ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.41 by dl, Sat Sep 13 18:51:06 2003 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  This queue orders elements according to an order specified
13 > * at construction time, which is specified either according to their
14 > * <i>natural order</i> (see {@link Comparable}), or according to a
15 > * {@link java.util.Comparator}, depending on which constructor is
16 > * used. A priority queue does not permit <tt>null</tt> elements.
17 > *
18 > * <p>The <em>head</em> of this queue is the <em>least</em> element
19 > * with respect to the specified ordering.  If multiple elements are
20 > * tied for least value, the head is one of those elements -- ties are
21 > * broken arbitrarily.  The {@link #remove()} and {@link #poll()}
22 > * methods remove and return the head of the queue, and the {@link
23 > * #element()} and {@link #peek()} methods return, but do not delete,
24 > * the head of the queue.
25 > *
26 > * <p>A priority queue is unbounded, but has an internal
27 > * <i>capacity</i> governing the size of an array used to store the
28 > * elements on the queue.  It is always at least as large as the queue
29 > * size.  As elements are added to a priority queue, its capacity
30 > * grows automatically.  The details of the growth policy are not
31 > * specified.
32 > *
33 > * <p>This class implements all of the <em>optional</em> methods of
34 > * the {@link Collection} and {@link Iterator} interfaces.  The
35 > * Iterator provided in method {@link #iterator()} is <em>not</em>
36 > * guaranteed to traverse the elements of the PriorityQueue in any
37 > * particular order. If you need ordered traversal, consider using
38 > * <tt>Arrays.sort(pq.toArray())</tt>.
39 > *
40 > * <p> <strong>Note that this implementation is not synchronized.</strong>
41 > * Multiple threads should not access a <tt>PriorityQueue</tt>
42 > * instance concurrently if any of the threads modifies the list
43 > * structurally. Instead, use the thread-safe {@link
44 > * java.util.concurrent.PriorityBlockingQueue} class.
45 > *
46 > *
47 > * <p>Implementation note: this implementation provides O(log(n)) time
48 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 > * constant time for the retrieval methods (<tt>peek</tt>,
52 > * <tt>element</tt>, and <tt>size</tt>).
53 > *
54 > * <p>This class is a member of the
55 > * <a href="{@docRoot}/../guide/collections/index.html">
56 > * Java Collections Framework</a>.
57 > * @since 1.5
58 > * @version %I%, %G%
59 > * @author Josh Bloch
60 > */
61 > public class PriorityQueue<E> extends AbstractQueue<E>
62 >    implements Queue<E>, java.io.Serializable {
63  
64 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
64 >    private static final long serialVersionUID = -7720805057305804111L;
65  
66 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
66 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
67  
68 <    public boolean add(E x) {
69 <        return false;
68 >    /**
69 >     * Priority queue represented as a balanced binary heap: the two children
70 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
71 >     * ordered by comparator, or by the elements' natural ordering, if
72 >     * comparator is null:  For each node n in the heap and each descendant d
73 >     * of n, n <= d.
74 >     *
75 >     * The element with the lowest value is in queue[1], assuming the queue is
76 >     * nonempty.  (A one-based array is used in preference to the traditional
77 >     * zero-based array to simplify parent and child calculations.)
78 >     *
79 >     * queue.length must be >= 2, even if size == 0.
80 >     */
81 >    private transient Object[] queue;
82 >
83 >    /**
84 >     * The number of elements in the priority queue.
85 >     */
86 >    private int size = 0;
87 >
88 >    /**
89 >     * The comparator, or null if priority queue uses elements'
90 >     * natural ordering.
91 >     */
92 >    private final Comparator<? super E> comparator;
93 >
94 >    /**
95 >     * The number of times this priority queue has been
96 >     * <i>structurally modified</i>.  See AbstractList for gory details.
97 >     */
98 >    private transient int modCount = 0;
99 >
100 >    /**
101 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
102 >     * (11) that orders its elements according to their natural
103 >     * ordering (using <tt>Comparable</tt>).
104 >     */
105 >    public PriorityQueue() {
106 >        this(DEFAULT_INITIAL_CAPACITY, null);
107      }
108 <    public boolean offer(E x) {
109 <        return false;
108 >
109 >    /**
110 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
111 >     * that orders its elements according to their natural ordering
112 >     * (using <tt>Comparable</tt>).
113 >     *
114 >     * @param initialCapacity the initial capacity for this priority queue.
115 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
116 >     * than 1
117 >     */
118 >    public PriorityQueue(int initialCapacity) {
119 >        this(initialCapacity, null);
120      }
121 <    public boolean remove(Object x) {
122 <        return false;
121 >
122 >    /**
123 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
124 >     * that orders its elements according to the specified comparator.
125 >     *
126 >     * @param initialCapacity the initial capacity for this priority queue.
127 >     * @param comparator the comparator used to order this priority queue.
128 >     * If <tt>null</tt> then the order depends on the elements' natural
129 >     * ordering.
130 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131 >     * than 1
132 >     */
133 >    public PriorityQueue(int initialCapacity,
134 >                         Comparator<? super E> comparator) {
135 >        if (initialCapacity < 1)
136 >            throw new IllegalArgumentException();
137 >        this.queue = new Object[initialCapacity + 1];
138 >        this.comparator = comparator;
139      }
140  
141 <    public E remove() {
142 <        return null;
141 >    /**
142 >     * Common code to initialize underlying queue array across
143 >     * constructors below.
144 >     */
145 >    private void initializeArray(Collection<? extends E> c) {
146 >        int sz = c.size();
147 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
148 >                                            Integer.MAX_VALUE - 1);
149 >        if (initialCapacity < 1)
150 >            initialCapacity = 1;
151 >
152 >        this.queue = new Object[initialCapacity + 1];
153      }
154 <    public Iterator<E> iterator() {
155 <      return null;
154 >
155 >    /**
156 >     * Initially fill elements of the queue array under the
157 >     * knowledge that it is sorted or is another PQ, in which
158 >     * case we can just place the elements in the order presented.
159 >     */
160 >    private void fillFromSorted(Collection<? extends E> c) {
161 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
162 >            queue[++size] = i.next();
163      }
164  
165 <    public E element() {
166 <        return null;
165 >    /**
166 >     * Initially fill elements of the queue array that is not to our knowledge
167 >     * sorted, so we must rearrange the elements to guarantee the heap
168 >     * invariant.
169 >     */
170 >    private void fillFromUnsorted(Collection<? extends E> c) {
171 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
172 >            queue[++size] = i.next();
173 >        heapify();
174      }
175 <    public E poll() {
176 <        return null;
175 >
176 >    /**
177 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
178 >     * specified collection.  The priority queue has an initial
179 >     * capacity of 110% of the size of the specified collection or 1
180 >     * if the collection is empty.  If the specified collection is an
181 >     * instance of a {@link java.util.SortedSet} or is another
182 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
183 >     * according to the same comparator, or according to its elements'
184 >     * natural order if the collection is sorted according to its
185 >     * elements' natural order.  Otherwise, the priority queue is
186 >     * ordered according to its elements' natural order.
187 >     *
188 >     * @param c the collection whose elements are to be placed
189 >     *        into this priority queue.
190 >     * @throws ClassCastException if elements of the specified collection
191 >     *         cannot be compared to one another according to the priority
192 >     *         queue's ordering.
193 >     * @throws NullPointerException if <tt>c</tt> or any element within it
194 >     * is <tt>null</tt>
195 >     */
196 >    public PriorityQueue(Collection<? extends E> c) {
197 >        initializeArray(c);
198 >        if (c instanceof SortedSet) {
199 >            // @fixme double-cast workaround for compiler
200 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
201 >            comparator = (Comparator<? super E>)s.comparator();
202 >            fillFromSorted(s);
203 >        } else if (c instanceof PriorityQueue) {
204 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 >            comparator = (Comparator<? super E>)s.comparator();
206 >            fillFromSorted(s);
207 >        } else {
208 >            comparator = null;
209 >            fillFromUnsorted(c);
210 >        }
211 >    }
212 >
213 >    /**
214 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
215 >     * specified collection.  The priority queue has an initial
216 >     * capacity of 110% of the size of the specified collection or 1
217 >     * if the collection is empty.  This priority queue will be sorted
218 >     * according to the same comparator as the given collection, or
219 >     * according to its elements' natural order if the collection is
220 >     * sorted according to its elements' natural order.
221 >     *
222 >     * @param c the collection whose elements are to be placed
223 >     *        into this priority queue.
224 >     * @throws ClassCastException if elements of the specified collection
225 >     *         cannot be compared to one another according to the priority
226 >     *         queue's ordering.
227 >     * @throws NullPointerException if <tt>c</tt> or any element within it
228 >     * is <tt>null</tt>
229 >     */
230 >    public PriorityQueue(PriorityQueue<? extends E> c) {
231 >        initializeArray(c);
232 >        comparator = (Comparator<? super E>)c.comparator();
233 >        fillFromSorted(c);
234      }
235 +
236 +    /**
237 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
238 +     * specified collection.  The priority queue has an initial
239 +     * capacity of 110% of the size of the specified collection or 1
240 +     * if the collection is empty.  This priority queue will be sorted
241 +     * according to the same comparator as the given collection, or
242 +     * according to its elements' natural order if the collection is
243 +     * sorted according to its elements' natural order.
244 +     *
245 +     * @param c the collection whose elements are to be placed
246 +     *        into this priority queue.
247 +     * @throws ClassCastException if elements of the specified collection
248 +     *         cannot be compared to one another according to the priority
249 +     *         queue's ordering.
250 +     * @throws NullPointerException if <tt>c</tt> or any element within it
251 +     * is <tt>null</tt>
252 +     */
253 +    public PriorityQueue(SortedSet<? extends E> c) {
254 +        initializeArray(c);
255 +        comparator = (Comparator<? super E>)c.comparator();
256 +        fillFromSorted(c);
257 +    }
258 +
259 +    /**
260 +     * Resize array, if necessary, to be able to hold given index
261 +     */
262 +    private void grow(int index) {
263 +        int newlen = queue.length;
264 +        if (index < newlen) // don't need to grow
265 +            return;
266 +        if (index == Integer.MAX_VALUE)
267 +            throw new OutOfMemoryError();
268 +        while (newlen <= index) {
269 +            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
270 +                newlen = Integer.MAX_VALUE;
271 +            else
272 +                newlen <<= 2;
273 +        }
274 +        Object[] newQueue = new Object[newlen];
275 +        System.arraycopy(queue, 0, newQueue, 0, queue.length);
276 +        queue = newQueue;
277 +    }
278 +            
279 +
280 +    /**
281 +     * Inserts the specified element to this priority queue.
282 +     *
283 +     * @return <tt>true</tt>
284 +     * @throws ClassCastException if the specified element cannot be compared
285 +     * with elements currently in the priority queue according
286 +     * to the priority queue's ordering.
287 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
288 +     */
289 +    public boolean offer(E o) {
290 +        if (o == null)
291 +            throw new NullPointerException();
292 +        modCount++;
293 +        ++size;
294 +
295 +        // Grow backing store if necessary
296 +        if (size >= queue.length)
297 +            grow(size);
298 +
299 +        queue[size] = o;
300 +        fixUp(size);
301 +        return true;
302 +    }
303 +
304      public E peek() {
305 <        return null;
305 >        if (size == 0)
306 >            return null;
307 >        return (E) queue[1];
308      }
309  
310 <    public boolean isEmpty() {
310 >    // Collection Methods - the first two override to update docs
311 >
312 >    /**
313 >     * Adds the specified element to this queue.
314 >     * @return <tt>true</tt> (as per the general contract of
315 >     * <tt>Collection.add</tt>).
316 >     *
317 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
318 >     * @throws ClassCastException if the specified element cannot be compared
319 >     * with elements currently in the priority queue according
320 >     * to the priority queue's ordering.
321 >     */
322 >    public boolean add(E o) {
323 >        return offer(o);
324 >    }
325 >
326 >  
327 >    /**
328 >     * Adds all of the elements in the specified collection to this queue.
329 >     * The behavior of this operation is undefined if
330 >     * the specified collection is modified while the operation is in
331 >     * progress.  (This implies that the behavior of this call is undefined if
332 >     * the specified collection is this queue, and this queue is nonempty.)
333 >     * <p>
334 >     * This implementation iterates over the specified collection, and adds
335 >     * each object returned by the iterator to this collection, in turn.
336 >     * @param c collection whose elements are to be added to this queue
337 >     * @return <tt>true</tt> if this queue changed as a result of the
338 >     *         call.
339 >     * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
340 >     * is <tt>null</tt>
341 >     * @throws ClassCastException if any element cannot be compared
342 >     * with elements currently in the priority queue according
343 >     * to the priority queue's ordering.
344 >     */
345 >    public boolean addAll(Collection<? extends E> c) {
346 >        return super.addAll(c);
347 >    }
348 >
349 >    public boolean remove(Object o) {
350 >        if (o == null)
351 >            return false;
352 >
353 >        if (comparator == null) {
354 >            for (int i = 1; i <= size; i++) {
355 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
356 >                    removeAt(i);
357 >                    return true;
358 >                }
359 >            }
360 >        } else {
361 >            for (int i = 1; i <= size; i++) {
362 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
363 >                    removeAt(i);
364 >                    return true;
365 >                }
366 >            }
367 >        }
368          return false;
369      }
370 +
371 +    /**
372 +     * Returns an iterator over the elements in this queue. The iterator
373 +     * does not return the elements in any particular order.
374 +     *
375 +     * @return an iterator over the elements in this queue.
376 +     */
377 +    public Iterator<E> iterator() {
378 +        return new Itr();
379 +    }
380 +
381 +    private class Itr implements Iterator<E> {
382 +
383 +        /**
384 +         * Index (into queue array) of element to be returned by
385 +         * subsequent call to next.
386 +         */
387 +        private int cursor = 1;
388 +
389 +        /**
390 +         * Index of element returned by most recent call to next,
391 +         * unless that element came from the forgetMeNot list.
392 +         * Reset to 0 if element is deleted by a call to remove.
393 +         */
394 +        private int lastRet = 0;
395 +
396 +        /**
397 +         * The modCount value that the iterator believes that the backing
398 +         * List should have.  If this expectation is violated, the iterator
399 +         * has detected concurrent modification.
400 +         */
401 +        private int expectedModCount = modCount;
402 +
403 +        /**
404 +         * A list of elements that were moved from the unvisited portion of
405 +         * the heap into the visited portion as a result of "unlucky" element
406 +         * removals during the iteration.  (Unlucky element removals are those
407 +         * that require a fixup instead of a fixdown.)  We must visit all of
408 +         * the elements in this list to complete the iteration.  We do this
409 +         * after we've completed the "normal" iteration.
410 +         *
411 +         * We expect that most iterations, even those involving removals,
412 +         * will not use need to store elements in this field.
413 +         */
414 +        private ArrayList<E> forgetMeNot = null;
415 +
416 +        /**
417 +         * Element returned by the most recent call to next iff that
418 +         * element was drawn from the forgetMeNot list.
419 +         */
420 +        private Object lastRetElt = null;
421 +
422 +        public boolean hasNext() {
423 +            return cursor <= size || forgetMeNot != null;
424 +        }
425 +
426 +        public E next() {
427 +            checkForComodification();
428 +            E result;
429 +            if (cursor <= size) {
430 +                result = (E) queue[cursor];
431 +                lastRet = cursor++;
432 +            }
433 +            else if (forgetMeNot == null)
434 +                throw new NoSuchElementException();
435 +            else {
436 +                int remaining = forgetMeNot.size();
437 +                result = forgetMeNot.remove(remaining - 1);
438 +                if (remaining == 1)
439 +                    forgetMeNot = null;
440 +                lastRet = 0;
441 +                lastRetElt = result;
442 +            }
443 +            return result;
444 +        }
445 +
446 +        public void remove() {
447 +            checkForComodification();
448 +
449 +            if (lastRet != 0) {
450 +                E moved = PriorityQueue.this.removeAt(lastRet);
451 +                lastRet = 0;
452 +                if (moved == null) {
453 +                    cursor--;
454 +                } else {
455 +                    if (forgetMeNot == null)
456 +                        forgetMeNot = new ArrayList<E>();
457 +                    forgetMeNot.add(moved);
458 +                }
459 +            } else if (lastRetElt != null) {
460 +                PriorityQueue.this.remove(lastRetElt);
461 +                lastRetElt = null;
462 +            } else {
463 +                throw new IllegalStateException();
464 +            }
465 +
466 +            expectedModCount = modCount;
467 +        }
468 +
469 +        final void checkForComodification() {
470 +            if (modCount != expectedModCount)
471 +                throw new ConcurrentModificationException();
472 +        }
473 +    }
474 +
475      public int size() {
476 <        return 0;
476 >        return size;
477      }
478 <    public Object[] toArray() {
479 <        return null;
478 >
479 >    /**
480 >     * Remove all elements from the priority queue.
481 >     */
482 >    public void clear() {
483 >        modCount++;
484 >
485 >        // Null out element references to prevent memory leak
486 >        for (int i=1; i<=size; i++)
487 >            queue[i] = null;
488 >
489 >        size = 0;
490 >    }
491 >
492 >    public E poll() {
493 >        if (size == 0)
494 >            return null;
495 >        modCount++;
496 >
497 >        E result = (E) queue[1];
498 >        queue[1] = queue[size];
499 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
500 >        if (size > 1)
501 >            fixDown(1);
502 >
503 >        return result;
504      }
505  
506 <    public <T> T[] toArray(T[] array) {
506 >    /**
507 >     * Removes and returns the ith element from queue.  (Recall that queue
508 >     * is one-based, so 1 <= i <= size.)
509 >     *
510 >     * Normally this method leaves the elements at positions from 1 up to i-1,
511 >     * inclusive, untouched.  Under these circumstances, it returns null.
512 >     * Occasionally, in order to maintain the heap invariant, it must move
513 >     * the last element of the list to some index in the range [2, i-1],
514 >     * and move the element previously at position (i/2) to position i.
515 >     * Under these circumstances, this method returns the element that was
516 >     * previously at the end of the list and is now at some position between
517 >     * 2 and i-1 inclusive.
518 >     */
519 >    private E removeAt(int i) {
520 >        assert i > 0 && i <= size;
521 >        modCount++;
522 >
523 >        E moved = (E) queue[size];
524 >        queue[i] = moved;
525 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
526 >        if (i <= size) {
527 >            fixDown(i);
528 >            if (queue[i] == moved) {
529 >                fixUp(i);
530 >                if (queue[i] != moved)
531 >                    return moved;
532 >            }
533 >        }
534          return null;
535      }
536  
537 +    /**
538 +     * Establishes the heap invariant (described above) assuming the heap
539 +     * satisfies the invariant except possibly for the leaf-node indexed by k
540 +     * (which may have a nextExecutionTime less than its parent's).
541 +     *
542 +     * This method functions by "promoting" queue[k] up the hierarchy
543 +     * (by swapping it with its parent) repeatedly until queue[k]
544 +     * is greater than or equal to its parent.
545 +     */
546 +    private void fixUp(int k) {
547 +        if (comparator == null) {
548 +            while (k > 1) {
549 +                int j = k >> 1;
550 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
551 +                    break;
552 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
553 +                k = j;
554 +            }
555 +        } else {
556 +            while (k > 1) {
557 +                int j = k >>> 1;
558 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
559 +                    break;
560 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
561 +                k = j;
562 +            }
563 +        }
564 +    }
565 +
566 +    /**
567 +     * Establishes the heap invariant (described above) in the subtree
568 +     * rooted at k, which is assumed to satisfy the heap invariant except
569 +     * possibly for node k itself (which may be greater than its children).
570 +     *
571 +     * This method functions by "demoting" queue[k] down the hierarchy
572 +     * (by swapping it with its smaller child) repeatedly until queue[k]
573 +     * is less than or equal to its children.
574 +     */
575 +    private void fixDown(int k) {
576 +        int j;
577 +        if (comparator == null) {
578 +            while ((j = k << 1) <= size && (j > 0)) {
579 +                if (j<size &&
580 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
581 +                    j++; // j indexes smallest kid
582 +
583 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
584 +                    break;
585 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
586 +                k = j;
587 +            }
588 +        } else {
589 +            while ((j = k << 1) <= size && (j > 0)) {
590 +                if (j<size &&
591 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
592 +                    j++; // j indexes smallest kid
593 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
594 +                    break;
595 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
596 +                k = j;
597 +            }
598 +        }
599 +    }
600 +
601 +    /**
602 +     * Establishes the heap invariant (described above) in the entire tree,
603 +     * assuming nothing about the order of the elements prior to the call.
604 +     */
605 +    private void heapify() {
606 +        for (int i = size/2; i >= 1; i--)
607 +            fixDown(i);
608 +    }
609 +
610 +    /**
611 +     * Returns the comparator used to order this collection, or <tt>null</tt>
612 +     * if this collection is sorted according to its elements natural ordering
613 +     * (using <tt>Comparable</tt>).
614 +     *
615 +     * @return the comparator used to order this collection, or <tt>null</tt>
616 +     * if this collection is sorted according to its elements natural ordering.
617 +     */
618 +    public Comparator<? super E> comparator() {
619 +        return comparator;
620 +    }
621 +
622 +    /**
623 +     * Save the state of the instance to a stream (that
624 +     * is, serialize it).
625 +     *
626 +     * @serialData The length of the array backing the instance is
627 +     * emitted (int), followed by all of its elements (each an
628 +     * <tt>Object</tt>) in the proper order.
629 +     * @param s the stream
630 +     */
631 +    private void writeObject(java.io.ObjectOutputStream s)
632 +        throws java.io.IOException{
633 +        // Write out element count, and any hidden stuff
634 +        s.defaultWriteObject();
635 +
636 +        // Write out array length
637 +        s.writeInt(queue.length);
638 +
639 +        // Write out all elements in the proper order.
640 +        for (int i=1; i<=size; i++)
641 +            s.writeObject(queue[i]);
642 +    }
643 +
644 +    /**
645 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
646 +     * deserialize it).
647 +     * @param s the stream
648 +     */
649 +    private void readObject(java.io.ObjectInputStream s)
650 +        throws java.io.IOException, ClassNotFoundException {
651 +        // Read in size, and any hidden stuff
652 +        s.defaultReadObject();
653 +
654 +        // Read in array length and allocate array
655 +        int arrayLength = s.readInt();
656 +        queue = new Object[arrayLength];
657 +
658 +        // Read in all elements in the proper order.
659 +        for (int i=1; i<=size; i++)
660 +            queue[i] = (E) s.readObject();
661 +    }
662 +
663   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines