--- jsr166/src/main/java/util/PriorityQueue.java 2003/05/19 02:45:07 1.4 +++ jsr166/src/main/java/util/PriorityQueue.java 2019/08/30 18:05:39 1.132 @@ -1,414 +1,973 @@ - package java.util; - /* - * Todo + * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * - * 1) Make it serializable. + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. */ +package java.util; + +import java.util.function.Consumer; +import java.util.function.Predicate; +// OPENJDK import jdk.internal.access.SharedSecrets; +import jdk.internal.util.ArraysSupport; + /** - * An unbounded priority queue based on a priority heap. This queue orders - * elements according to the order specified at creation time. This order is - * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered - * either according to their natural order (see {@link Comparable}), or - * according to a {@link Comparator}, depending on which constructor is used. - * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the - * minimal element with respect to the specified ordering. If multiple - * these elements are tied for least value, no guarantees are made as to - * which of elements is returned. - * - *

Each priority queue has a capacity. The capacity is the size of - * the array used to store the elements on the queue. It is always at least - * as large as the queue size. As elements are added to a priority list, - * its capacity grows automatically. The details of the growth policy are not + * An unbounded priority {@linkplain Queue queue} based on a priority heap. + * The elements of the priority queue are ordered according to their + * {@linkplain Comparable natural ordering}, or by a {@link Comparator} + * provided at queue construction time, depending on which constructor is + * used. A priority queue does not permit {@code null} elements. + * A priority queue relying on natural ordering also does not permit + * insertion of non-comparable objects (doing so may result in + * {@code ClassCastException}). + * + *

The head of this queue is the least element + * with respect to the specified ordering. If multiple elements are + * tied for least value, the head is one of those elements -- ties are + * broken arbitrarily. The queue retrieval operations {@code poll}, + * {@code remove}, {@code peek}, and {@code element} access the + * element at the head of the queue. + * + *

A priority queue is unbounded, but has an internal + * capacity governing the size of an array used to store the + * elements on the queue. It is always at least as large as the queue + * size. As elements are added to a priority queue, its capacity + * grows automatically. The details of the growth policy are not * specified. * - *

Implementation note: this implementation provides O(log(n)) time for - * the offer, poll, remove() and add - * methods; linear time for the remove(Object) and - * contains methods; and constant time for the peek, - * element, and size methods. + *

This class and its iterator implement all of the + * optional methods of the {@link Collection} and {@link + * Iterator} interfaces. The Iterator provided in method {@link + * #iterator()} and the Spliterator provided in method {@link #spliterator()} + * are not guaranteed to traverse the elements of + * the priority queue in any particular order. If you need ordered + * traversal, consider using {@code Arrays.sort(pq.toArray())}. + * + *

Note that this implementation is not synchronized. + * Multiple threads should not access a {@code PriorityQueue} + * instance concurrently if any of the threads modifies the queue. + * Instead, use the thread-safe {@link + * java.util.concurrent.PriorityBlockingQueue} class. + * + *

Implementation note: this implementation provides + * O(log(n)) time for the enqueuing and dequeuing methods + * ({@code offer}, {@code poll}, {@code remove()} and {@code add}); + * linear time for the {@code remove(Object)} and {@code contains(Object)} + * methods; and constant time for the retrieval methods + * ({@code peek}, {@code element}, and {@code size}). * *

This class is a member of the - * + * * Java Collections Framework. + * + * @since 1.5 + * @author Josh Bloch, Doug Lea + * @param the type of elements held in this queue */ +@SuppressWarnings("unchecked") public class PriorityQueue extends AbstractQueue - implements Queue -{ + implements java.io.Serializable { + + // OPENJDK @java.io.Serial + private static final long serialVersionUID = -7720805057305804111L; + private static final int DEFAULT_INITIAL_CAPACITY = 11; /** - * Priority queue represented as a balanced binary heap: the two children - * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is - * ordered by comparator, or by the elements' natural ordering, if - * comparator is null: For each node n in the heap, and each descendant - * of n, d, n <= d. - * - * The element with the lowest value is in queue[1] (assuming the queue is - * nonempty). A one-based array is used in preference to the traditional - * zero-based array to simplify parent and child calculations. - * - * queue.length must be >= 2, even if size == 0. + * Priority queue represented as a balanced binary heap: the two + * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The + * priority queue is ordered by comparator, or by the elements' + * natural ordering, if comparator is null: For each node n in the + * heap and each descendant d of n, n <= d. The element with the + * lowest value is in queue[0], assuming the queue is nonempty. */ - private E[] queue; + transient Object[] queue; // non-private to simplify nested class access /** * The number of elements in the priority queue. */ - private int size = 0; + int size; /** * The comparator, or null if priority queue uses elements' * natural ordering. */ - private final Comparator comparator; + private final Comparator comparator; /** * The number of times this priority queue has been * structurally modified. See AbstractList for gory details. */ - private int modCount = 0; + transient int modCount; // non-private to simplify nested class access /** - * Create a new priority queue with the default initial capacity (11) - * that orders its elements according to their natural ordering. + * Creates a {@code PriorityQueue} with the default initial + * capacity (11) that orders its elements according to their + * {@linkplain Comparable natural ordering}. */ public PriorityQueue() { - this(DEFAULT_INITIAL_CAPACITY); + this(DEFAULT_INITIAL_CAPACITY, null); } /** - * Create a new priority queue with the specified initial capacity - * that orders its elements according to their natural ordering. + * Creates a {@code PriorityQueue} with the specified initial + * capacity that orders its elements according to their + * {@linkplain Comparable natural ordering}. * - * @param initialCapacity the initial capacity for this priority queue. + * @param initialCapacity the initial capacity for this priority queue + * @throws IllegalArgumentException if {@code initialCapacity} is less + * than 1 */ public PriorityQueue(int initialCapacity) { this(initialCapacity, null); } /** - * Create a new priority queue with the specified initial capacity (11) - * that orders its elements according to the specified comparator. + * Creates a {@code PriorityQueue} with the default initial capacity and + * whose elements are ordered according to the specified comparator. * - * @param initialCapacity the initial capacity for this priority queue. - * @param comparator the comparator used to order this priority queue. + * @param comparator the comparator that will be used to order this + * priority queue. If {@code null}, the {@linkplain Comparable + * natural ordering} of the elements will be used. + * @since 1.8 */ - public PriorityQueue(int initialCapacity, Comparator comparator) { + public PriorityQueue(Comparator comparator) { + this(DEFAULT_INITIAL_CAPACITY, comparator); + } + + /** + * Creates a {@code PriorityQueue} with the specified initial capacity + * that orders its elements according to the specified comparator. + * + * @param initialCapacity the initial capacity for this priority queue + * @param comparator the comparator that will be used to order this + * priority queue. If {@code null}, the {@linkplain Comparable + * natural ordering} of the elements will be used. + * @throws IllegalArgumentException if {@code initialCapacity} is + * less than 1 + */ + public PriorityQueue(int initialCapacity, + Comparator comparator) { + // Note: This restriction of at least one is not actually needed, + // but continues for 1.5 compatibility if (initialCapacity < 1) - initialCapacity = 1; - queue = new E[initialCapacity + 1]; + throw new IllegalArgumentException(); + this.queue = new Object[initialCapacity]; this.comparator = comparator; } /** - * Create a new priority queue containing the elements in the specified - * collection. The priority queue has an initial capacity of 110% of the - * size of the specified collection. If the specified collection - * implements the {@link Sorted} interface, the priority queue will be - * sorted according to the same comparator, or according to its elements' - * natural order if the collection is sorted according to its elements' - * natural order. If the specified collection does not implement the - * Sorted interface, the priority queue is ordered according to - * its elements' natural order. + * Creates a {@code PriorityQueue} containing the elements in the + * specified collection. If the specified collection is an instance of + * a {@link SortedSet} or is another {@code PriorityQueue}, this + * priority queue will be ordered according to the same ordering. + * Otherwise, this priority queue will be ordered according to the + * {@linkplain Comparable natural ordering} of its elements. * - * @param initialElements the collection whose elements are to be placed - * into this priority queue. + * @param c the collection whose elements are to be placed + * into this priority queue * @throws ClassCastException if elements of the specified collection * cannot be compared to one another according to the priority - * queue's ordering. - * @throws NullPointerException if the specified collection or an - * element of the specified collection is null. - */ - public PriorityQueue(Collection initialElements) { - int sz = initialElements.size(); - int initialCapacity = (int)Math.min((sz * 110L) / 100, - Integer.MAX_VALUE - 1); - if (initialCapacity < 1) - initialCapacity = 1; - queue = new E[initialCapacity + 1]; + * queue's ordering + * @throws NullPointerException if the specified collection or any + * of its elements are null + */ + public PriorityQueue(Collection c) { + if (c instanceof SortedSet) { + SortedSet ss = (SortedSet) c; + this.comparator = (Comparator) ss.comparator(); + initElementsFromCollection(ss); + } + else if (c instanceof PriorityQueue) { + PriorityQueue pq = (PriorityQueue) c; + this.comparator = (Comparator) pq.comparator(); + initFromPriorityQueue(pq); + } + else { + this.comparator = null; + initFromCollection(c); + } + } - if (initialElements instanceof Sorted) { - comparator = ((Sorted)initialElements).comparator(); - for (Iterator i = initialElements.iterator(); i.hasNext(); ) - queue[++size] = i.next(); + /** + * Creates a {@code PriorityQueue} containing the elements in the + * specified priority queue. This priority queue will be + * ordered according to the same ordering as the given priority + * queue. + * + * @param c the priority queue whose elements are to be placed + * into this priority queue + * @throws ClassCastException if elements of {@code c} cannot be + * compared to one another according to {@code c}'s + * ordering + * @throws NullPointerException if the specified priority queue or any + * of its elements are null + */ + public PriorityQueue(PriorityQueue c) { + this.comparator = (Comparator) c.comparator(); + initFromPriorityQueue(c); + } + + /** + * Creates a {@code PriorityQueue} containing the elements in the + * specified sorted set. This priority queue will be ordered + * according to the same ordering as the given sorted set. + * + * @param c the sorted set whose elements are to be placed + * into this priority queue + * @throws ClassCastException if elements of the specified sorted + * set cannot be compared to one another according to the + * sorted set's ordering + * @throws NullPointerException if the specified sorted set or any + * of its elements are null + */ + public PriorityQueue(SortedSet c) { + this.comparator = (Comparator) c.comparator(); + initElementsFromCollection(c); + } + + /** Ensures that queue[0] exists, helping peek() and poll(). */ + private static Object[] ensureNonEmpty(Object[] es) { + return (es.length > 0) ? es : new Object[1]; + } + + private void initFromPriorityQueue(PriorityQueue c) { + if (c.getClass() == PriorityQueue.class) { + this.queue = ensureNonEmpty(c.toArray()); + this.size = c.size(); } else { - comparator = null; - for (Iterator i = initialElements.iterator(); i.hasNext(); ) - add(i.next()); + initFromCollection(c); } } - // Queue Methods + private void initElementsFromCollection(Collection c) { + Object[] es = c.toArray(); + int len = es.length; + // If c.toArray incorrectly doesn't return Object[], copy it. + if (es.getClass() != Object[].class) + es = Arrays.copyOf(es, len, Object[].class); + if (len == 1 || this.comparator != null) + for (Object e : es) + if (e == null) + throw new NullPointerException(); + this.queue = ensureNonEmpty(es); + this.size = len; + } /** - * Remove and return the minimal element from this priority queue if - * it contains one or more elements, otherwise null. The term - * minimal is defined according to this priority queue's order. + * Initializes queue array with elements from the given Collection. * - * @return the minimal element from this priority queue if it contains - * one or more elements, otherwise null. + * @param c the collection */ - public E poll() { - if (size == 0) - return null; - return remove(1); + private void initFromCollection(Collection c) { + initElementsFromCollection(c); + heapify(); + } + + /** + * Increases the capacity of the array. + * + * @param minCapacity the desired minimum capacity + */ + private void grow(int minCapacity) { + int oldCapacity = queue.length; + // Double size if small; else grow by 50% + int newCapacity = ArraysSupport.newLength(oldCapacity, + minCapacity - oldCapacity, /* minimum growth */ + oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1 + /* preferred growth */); + queue = Arrays.copyOf(queue, newCapacity); + } + + /** + * Inserts the specified element into this priority queue. + * + * @return {@code true} (as specified by {@link Collection#add}) + * @throws ClassCastException if the specified element cannot be + * compared with elements currently in this priority queue + * according to the priority queue's ordering + * @throws NullPointerException if the specified element is null + */ + public boolean add(E e) { + return offer(e); } /** - * Return, but do not remove, the minimal element from the priority queue, - * or null if the queue is empty. The term minimal is - * defined according to this priority queue's order. This method returns - * the same object reference that would be returned by by the - * poll method. The two methods differ in that this method - * does not remove the element from the priority queue. + * Inserts the specified element into this priority queue. * - * @return the minimal element from this priority queue if it contains - * one or more elements, otherwise null. + * @return {@code true} (as specified by {@link Queue#offer}) + * @throws ClassCastException if the specified element cannot be + * compared with elements currently in this priority queue + * according to the priority queue's ordering + * @throws NullPointerException if the specified element is null */ + public boolean offer(E e) { + if (e == null) + throw new NullPointerException(); + modCount++; + int i = size; + if (i >= queue.length) + grow(i + 1); + siftUp(i, e); + size = i + 1; + return true; + } + public E peek() { - return queue[1]; + return (E) queue[0]; } - // Collection Methods + private int indexOf(Object o) { + if (o != null) { + final Object[] es = queue; + for (int i = 0, n = size; i < n; i++) + if (o.equals(es[i])) + return i; + } + return -1; + } /** - * Removes a single instance of the specified element from this priority - * queue, if it is present. Returns true if this collection contained the - * specified element (or equivalently, if this collection changed as a + * Removes a single instance of the specified element from this queue, + * if it is present. More formally, removes an element {@code e} such + * that {@code o.equals(e)}, if this queue contains one or more such + * elements. Returns {@code true} if and only if this queue contained + * the specified element (or equivalently, if this queue changed as a * result of the call). * - * @param o element to be removed from this collection, if present. - * @return true if this collection changed as a result of the - * call - * @throws ClassCastException if the specified element cannot be compared - * with elements currently in the priority queue according - * to the priority queue's ordering. - * @throws NullPointerException if the specified element is null. + * @param o element to be removed from this queue, if present + * @return {@code true} if this queue changed as a result of the call */ - public boolean remove(Object element) { - if (element == null) - throw new NullPointerException(); + public boolean remove(Object o) { + int i = indexOf(o); + if (i == -1) + return false; + else { + removeAt(i); + return true; + } + } - if (comparator == null) { - for (int i = 1; i <= size; i++) { - if (((Comparable)queue[i]).compareTo(element) == 0) { - remove(i); - return true; - } - } - } else { - for (int i = 1; i <= size; i++) { - if (comparator.compare(queue[i], (E) element) == 0) { - remove(i); - return true; - } + /** + * Identity-based version for use in Itr.remove. + * + * @param o element to be removed from this queue, if present + */ + void removeEq(Object o) { + final Object[] es = queue; + for (int i = 0, n = size; i < n; i++) { + if (o == es[i]) { + removeAt(i); + break; } } - return false; } /** - * Returns an iterator over the elements in this priority queue. The - * first element returned by this iterator is the same element that - * would be returned by a call to peek. + * Returns {@code true} if this queue contains the specified element. + * More formally, returns {@code true} if and only if this queue contains + * at least one element {@code e} such that {@code o.equals(e)}. * - * @return an Iterator over the elements in this priority queue. + * @param o object to be checked for containment in this queue + * @return {@code true} if this queue contains the specified element + */ + public boolean contains(Object o) { + return indexOf(o) >= 0; + } + + /** + * Returns an array containing all of the elements in this queue. + * The elements are in no particular order. + * + *

The returned array will be "safe" in that no references to it are + * maintained by this queue. (In other words, this method must allocate + * a new array). The caller is thus free to modify the returned array. + * + *

This method acts as bridge between array-based and collection-based + * APIs. + * + * @return an array containing all of the elements in this queue + */ + public Object[] toArray() { + return Arrays.copyOf(queue, size); + } + + /** + * Returns an array containing all of the elements in this queue; the + * runtime type of the returned array is that of the specified array. + * The returned array elements are in no particular order. + * If the queue fits in the specified array, it is returned therein. + * Otherwise, a new array is allocated with the runtime type of the + * specified array and the size of this queue. + * + *

If the queue fits in the specified array with room to spare + * (i.e., the array has more elements than the queue), the element in + * the array immediately following the end of the collection is set to + * {@code null}. + * + *

Like the {@link #toArray()} method, this method acts as bridge between + * array-based and collection-based APIs. Further, this method allows + * precise control over the runtime type of the output array, and may, + * under certain circumstances, be used to save allocation costs. + * + *

Suppose {@code x} is a queue known to contain only strings. + * The following code can be used to dump the queue into a newly + * allocated array of {@code String}: + * + *

 {@code String[] y = x.toArray(new String[0]);}
+ * + * Note that {@code toArray(new Object[0])} is identical in function to + * {@code toArray()}. + * + * @param a the array into which the elements of the queue are to + * be stored, if it is big enough; otherwise, a new array of the + * same runtime type is allocated for this purpose. + * @return an array containing all of the elements in this queue + * @throws ArrayStoreException if the runtime type of the specified array + * is not a supertype of the runtime type of every element in + * this queue + * @throws NullPointerException if the specified array is null + */ + public T[] toArray(T[] a) { + final int size = this.size; + if (a.length < size) + // Make a new array of a's runtime type, but my contents: + return (T[]) Arrays.copyOf(queue, size, a.getClass()); + System.arraycopy(queue, 0, a, 0, size); + if (a.length > size) + a[size] = null; + return a; + } + + /** + * Returns an iterator over the elements in this queue. The iterator + * does not return the elements in any particular order. + * + * @return an iterator over the elements in this queue */ public Iterator iterator() { return new Itr(); } - private class Itr implements Iterator { + private final class Itr implements Iterator { /** * Index (into queue array) of element to be returned by * subsequent call to next. */ - int cursor = 1; + private int cursor; + + /** + * Index of element returned by most recent call to next, + * unless that element came from the forgetMeNot list. + * Set to -1 if element is deleted by a call to remove. + */ + private int lastRet = -1; + + /** + * A queue of elements that were moved from the unvisited portion of + * the heap into the visited portion as a result of "unlucky" element + * removals during the iteration. (Unlucky element removals are those + * that require a siftup instead of a siftdown.) We must visit all of + * the elements in this list to complete the iteration. We do this + * after we've completed the "normal" iteration. + * + * We expect that most iterations, even those involving removals, + * will not need to store elements in this field. + */ + private ArrayDeque forgetMeNot; /** - * Index of element returned by most recent call to next or - * previous. Reset to 0 if this element is deleted by a call - * to remove. + * Element returned by the most recent call to next iff that + * element was drawn from the forgetMeNot list. */ - int lastRet = 0; + private E lastRetElt; /** * The modCount value that the iterator believes that the backing - * List should have. If this expectation is violated, the iterator + * Queue should have. If this expectation is violated, the iterator * has detected concurrent modification. */ - int expectedModCount = modCount; + private int expectedModCount = modCount; + + Itr() {} // prevent access constructor creation public boolean hasNext() { - return cursor <= size; + return cursor < size || + (forgetMeNot != null && !forgetMeNot.isEmpty()); } public E next() { - checkForComodification(); - if (cursor > size) - throw new NoSuchElementException(); - E result = queue[cursor]; - lastRet = cursor++; - return result; + if (expectedModCount != modCount) + throw new ConcurrentModificationException(); + if (cursor < size) + return (E) queue[lastRet = cursor++]; + if (forgetMeNot != null) { + lastRet = -1; + lastRetElt = forgetMeNot.poll(); + if (lastRetElt != null) + return lastRetElt; + } + throw new NoSuchElementException(); } public void remove() { - if (lastRet == 0) + if (expectedModCount != modCount) + throw new ConcurrentModificationException(); + if (lastRet != -1) { + E moved = PriorityQueue.this.removeAt(lastRet); + lastRet = -1; + if (moved == null) + cursor--; + else { + if (forgetMeNot == null) + forgetMeNot = new ArrayDeque<>(); + forgetMeNot.add(moved); + } + } else if (lastRetElt != null) { + PriorityQueue.this.removeEq(lastRetElt); + lastRetElt = null; + } else { throw new IllegalStateException(); - checkForComodification(); - - PriorityQueue.this.remove(lastRet); - if (lastRet < cursor) - cursor--; - lastRet = 0; + } expectedModCount = modCount; } + } - final void checkForComodification() { - if (modCount != expectedModCount) - throw new ConcurrentModificationException(); + public int size() { + return size; + } + + /** + * Removes all of the elements from this priority queue. + * The queue will be empty after this call returns. + */ + public void clear() { + modCount++; + final Object[] es = queue; + for (int i = 0, n = size; i < n; i++) + es[i] = null; + size = 0; + } + + public E poll() { + final Object[] es; + final E result; + + if ((result = (E) ((es = queue)[0])) != null) { + modCount++; + final int n; + final E x = (E) es[(n = --size)]; + es[n] = null; + if (n > 0) { + final Comparator cmp; + if ((cmp = comparator) == null) + siftDownComparable(0, x, es, n); + else + siftDownUsingComparator(0, x, es, n, cmp); + } } + return result; } /** - * Returns the number of elements in this priority queue. + * Removes the ith element from queue. * - * @return the number of elements in this priority queue. - */ - public int size() { - return size; + * Normally this method leaves the elements at up to i-1, + * inclusive, untouched. Under these circumstances, it returns + * null. Occasionally, in order to maintain the heap invariant, + * it must swap a later element of the list with one earlier than + * i. Under these circumstances, this method returns the element + * that was previously at the end of the list and is now at some + * position before i. This fact is used by iterator.remove so as to + * avoid missing traversing elements. + */ + E removeAt(int i) { + // assert i >= 0 && i < size; + final Object[] es = queue; + modCount++; + int s = --size; + if (s == i) // removed last element + es[i] = null; + else { + E moved = (E) es[s]; + es[s] = null; + siftDown(i, moved); + if (es[i] == moved) { + siftUp(i, moved); + if (es[i] != moved) + return moved; + } + } + return null; } /** - * Add the specified element to this priority queue. + * Inserts item x at position k, maintaining heap invariant by + * promoting x up the tree until it is greater than or equal to + * its parent, or is the root. * - * @param element the element to add. - * @return true - * @throws ClassCastException if the specified element cannot be compared - * with elements currently in the priority queue according - * to the priority queue's ordering. - * @throws NullPointerException if the specified element is null. + * To simplify and speed up coercions and comparisons, the + * Comparable and Comparator versions are separated into different + * methods that are otherwise identical. (Similarly for siftDown.) + * + * @param k the position to fill + * @param x the item to insert */ - public boolean offer(E element) { - if (element == null) - throw new NullPointerException(); - modCount++; + private void siftUp(int k, E x) { + if (comparator != null) + siftUpUsingComparator(k, x, queue, comparator); + else + siftUpComparable(k, x, queue); + } - // Grow backing store if necessary - if (++size == queue.length) { - E[] newQueue = new E[2 * queue.length]; - System.arraycopy(queue, 0, newQueue, 0, size); - queue = newQueue; + private static void siftUpComparable(int k, T x, Object[] es) { + Comparable key = (Comparable) x; + while (k > 0) { + int parent = (k - 1) >>> 1; + Object e = es[parent]; + if (key.compareTo((T) e) >= 0) + break; + es[k] = e; + k = parent; } + es[k] = key; + } - queue[size] = element; - fixUp(size); - return true; + private static void siftUpUsingComparator( + int k, T x, Object[] es, Comparator cmp) { + while (k > 0) { + int parent = (k - 1) >>> 1; + Object e = es[parent]; + if (cmp.compare(x, (T) e) >= 0) + break; + es[k] = e; + k = parent; + } + es[k] = x; + } + + /** + * Inserts item x at position k, maintaining heap invariant by + * demoting x down the tree repeatedly until it is less than or + * equal to its children or is a leaf. + * + * @param k the position to fill + * @param x the item to insert + */ + private void siftDown(int k, E x) { + if (comparator != null) + siftDownUsingComparator(k, x, queue, size, comparator); + else + siftDownComparable(k, x, queue, size); + } + + private static void siftDownComparable(int k, T x, Object[] es, int n) { + // assert n > 0; + Comparable key = (Comparable)x; + int half = n >>> 1; // loop while a non-leaf + while (k < half) { + int child = (k << 1) + 1; // assume left child is least + Object c = es[child]; + int right = child + 1; + if (right < n && + ((Comparable) c).compareTo((T) es[right]) > 0) + c = es[child = right]; + if (key.compareTo((T) c) <= 0) + break; + es[k] = c; + k = child; + } + es[k] = key; + } + + private static void siftDownUsingComparator( + int k, T x, Object[] es, int n, Comparator cmp) { + // assert n > 0; + int half = n >>> 1; + while (k < half) { + int child = (k << 1) + 1; + Object c = es[child]; + int right = child + 1; + if (right < n && cmp.compare((T) c, (T) es[right]) > 0) + c = es[child = right]; + if (cmp.compare(x, (T) c) <= 0) + break; + es[k] = c; + k = child; + } + es[k] = x; } /** - * Remove all elements from the priority queue. + * Establishes the heap invariant (described above) in the entire tree, + * assuming nothing about the order of the elements prior to the call. + * This classic algorithm due to Floyd (1964) is known to be O(size). */ - public void clear() { - modCount++; + private void heapify() { + final Object[] es = queue; + int n = size, i = (n >>> 1) - 1; + final Comparator cmp; + if ((cmp = comparator) == null) + for (; i >= 0; i--) + siftDownComparable(i, (E) es[i], es, n); + else + for (; i >= 0; i--) + siftDownUsingComparator(i, (E) es[i], es, n, cmp); + } + + /** + * Returns the comparator used to order the elements in this + * queue, or {@code null} if this queue is sorted according to + * the {@linkplain Comparable natural ordering} of its elements. + * + * @return the comparator used to order this queue, or + * {@code null} if this queue is sorted according to the + * natural ordering of its elements + */ + public Comparator comparator() { + return comparator; + } + + /** + * Saves this queue to a stream (that is, serializes it). + * + * @param s the stream + * @throws java.io.IOException if an I/O error occurs + * @serialData The length of the array backing the instance is + * emitted (int), followed by all of its elements + * (each an {@code Object}) in the proper order. + */ + // OPENJDK @java.io.Serial + private void writeObject(java.io.ObjectOutputStream s) + throws java.io.IOException { + // Write out element count, and any hidden stuff + s.defaultWriteObject(); - // Null out element references to prevent memory leak - for (int i=1; i<=size; i++) - queue[i] = null; + // Write out array length, for compatibility with 1.5 version + s.writeInt(Math.max(2, size + 1)); - size = 0; + // Write out all elements in the "proper order". + final Object[] es = queue; + for (int i = 0, n = size; i < n; i++) + s.writeObject(es[i]); } /** - * Removes and returns the ith element from queue. Recall - * that queue is one-based, so 1 <= i <= size. + * Reconstitutes the {@code PriorityQueue} instance from a stream + * (that is, deserializes it). * - * XXX: Could further special-case i==size, but is it worth it? - * XXX: Could special-case i==0, but is it worth it? + * @param s the stream + * @throws ClassNotFoundException if the class of a serialized object + * could not be found + * @throws java.io.IOException if an I/O error occurs */ - private E remove(int i) { - assert i <= size; - modCount++; + // OPENJDK @java.io.Serial + private void readObject(java.io.ObjectInputStream s) + throws java.io.IOException, ClassNotFoundException { + // Read in size, and any hidden stuff + s.defaultReadObject(); - E result = queue[i]; - queue[i] = queue[size]; - queue[size--] = null; // Drop extra ref to prevent memory leak - if (i <= size) - fixDown(i); - return result; + // Read in (and discard) array length + s.readInt(); + + jsr166.Platform.checkArray(s, Object[].class, size); + final Object[] es = queue = new Object[Math.max(size, 1)]; + + // Read in all elements. + for (int i = 0, n = size; i < n; i++) + es[i] = s.readObject(); + + // Elements are guaranteed to be in "proper order", but the + // spec has never explained what that might be. + heapify(); } /** - * Establishes the heap invariant (described above) assuming the heap - * satisfies the invariant except possibly for the leaf-node indexed by k - * (which may have a nextExecutionTime less than its parent's). - * - * This method functions by "promoting" queue[k] up the hierarchy - * (by swapping it with its parent) repeatedly until queue[k] - * is greater than or equal to its parent. - */ - private void fixUp(int k) { - if (comparator == null) { - while (k > 1) { - int j = k >> 1; - if (((Comparable)queue[j]).compareTo(queue[k]) <= 0) - break; - E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp; - k = j; + * Creates a late-binding + * and fail-fast {@link Spliterator} over the elements in this + * queue. The spliterator does not traverse elements in any particular order + * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported). + * + *

The {@code Spliterator} reports {@link Spliterator#SIZED}, + * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}. + * Overriding implementations should document the reporting of additional + * characteristic values. + * + * @return a {@code Spliterator} over the elements in this queue + * @since 1.8 + */ + public final Spliterator spliterator() { + return new PriorityQueueSpliterator(0, -1, 0); + } + + final class PriorityQueueSpliterator implements Spliterator { + private int index; // current index, modified on advance/split + private int fence; // -1 until first use + private int expectedModCount; // initialized when fence set + + /** Creates new spliterator covering the given range. */ + PriorityQueueSpliterator(int origin, int fence, int expectedModCount) { + this.index = origin; + this.fence = fence; + this.expectedModCount = expectedModCount; + } + + private int getFence() { // initialize fence to size on first use + int hi; + if ((hi = fence) < 0) { + expectedModCount = modCount; + hi = fence = size; } - } else { - while (k > 1) { - int j = k >> 1; - if (comparator.compare(queue[j], queue[k]) <= 0) - break; - E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp; - k = j; + return hi; + } + + public PriorityQueueSpliterator trySplit() { + int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; + return (lo >= mid) ? null : + new PriorityQueueSpliterator(lo, index = mid, expectedModCount); + } + + public void forEachRemaining(Consumer action) { + if (action == null) + throw new NullPointerException(); + if (fence < 0) { fence = size; expectedModCount = modCount; } + final Object[] es = queue; + int i, hi; E e; + for (i = index, index = hi = fence; i < hi; i++) { + if ((e = (E) es[i]) == null) + break; // must be CME + action.accept(e); + } + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + } + + public boolean tryAdvance(Consumer action) { + if (action == null) + throw new NullPointerException(); + if (fence < 0) { fence = size; expectedModCount = modCount; } + int i; + if ((i = index) < fence) { + index = i + 1; + E e; + if ((e = (E) queue[i]) == null + || modCount != expectedModCount) + throw new ConcurrentModificationException(); + action.accept(e); + return true; } + return false; + } + + public long estimateSize() { + return getFence() - index; + } + + public int characteristics() { + return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL; } } /** - * Establishes the heap invariant (described above) in the subtree - * rooted at k, which is assumed to satisfy the heap invariant except - * possibly for node k itself (which may be greater than its children). - * - * This method functions by "demoting" queue[k] down the hierarchy - * (by swapping it with its smaller child) repeatedly until queue[k] - * is less than or equal to its children. - */ - private void fixDown(int k) { - int j; - if (comparator == null) { - while ((j = k << 1) <= size) { - if (j 0) - j++; // j indexes smallest kid - if (((Comparable)queue[k]).compareTo(queue[j]) <= 0) - break; - E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp; - k = j; - } - } else { - while ((j = k << 1) <= size) { - if (j < size && comparator.compare(queue[j], queue[j+1]) > 0) - j++; // j indexes smallest kid - if (comparator.compare(queue[k], queue[j]) <= 0) - break; - E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp; - k = j; - } + * @throws NullPointerException {@inheritDoc} + */ + public boolean removeIf(Predicate filter) { + Objects.requireNonNull(filter); + return bulkRemove(filter); + } + + /** + * @throws NullPointerException {@inheritDoc} + */ + public boolean removeAll(Collection c) { + Objects.requireNonNull(c); + return bulkRemove(e -> c.contains(e)); + } + + /** + * @throws NullPointerException {@inheritDoc} + */ + public boolean retainAll(Collection c) { + Objects.requireNonNull(c); + return bulkRemove(e -> !c.contains(e)); + } + + // A tiny bit set implementation + + private static long[] nBits(int n) { + return new long[((n - 1) >> 6) + 1]; + } + private static void setBit(long[] bits, int i) { + bits[i >> 6] |= 1L << i; + } + private static boolean isClear(long[] bits, int i) { + return (bits[i >> 6] & (1L << i)) == 0; + } + + /** Implementation of bulk remove methods. */ + private boolean bulkRemove(Predicate filter) { + final int expectedModCount = ++modCount; + final Object[] es = queue; + final int end = size; + int i; + // Optimize for initial run of survivors + for (i = 0; i < end && !filter.test((E) es[i]); i++) + ; + if (i >= end) { + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + return false; } + // Tolerate predicates that reentrantly access the collection for + // read (but writers still get CME), so traverse once to find + // elements to delete, a second pass to physically expunge. + final int beg = i; + final long[] deathRow = nBits(end - beg); + deathRow[0] = 1L; // set bit 0 + for (i = beg + 1; i < end; i++) + if (filter.test((E) es[i])) + setBit(deathRow, i - beg); + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + int w = beg; + for (i = beg; i < end; i++) + if (isClear(deathRow, i - beg)) + es[w++] = es[i]; + for (i = size = w; i < end; i++) + es[i] = null; + heapify(); + return true; } /** - * Returns the comparator associated with this priority queue, or - * null if it uses its elements' natural ordering. - * - * @return the comparator associated with this priority queue, or - * null if it uses its elements' natural ordering. + * @throws NullPointerException {@inheritDoc} */ - Comparator comparator() { - return comparator; + public void forEach(Consumer action) { + Objects.requireNonNull(action); + final int expectedModCount = modCount; + final Object[] es = queue; + for (int i = 0, n = size; i < n; i++) + action.accept((E) es[i]); + if (expectedModCount != modCount) + throw new ConcurrentModificationException(); } }