns the ith element from queue.  Recall
776 <     * that queue is one-based, so 1 <= i <= size.
775 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
776 >     * (that is, deserializes it).
777       *
778 <     * XXX: Could further special-case i==size, but is it worth it?
779 <     * XXX: Could special-case i==0, but is it worth it?
778 >     * @param s the stream
779 >     * @throws ClassNotFoundException if the class of a serialized object
780 >     *         could not be found
781 >     * @throws java.io.IOException if an I/O error occurs
782       */
783 <    private E remove(int i) {
784 <        assert i <= size;
785 <        modCount++;
783 >    // OPENJDK @java.io.Serial
784 >    private void readObject(java.io.ObjectInputStream s)
785 >        throws java.io.IOException, ClassNotFoundException {
786 >        // Read in size, and any hidden stuff
787 >        s.defaultReadObject();
788  
789 <        E result = queue[i];
790 <        queue[i] = queue[size];
791 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
792 <        if (i <= size)
793 <            fixDown(i);
794 <        return result;
789 >        // Read in (and discard) array length
790 >        s.readInt();
791 >
792 >        jsr166.Platform.checkArray(s, Object[].class, size);
793 >        final Object[] es = queue = new Object[Math.max(size, 1)];
794 >
795 >        // Read in all elements.
796 >        for (int i = 0, n = size; i < n; i++)
797 >            es[i] = s.readObject();
798 >
799 >        // Elements are guaranteed to be in "proper order", but the
800 >        // spec has never explained what that might be.
801 >        heapify();
802      }
803  
804      /**
805 <     * Establishes the heap invariant (described above) assuming the heap
806 <     * satisfies the invariant except possibly for the leaf-node indexed by k
807 <     * (which may have a nextExecutionTime less than its parent's).
808 <     *
809 <     * This method functions by "promoting" queue[k] up the hierarchy
810 <     * (by swapping it with its parent) repeatedly until queue[k]
811 <     * is greater than or equal to its parent.
812 <     */
813 <    private void fixUp(int k) {
814 <        if (comparator == null) {
815 <            while (k > 1) {
816 <                int j = k >> 1;
817 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
818 <                    break;
819 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
820 <                k = j;
805 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
806 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
807 >     * queue. The spliterator does not traverse elements in any particular order
808 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
809 >     *
810 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
811 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
812 >     * Overriding implementations should document the reporting of additional
813 >     * characteristic values.
814 >     *
815 >     * @return a {@code Spliterator} over the elements in this queue
816 >     * @since 1.8
817 >     */
818 >    public final Spliterator<E> spliterator() {
819 >        return new PriorityQueueSpliterator(0, -1, 0);
820 >    }
821 >
822 >    final class PriorityQueueSpliterator implements Spliterator<E> {
823 >        private int index;            // current index, modified on advance/split
824 >        private int fence;            // -1 until first use
825 >        private int expectedModCount; // initialized when fence set
826 >
827 >        /** Creates new spliterator covering the given range. */
828 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
829 >            this.index = origin;
830 >            this.fence = fence;
831 >            this.expectedModCount = expectedModCount;
832 >        }
833 >
834 >        private int getFence() { // initialize fence to size on first use
835 >            int hi;
836 >            if ((hi = fence) < 0) {
837 >                expectedModCount = modCount;
838 >                hi = fence = size;
839              }
840 <        } else {
841 <            while (k > 1) {
842 <                int j = k >> 1;
843 <                if (comparator.compare(queue[j], queue[k]) <= 0)
844 <                    break;
845 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
846 <                k = j;
840 >            return hi;
841 >        }
842 >
843 >        public PriorityQueueSpliterator trySplit() {
844 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
845 >            return (lo >= mid) ? null :
846 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
847 >        }
848 >
849 >        public void forEachRemaining(Consumer<? super E> action) {
850 >            if (action == null)
851 >                throw new NullPointerException();
852 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
853 >            final Object[] es = queue;
854 >            int i, hi; E e;
855 >            for (i = index, index = hi = fence; i < hi; i++) {
856 >                if ((e = (E) es[i]) == null)
857 >                    break;      // must be CME
858 >                action.accept(e);
859 >            }
860 >            if (modCount != expectedModCount)
861 >                throw new ConcurrentModificationException();
862 >        }
863 >
864 >        public boolean tryAdvance(Consumer<? super E> action) {
865 >            if (action == null)
866 >                throw new NullPointerException();
867 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
868 >            int i;
869 >            if ((i = index) < fence) {
870 >                index = i + 1;
871 >                E e;
872 >                if ((e = (E) queue[i]) == null
873 >                    || modCount != expectedModCount)
874 >                    throw new ConcurrentModificationException();
875 >                action.accept(e);
876 >                return true;
877              }
878 +            return false;
879 +        }
880 +
881 +        public long estimateSize() {
882 +            return getFence() - index;
883 +        }
884 +
885 +        public int characteristics() {
886 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
887          }
888      }
889  
890      /**
891 <     * Establishes the heap invariant (described above) in the subtree
892 <     * rooted at k, which is assumed to satisfy the heap invariant except
893 <     * possibly for node k itself (which may be greater than its children).
894 <     *
895 <     * This method functions by "demoting" queue[k] down the hierarchy
896 <     * (by swapping it with its smaller child) repeatedly until queue[k]
897 <     * is less than or equal to its children.
898 <     */
899 <    private void fixDown(int k) {
900 <        int j;
901 <        if (comparator == null) {
902 <            while ((j = k << 1) <= size) {
903 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
904 <                    j++; // j indexes smallest kid
905 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
906 <                    break;
907 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
908 <                k = j;
909 <            }
910 <        } else {
911 <            while ((j = k << 1) <= size) {
912 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
913 <                    j++; // j indexes smallest kid
914 <                if (comparator.compare(queue[k], queue[j]) <= 0)
915 <                    break;
916 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
917 <                k = j;
918 <            }
891 >     * @throws NullPointerException {@inheritDoc}
892 >     */
893 >    public boolean removeIf(Predicate<? super E> filter) {
894 >        Objects.requireNonNull(filter);
895 >        return bulkRemove(filter);
896 >    }
897 >
898 >    /**
899 >     * @throws NullPointerException {@inheritDoc}
900 >     */
901 >    public boolean removeAll(Collection<?> c) {
902 >        Objects.requireNonNull(c);
903 >        return bulkRemove(e -> c.contains(e));
904 >    }
905 >
906 >    /**
907 >     * @throws NullPointerException {@inheritDoc}
908 >     */
909 >    public boolean retainAll(Collection<?> c) {
910 >        Objects.requireNonNull(c);
911 >        return bulkRemove(e -> !c.contains(e));
912 >    }
913 >
914 >    // A tiny bit set implementation
915 >
916 >    private static long[] nBits(int n) {
917 >        return new long[((n - 1) >> 6) + 1];
918 >    }
919 >    private static void setBit(long[] bits, int i) {
920 >        bits[i >> 6] |= 1L << i;
921 >    }
922 >    private static boolean isClear(long[] bits, int i) {
923 >        return (bits[i >> 6] & (1L << i)) == 0;
924 >    }
925 >
926 >    /** Implementation of bulk remove methods. */
927 >    private boolean bulkRemove(Predicate<? super E> filter) {
928 >        final int expectedModCount = ++modCount;
929 >        final Object[] es = queue;
930 >        final int end = size;
931 >        int i;
932 >        // Optimize for initial run of survivors
933 >        for (i = 0; i < end && !filter.test((E) es[i]); i++)
934 >            ;
935 >        if (i >= end) {
936 >            if (modCount != expectedModCount)
937 >                throw new ConcurrentModificationException();
938 >            return false;
939          }
940 +        // Tolerate predicates that reentrantly access the collection for
941 +        // read (but writers still get CME), so traverse once to find
942 +        // elements to delete, a second pass to physically expunge.
943 +        final int beg = i;
944 +        final long[] deathRow = nBits(end - beg);
945 +        deathRow[0] = 1L;   // set bit 0
946 +        for (i = beg + 1; i < end; i++)
947 +            if (filter.test((E) es[i]))
948 +                setBit(deathRow, i - beg);
949 +        if (modCount != expectedModCount)
950 +            throw new ConcurrentModificationException();
951 +        int w = beg;
952 +        for (i = beg; i < end; i++)
953 +            if (isClear(deathRow, i - beg))
954 +                es[w++] = es[i];
955 +        for (i = size = w; i < end; i++)
956 +            es[i] = null;
957 +        heapify();
958 +        return true;
959      }
960  
961      /**
962 <     * Returns the comparator associated with this priority queue, or
406 <     * <tt>null</tt> if it uses its elements' natural ordering.
407 <     *
408 <     * @return the comparator associated with this priority queue, or
409 <     *         <tt>null</tt> if it uses its elements' natural ordering.
962 >     * @throws NullPointerException {@inheritDoc}
963       */
964 <    Comparator<E> comparator() {
965 <        return comparator;
964 >    public void forEach(Consumer<? super E> action) {
965 >        Objects.requireNonNull(action);
966 >        final int expectedModCount = modCount;
967 >        final Object[] es = queue;
968 >        for (int i = 0, n = size; i < n; i++)
969 >            action.accept((E) es[i]);
970 >        if (expectedModCount != modCount)
971 >            throw new ConcurrentModificationException();
972      }
973   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines