ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.41 by dl, Sat Sep 13 18:51:06 2003 UTC vs.
Revision 1.61 by jsr166, Tue Feb 7 20:54:24 2006 UTC

# Line 1 | Line 1
1   /*
2   * %W% %E%
3   *
4 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
# Line 9 | Line 9 | package java.util;
9  
10   /**
11   * An unbounded priority {@linkplain Queue queue} based on a priority
12 < * heap.  This queue orders elements according to an order specified
13 < * at construction time, which is specified either according to their
14 < * <i>natural order</i> (see {@link Comparable}), or according to a
15 < * {@link java.util.Comparator}, depending on which constructor is
16 < * used. A priority queue does not permit <tt>null</tt> elements.
12 > * heap.  The elements of the priority queue are ordered according to
13 > * their {@linkplain Comparable natural ordering}, or by a {@link
14 > * Comparator} provided at queue construction time, depending on which
15 > * constructor is used.  A priority queue does not permit
16 > * <tt>null</tt> elements.  A priority queue relying on natural
17 > * ordering also does not permit insertion of non-comparable objects
18 > * (doing so may result in <tt>ClassCastException</tt>).
19   *
20   * <p>The <em>head</em> of this queue is the <em>least</em> element
21   * with respect to the specified ordering.  If multiple elements are
22   * tied for least value, the head is one of those elements -- ties are
23 < * broken arbitrarily.  The {@link #remove()} and {@link #poll()}
24 < * methods remove and return the head of the queue, and the {@link
25 < * #element()} and {@link #peek()} methods return, but do not delete,
24 < * the head of the queue.
23 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
24 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
25 > * element at the head of the queue.
26   *
27   * <p>A priority queue is unbounded, but has an internal
28   * <i>capacity</i> governing the size of an array used to store the
# Line 30 | Line 31 | package java.util;
31   * grows automatically.  The details of the growth policy are not
32   * specified.
33   *
34 < * <p>This class implements all of the <em>optional</em> methods of
35 < * the {@link Collection} and {@link Iterator} interfaces.  The
36 < * Iterator provided in method {@link #iterator()} is <em>not</em>
37 < * guaranteed to traverse the elements of the PriorityQueue in any
38 < * particular order. If you need ordered traversal, consider using
39 < * <tt>Arrays.sort(pq.toArray())</tt>.
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
40   *
41   * <p> <strong>Note that this implementation is not synchronized.</strong>
42   * Multiple threads should not access a <tt>PriorityQueue</tt>
# Line 43 | Line 44 | package java.util;
44   * structurally. Instead, use the thread-safe {@link
45   * java.util.concurrent.PriorityBlockingQueue} class.
46   *
46 *
47   * <p>Implementation note: this implementation provides O(log(n)) time
48   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49   * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
# Line 55 | Line 55 | package java.util;
55   * <a href="{@docRoot}/../guide/collections/index.html">
56   * Java Collections Framework</a>.
57   * @since 1.5
58 < * @version %I%, %G%
58 > * @version 1.8, 08/27/05
59   * @author Josh Bloch
60 + * @param <E> the type of elements held in this collection
61   */
62   public class PriorityQueue<E> extends AbstractQueue<E>
63 <    implements Queue<E>, java.io.Serializable {
63 >    implements java.io.Serializable {
64  
65      private static final long serialVersionUID = -7720805057305804111L;
66  
67      private static final int DEFAULT_INITIAL_CAPACITY = 11;
68  
69      /**
70 <     * Priority queue represented as a balanced binary heap: the two children
71 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
72 <     * ordered by comparator, or by the elements' natural ordering, if
73 <     * comparator is null:  For each node n in the heap and each descendant d
74 <     * of n, n <= d.
75 <     *
75 <     * The element with the lowest value is in queue[1], assuming the queue is
76 <     * nonempty.  (A one-based array is used in preference to the traditional
77 <     * zero-based array to simplify parent and child calculations.)
78 <     *
79 <     * queue.length must be >= 2, even if size == 0.
70 >     * Priority queue represented as a balanced binary heap: the two
71 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
72 >     * priority queue is ordered by comparator, or by the elements'
73 >     * natural ordering, if comparator is null: For each node n in the
74 >     * heap and each descendant d of n, n <= d.  The element with the
75 >     * lowest value is in queue[0], assuming the queue is nonempty.
76       */
77      private transient Object[] queue;
78  
# Line 98 | Line 94 | public class PriorityQueue<E> extends Ab
94      private transient int modCount = 0;
95  
96      /**
97 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
98 <     * (11) that orders its elements according to their natural
99 <     * ordering (using <tt>Comparable</tt>).
97 >     * Creates a <tt>PriorityQueue</tt> with the default initial
98 >     * capacity (11) that orders its elements according to their
99 >     * {@linkplain Comparable natural ordering}.
100       */
101      public PriorityQueue() {
102          this(DEFAULT_INITIAL_CAPACITY, null);
103      }
104  
105      /**
106 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
107 <     * that orders its elements according to their natural ordering
108 <     * (using <tt>Comparable</tt>).
106 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
107 >     * capacity that orders its elements according to their
108 >     * {@linkplain Comparable natural ordering}.
109       *
110 <     * @param initialCapacity the initial capacity for this priority queue.
110 >     * @param initialCapacity the initial capacity for this priority queue
111       * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112       * than 1
113       */
# Line 123 | Line 119 | public class PriorityQueue<E> extends Ab
119       * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120       * that orders its elements according to the specified comparator.
121       *
122 <     * @param initialCapacity the initial capacity for this priority queue.
123 <     * @param comparator the comparator used to order this priority queue.
124 <     * If <tt>null</tt> then the order depends on the elements' natural
125 <     * ordering.
126 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
127 <     * than 1
122 >     * @param  initialCapacity the initial capacity for this priority queue
123 >     * @param  comparator the comparator that will be used to order
124 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
125 >     *         ordering</i> of the elements will be used.
126 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
127 >     *         less than 1
128       */
129 <    public PriorityQueue(int initialCapacity,
129 >    public PriorityQueue(int initialCapacity,
130                           Comparator<? super E> comparator) {
131 +        // Note: This restriction of at least one is not actually needed,
132 +        // but continues for 1.5 compatibility
133          if (initialCapacity < 1)
134              throw new IllegalArgumentException();
135 <        this.queue = new Object[initialCapacity + 1];
135 >        this.queue = new Object[initialCapacity];
136          this.comparator = comparator;
137      }
138  
139      /**
142     * Common code to initialize underlying queue array across
143     * constructors below.
144     */
145    private void initializeArray(Collection<? extends E> c) {
146        int sz = c.size();
147        int initialCapacity = (int)Math.min((sz * 110L) / 100,
148                                            Integer.MAX_VALUE - 1);
149        if (initialCapacity < 1)
150            initialCapacity = 1;
151
152        this.queue = new Object[initialCapacity + 1];
153    }
154
155    /**
156     * Initially fill elements of the queue array under the
157     * knowledge that it is sorted or is another PQ, in which
158     * case we can just place the elements in the order presented.
159     */
160    private void fillFromSorted(Collection<? extends E> c) {
161        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
162            queue[++size] = i.next();
163    }
164
165    /**
166     * Initially fill elements of the queue array that is not to our knowledge
167     * sorted, so we must rearrange the elements to guarantee the heap
168     * invariant.
169     */
170    private void fillFromUnsorted(Collection<? extends E> c) {
171        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
172            queue[++size] = i.next();
173        heapify();
174    }
175
176    /**
140       * Creates a <tt>PriorityQueue</tt> containing the elements in the
141 <     * specified collection.  The priority queue has an initial
179 <     * capacity of 110% of the size of the specified collection or 1
180 <     * if the collection is empty.  If the specified collection is an
141 >     * specified collection.   If the specified collection is an
142       * instance of a {@link java.util.SortedSet} or is another
143 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
144 <     * according to the same comparator, or according to its elements'
145 <     * natural order if the collection is sorted according to its
185 <     * elements' natural order.  Otherwise, the priority queue is
186 <     * ordered according to its elements' natural order.
143 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
144 >     * according to the same ordering.  Otherwise, this priority queue
145 >     * will be ordered according to the natural ordering of its elements.
146       *
147 <     * @param c the collection whose elements are to be placed
148 <     *        into this priority queue.
147 >     * @param  c the collection whose elements are to be placed
148 >     *         into this priority queue
149       * @throws ClassCastException if elements of the specified collection
150       *         cannot be compared to one another according to the priority
151 <     *         queue's ordering.
152 <     * @throws NullPointerException if <tt>c</tt> or any element within it
153 <     * is <tt>null</tt>
151 >     *         queue's ordering
152 >     * @throws NullPointerException if the specified collection or any
153 >     *         of its elements are null
154       */
155      public PriorityQueue(Collection<? extends E> c) {
156 <        initializeArray(c);
157 <        if (c instanceof SortedSet) {
158 <            // @fixme double-cast workaround for compiler
159 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
160 <            comparator = (Comparator<? super E>)s.comparator();
161 <            fillFromSorted(s);
162 <        } else if (c instanceof PriorityQueue) {
163 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 <            comparator = (Comparator<? super E>)s.comparator();
206 <            fillFromSorted(s);
207 <        } else {
156 >        initFromCollection(c);
157 >        if (c instanceof SortedSet)
158 >            comparator = (Comparator<? super E>)
159 >                ((SortedSet<? extends E>)c).comparator();
160 >        else if (c instanceof PriorityQueue)
161 >            comparator = (Comparator<? super E>)
162 >                ((PriorityQueue<? extends E>)c).comparator();
163 >        else {
164              comparator = null;
165 <            fillFromUnsorted(c);
165 >            heapify();
166          }
167      }
168  
169      /**
170       * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 <     * specified collection.  The priority queue has an initial
172 <     * capacity of 110% of the size of the specified collection or 1
173 <     * if the collection is empty.  This priority queue will be sorted
174 <     * according to the same comparator as the given collection, or
175 <     * according to its elements' natural order if the collection is
176 <     * sorted according to its elements' natural order.
177 <     *
178 <     * @param c the collection whose elements are to be placed
179 <     *        into this priority queue.
180 <     * @throws ClassCastException if elements of the specified collection
181 <     *         cannot be compared to one another according to the priority
226 <     *         queue's ordering.
227 <     * @throws NullPointerException if <tt>c</tt> or any element within it
228 <     * is <tt>null</tt>
171 >     * specified priority queue.  This priority queue will be
172 >     * ordered according to the same ordering as the given priority
173 >     * queue.
174 >     *
175 >     * @param  c the priority queue whose elements are to be placed
176 >     *         into this priority queue
177 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
178 >     *         compared to one another according to <tt>c</tt>'s
179 >     *         ordering
180 >     * @throws NullPointerException if the specified priority queue or any
181 >     *         of its elements are null
182       */
183      public PriorityQueue(PriorityQueue<? extends E> c) {
231        initializeArray(c);
184          comparator = (Comparator<? super E>)c.comparator();
185 <        fillFromSorted(c);
185 >        initFromCollection(c);
186      }
187  
188      /**
189       * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 <     * specified collection.  The priority queue has an initial
191 <     * capacity of 110% of the size of the specified collection or 1
240 <     * if the collection is empty.  This priority queue will be sorted
241 <     * according to the same comparator as the given collection, or
242 <     * according to its elements' natural order if the collection is
243 <     * sorted according to its elements' natural order.
190 >     * specified sorted set.  This priority queue will be ordered
191 >     * according to the same ordering as the given sorted set.
192       *
193 <     * @param c the collection whose elements are to be placed
194 <     *        into this priority queue.
195 <     * @throws ClassCastException if elements of the specified collection
196 <     *         cannot be compared to one another according to the priority
197 <     *         queue's ordering.
198 <     * @throws NullPointerException if <tt>c</tt> or any element within it
199 <     * is <tt>null</tt>
193 >     * @param  c the sorted set whose elements are to be placed
194 >     *         into this priority queue.
195 >     * @throws ClassCastException if elements of the specified sorted
196 >     *         set cannot be compared to one another according to the
197 >     *         sorted set's ordering
198 >     * @throws NullPointerException if the specified sorted set or any
199 >     *         of its elements are null
200       */
201      public PriorityQueue(SortedSet<? extends E> c) {
254        initializeArray(c);
202          comparator = (Comparator<? super E>)c.comparator();
203 <        fillFromSorted(c);
203 >        initFromCollection(c);
204      }
205  
206      /**
207 <     * Resize array, if necessary, to be able to hold given index
207 >     * Initialize queue array with elements from the given Collection.
208 >     * @param c the collection
209       */
210 <    private void grow(int index) {
211 <        int newlen = queue.length;
212 <        if (index < newlen) // don't need to grow
213 <            return;
214 <        if (index == Integer.MAX_VALUE)
210 >    private void initFromCollection(Collection<? extends E> c) {
211 >        Object[] a = c.toArray();
212 >        // If c.toArray incorrectly doesn't return Object[], copy it.
213 >        if (a.getClass() != Object[].class)
214 >            a = Arrays.copyOf(a, a.length, Object[].class);
215 >        queue = a;
216 >        size = a.length;
217 >    }
218 >
219 >    /**
220 >     * Increases the capacity of the array.
221 >     *
222 >     * @param minCapacity the desired minimum capacity
223 >     */
224 >    private void grow(int minCapacity) {
225 >        if (minCapacity < 0) // overflow
226              throw new OutOfMemoryError();
227 <        while (newlen <= index) {
228 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
229 <                newlen = Integer.MAX_VALUE;
230 <            else
231 <                newlen <<= 2;
232 <        }
233 <        Object[] newQueue = new Object[newlen];
234 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
235 <        queue = newQueue;
227 >        int oldCapacity = queue.length;
228 >        // Double size if small; else grow by 50%
229 >        int newCapacity = ((oldCapacity < 64)?
230 >                           ((oldCapacity + 1) * 2):
231 >                           ((oldCapacity / 2) * 3));
232 >        if (newCapacity < 0) // overflow
233 >            newCapacity = Integer.MAX_VALUE;
234 >        if (newCapacity < minCapacity)
235 >            newCapacity = minCapacity;
236 >        queue = Arrays.copyOf(queue, newCapacity);
237 >    }
238 >
239 >    /**
240 >     * Inserts the specified element into this priority queue.
241 >     *
242 >     * @return <tt>true</tt> (as specified by {@link Collection#add})
243 >     * @throws ClassCastException if the specified element cannot be
244 >     *         compared with elements currently in this priority queue
245 >     *         according to the priority queue's ordering
246 >     * @throws NullPointerException if the specified element is null
247 >     */
248 >    public boolean add(E e) {
249 >        return offer(e);
250      }
278            
251  
252      /**
253 <     * Inserts the specified element to this priority queue.
253 >     * Inserts the specified element into this priority queue.
254       *
255 <     * @return <tt>true</tt>
256 <     * @throws ClassCastException if the specified element cannot be compared
257 <     * with elements currently in the priority queue according
258 <     * to the priority queue's ordering.
259 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
255 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
256 >     * @throws ClassCastException if the specified element cannot be
257 >     *         compared with elements currently in this priority queue
258 >     *         according to the priority queue's ordering
259 >     * @throws NullPointerException if the specified element is null
260       */
261 <    public boolean offer(E o) {
262 <        if (o == null)
261 >    public boolean offer(E e) {
262 >        if (e == null)
263              throw new NullPointerException();
264          modCount++;
265 <        ++size;
266 <
267 <        // Grow backing store if necessary
268 <        if (size >= queue.length)
269 <            grow(size);
270 <
271 <        queue[size] = o;
272 <        fixUp(size);
265 >        int i = size;
266 >        if (i >= queue.length)
267 >            grow(i + 1);
268 >        size = i + 1;
269 >        if (i == 0)
270 >            queue[0] = e;
271 >        else
272 >            siftUp(i, e);
273          return true;
274      }
275  
276      public E peek() {
277          if (size == 0)
278              return null;
279 <        return (E) queue[1];
279 >        return (E) queue[0];
280      }
281  
282 <    // Collection Methods - the first two override to update docs
282 >    private int indexOf(Object o) {
283 >        if (o != null) {
284 >            for (int i = 0; i < size; i++)
285 >                if (o.equals(queue[i]))
286 >                    return i;
287 >        }
288 >        return -1;
289 >    }
290  
291      /**
292 <     * Adds the specified element to this queue.
293 <     * @return <tt>true</tt> (as per the general contract of
294 <     * <tt>Collection.add</tt>).
295 <     *
296 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
297 <     * @throws ClassCastException if the specified element cannot be compared
298 <     * with elements currently in the priority queue according
299 <     * to the priority queue's ordering.
321 <     */
322 <    public boolean add(E o) {
323 <        return offer(o);
324 <    }
325 <
326 <  
327 <    /**
328 <     * Adds all of the elements in the specified collection to this queue.
329 <     * The behavior of this operation is undefined if
330 <     * the specified collection is modified while the operation is in
331 <     * progress.  (This implies that the behavior of this call is undefined if
332 <     * the specified collection is this queue, and this queue is nonempty.)
333 <     * <p>
334 <     * This implementation iterates over the specified collection, and adds
335 <     * each object returned by the iterator to this collection, in turn.
336 <     * @param c collection whose elements are to be added to this queue
337 <     * @return <tt>true</tt> if this queue changed as a result of the
338 <     *         call.
339 <     * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
340 <     * is <tt>null</tt>
341 <     * @throws ClassCastException if any element cannot be compared
342 <     * with elements currently in the priority queue according
343 <     * to the priority queue's ordering.
292 >     * Removes a single instance of the specified element from this queue,
293 >     * if it is present.  More formally, removes an element <tt>e</tt> such
294 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
295 >     * elements.  Returns true if this queue contained the specified element
296 >     * (or equivalently, if this queue changed as a result of the call).
297 >     *
298 >     * @param o element to be removed from this queue, if present
299 >     * @return <tt>true</tt> if this queue changed as a result of the call
300       */
345    public boolean addAll(Collection<? extends E> c) {
346        return super.addAll(c);
347    }
348
301      public boolean remove(Object o) {
302 <        if (o == null)
303 <            return false;
302 >        int i = indexOf(o);
303 >        if (i == -1)
304 >            return false;
305 >        else {
306 >            removeAt(i);
307 >            return true;
308 >        }
309 >    }
310  
311 <        if (comparator == null) {
312 <            for (int i = 1; i <= size; i++) {
313 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
314 <                    removeAt(i);
315 <                    return true;
316 <                }
317 <            }
318 <        } else {
319 <            for (int i = 1; i <= size; i++) {
320 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
321 <                    removeAt(i);
322 <                    return true;
365 <                }
311 >    /**
312 >     * Version of remove using reference equality, not equals.
313 >     * Needed by iterator.remove.
314 >     *
315 >     * @param o element to be removed from this queue, if present
316 >     * @return <tt>true</tt> if removed
317 >     */
318 >    boolean removeEq(Object o) {
319 >        for (int i = 0; i < size; i++) {
320 >            if (o == queue[i]) {
321 >                removeAt(i);
322 >                return true;
323              }
324          }
325          return false;
326      }
327  
328      /**
329 +     * Returns <tt>true</tt> if this queue contains the specified element.
330 +     * More formally, returns <tt>true</tt> if and only if this queue contains
331 +     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
332 +     *
333 +     * @param o object to be checked for containment in this queue
334 +     * @return <tt>true</tt> if this queue contains the specified element
335 +     */
336 +    public boolean contains(Object o) {
337 +        return indexOf(o) != -1;
338 +    }
339 +
340 +    /**
341 +     * Returns an array containing all of the elements in this queue,
342 +     * The elements are in no particular order.
343 +     *
344 +     * <p>The returned array will be "safe" in that no references to it are
345 +     * maintained by this list.  (In other words, this method must allocate
346 +     * a new array).  The caller is thus free to modify the returned array.
347 +     *
348 +     * @return an array containing all of the elements in this queue
349 +     */
350 +    public Object[] toArray() {
351 +        return Arrays.copyOf(queue, size);
352 +    }
353 +
354 +    /**
355 +     * Returns an array containing all of the elements in this queue.
356 +     * The elements are in no particular order.  The runtime type of
357 +     * the returned array is that of the specified array.  If the queue
358 +     * fits in the specified array, it is returned therein.
359 +     * Otherwise, a new array is allocated with the runtime type of
360 +     * the specified array and the size of this queue.
361 +     *
362 +     * <p>If the queue fits in the specified array with room to spare
363 +     * (i.e., the array has more elements than the queue), the element in
364 +     * the array immediately following the end of the collection is set to
365 +     * <tt>null</tt>.  (This is useful in determining the length of the
366 +     * queue <i>only</i> if the caller knows that the queue does not contain
367 +     * any null elements.)
368 +     *
369 +     * @param a the array into which the elements of the queue are to
370 +     *          be stored, if it is big enough; otherwise, a new array of the
371 +     *          same runtime type is allocated for this purpose.
372 +     * @return an array containing the elements of the queue
373 +     * @throws ArrayStoreException if the runtime type of the specified array
374 +     *         is not a supertype of the runtime type of every element in
375 +     *         this queue
376 +     * @throws NullPointerException if the specified array is null
377 +     */
378 +    public <T> T[] toArray(T[] a) {
379 +        if (a.length < size)
380 +            // Make a new array of a's runtime type, but my contents:
381 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
382 +        System.arraycopy(queue, 0, a, 0, size);
383 +        if (a.length > size)
384 +            a[size] = null;
385 +        return a;
386 +    }
387 +
388 +    /**
389       * Returns an iterator over the elements in this queue. The iterator
390       * does not return the elements in any particular order.
391       *
392 <     * @return an iterator over the elements in this queue.
392 >     * @return an iterator over the elements in this queue
393       */
394      public Iterator<E> iterator() {
395          return new Itr();
396      }
397  
398 <    private class Itr implements Iterator<E> {
382 <
398 >    private final class Itr implements Iterator<E> {
399          /**
400           * Index (into queue array) of element to be returned by
401           * subsequent call to next.
402           */
403 <        private int cursor = 1;
403 >        private int cursor = 0;
404  
405          /**
406           * Index of element returned by most recent call to next,
407           * unless that element came from the forgetMeNot list.
408 <         * Reset to 0 if element is deleted by a call to remove.
393 <         */
394 <        private int lastRet = 0;
395 <
396 <        /**
397 <         * The modCount value that the iterator believes that the backing
398 <         * List should have.  If this expectation is violated, the iterator
399 <         * has detected concurrent modification.
408 >         * Set to -1 if element is deleted by a call to remove.
409           */
410 <        private int expectedModCount = modCount;
410 >        private int lastRet = -1;
411  
412          /**
413 <         * A list of elements that were moved from the unvisited portion of
413 >         * A queue of elements that were moved from the unvisited portion of
414           * the heap into the visited portion as a result of "unlucky" element
415           * removals during the iteration.  (Unlucky element removals are those
416 <         * that require a fixup instead of a fixdown.)  We must visit all of
416 >         * that require a siftup instead of a siftdown.)  We must visit all of
417           * the elements in this list to complete the iteration.  We do this
418           * after we've completed the "normal" iteration.
419           *
420           * We expect that most iterations, even those involving removals,
421           * will not use need to store elements in this field.
422           */
423 <        private ArrayList<E> forgetMeNot = null;
423 >        private ArrayDeque<E> forgetMeNot = null;
424  
425          /**
426           * Element returned by the most recent call to next iff that
427           * element was drawn from the forgetMeNot list.
428           */
429 <        private Object lastRetElt = null;
429 >        private E lastRetElt = null;
430 >
431 >        /**
432 >         * The modCount value that the iterator believes that the backing
433 >         * List should have.  If this expectation is violated, the iterator
434 >         * has detected concurrent modification.
435 >         */
436 >        private int expectedModCount = modCount;
437  
438          public boolean hasNext() {
439 <            return cursor <= size || forgetMeNot != null;
439 >            return cursor < size ||
440 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
441          }
442  
443          public E next() {
444 <            checkForComodification();
445 <            E result;
446 <            if (cursor <= size) {
447 <                result = (E) queue[cursor];
448 <                lastRet = cursor++;
449 <            }
450 <            else if (forgetMeNot == null)
451 <                throw new NoSuchElementException();
452 <            else {
436 <                int remaining = forgetMeNot.size();
437 <                result = forgetMeNot.remove(remaining - 1);
438 <                if (remaining == 1)
439 <                    forgetMeNot = null;
440 <                lastRet = 0;
441 <                lastRetElt = result;
444 >            if (expectedModCount != modCount)
445 >                throw new ConcurrentModificationException();
446 >            if (cursor < size)
447 >                return (E) queue[lastRet = cursor++];
448 >            if (forgetMeNot != null) {
449 >                lastRet = -1;
450 >                lastRetElt = forgetMeNot.poll();
451 >                if (lastRetElt != null)
452 >                    return lastRetElt;
453              }
454 <            return result;
454 >            throw new NoSuchElementException();
455          }
456  
457          public void remove() {
458 <            checkForComodification();
459 <
460 <            if (lastRet != 0) {
458 >            if (expectedModCount != modCount)
459 >                throw new ConcurrentModificationException();
460 >            if (lastRet == -1 && lastRetElt == null)
461 >                throw new IllegalStateException();
462 >            if (lastRet != -1) {
463                  E moved = PriorityQueue.this.removeAt(lastRet);
464 <                lastRet = 0;
465 <                if (moved == null) {
464 >                lastRet = -1;
465 >                if (moved == null)
466                      cursor--;
467 <                } else {
467 >                else {
468                      if (forgetMeNot == null)
469 <                        forgetMeNot = new ArrayList<E>();
469 >                        forgetMeNot = new ArrayDeque<E>();
470                      forgetMeNot.add(moved);
471                  }
459            } else if (lastRetElt != null) {
460                PriorityQueue.this.remove(lastRetElt);
461                lastRetElt = null;
472              } else {
473 <                throw new IllegalStateException();
473 >                PriorityQueue.this.removeEq(lastRetElt);
474 >                lastRetElt = null;
475              }
465
476              expectedModCount = modCount;
477          }
478  
469        final void checkForComodification() {
470            if (modCount != expectedModCount)
471                throw new ConcurrentModificationException();
472        }
479      }
480  
481      public int size() {
# Line 477 | Line 483 | public class PriorityQueue<E> extends Ab
483      }
484  
485      /**
486 <     * Remove all elements from the priority queue.
486 >     * Removes all of the elements from this priority queue.
487 >     * The queue will be empty after this call returns.
488       */
489      public void clear() {
490          modCount++;
491 <
485 <        // Null out element references to prevent memory leak
486 <        for (int i=1; i<=size; i++)
491 >        for (int i = 0; i < size; i++)
492              queue[i] = null;
488
493          size = 0;
494      }
495  
496      public E poll() {
497          if (size == 0)
498              return null;
499 +        int s = --size;
500          modCount++;
501 <
502 <        E result = (E) queue[1];
503 <        queue[1] = queue[size];
504 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
505 <        if (size > 1)
501 <            fixDown(1);
502 <
501 >        E result = (E)queue[0];
502 >        E x = (E)queue[s];
503 >        queue[s] = null;
504 >        if (s != 0)
505 >            siftDown(0, x);
506          return result;
507      }
508  
509      /**
510 <     * Removes and returns the ith element from queue.  (Recall that queue
508 <     * is one-based, so 1 <= i <= size.)
510 >     * Removes the ith element from queue.
511       *
512 <     * Normally this method leaves the elements at positions from 1 up to i-1,
513 <     * inclusive, untouched.  Under these circumstances, it returns null.
514 <     * Occasionally, in order to maintain the heap invariant, it must move
515 <     * the last element of the list to some index in the range [2, i-1],
516 <     * and move the element previously at position (i/2) to position i.
517 <     * Under these circumstances, this method returns the element that was
518 <     * previously at the end of the list and is now at some position between
519 <     * 2 and i-1 inclusive.
512 >     * Normally this method leaves the elements at up to i-1,
513 >     * inclusive, untouched.  Under these circumstances, it returns
514 >     * null.  Occasionally, in order to maintain the heap invariant,
515 >     * it must swap a later element of the list with one earlier than
516 >     * i.  Under these circumstances, this method returns the element
517 >     * that was previously at the end of the list and is now at some
518 >     * position before i. This fact is used by iterator.remove so as to
519 >     * avoid missing traverseing elements.
520       */
521 <    private E removeAt(int i) {
522 <        assert i > 0 && i <= size;
521 >    private E removeAt(int i) {
522 >        assert i >= 0 && i < size;
523          modCount++;
524 <
525 <        E moved = (E) queue[size];
526 <        queue[i] = moved;
527 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
528 <        if (i <= size) {
529 <            fixDown(i);
524 >        int s = --size;
525 >        if (s == i) // removed last element
526 >            queue[i] = null;
527 >        else {
528 >            E moved = (E) queue[s];
529 >            queue[s] = null;
530 >            siftDown(i, moved);
531              if (queue[i] == moved) {
532 <                fixUp(i);
532 >                siftUp(i, moved);
533                  if (queue[i] != moved)
534                      return moved;
535              }
# Line 535 | Line 538 | public class PriorityQueue<E> extends Ab
538      }
539  
540      /**
541 <     * Establishes the heap invariant (described above) assuming the heap
542 <     * satisfies the invariant except possibly for the leaf-node indexed by k
543 <     * (which may have a nextExecutionTime less than its parent's).
544 <     *
545 <     * This method functions by "promoting" queue[k] up the hierarchy
546 <     * (by swapping it with its parent) repeatedly until queue[k]
547 <     * is greater than or equal to its parent.
548 <     */
549 <    private void fixUp(int k) {
550 <        if (comparator == null) {
551 <            while (k > 1) {
552 <                int j = k >> 1;
553 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
554 <                    break;
555 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
556 <                k = j;
557 <            }
558 <        } else {
559 <            while (k > 1) {
560 <                int j = k >>> 1;
561 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
562 <                    break;
563 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
564 <                k = j;
565 <            }
541 >     * Inserts item x at position k, maintaining heap invariant by
542 >     * promoting x up the tree until it is greater than or equal to
543 >     * its parent, or is the root.
544 >     *
545 >     * To simplify and speed up coercions and comparisons. the
546 >     * Comparable and Comparator versions are separated into different
547 >     * methods that are otherwise identical. (Similarly for siftDown.)
548 >     *
549 >     * @param k the position to fill
550 >     * @param x the item to insert
551 >     */
552 >    private void siftUp(int k, E x) {
553 >        if (comparator != null)
554 >            siftUpUsingComparator(k, x);
555 >        else
556 >            siftUpComparable(k, x);
557 >    }
558 >
559 >    private void siftUpComparable(int k, E x) {
560 >        Comparable<? super E> key = (Comparable<? super E>) x;
561 >        while (k > 0) {
562 >            int parent = (k - 1) >>> 1;
563 >            Object e = queue[parent];
564 >            if (key.compareTo((E)e) >= 0)
565 >                break;
566 >            queue[k] = e;
567 >            k = parent;
568 >        }
569 >        queue[k] = key;
570 >    }
571 >
572 >    private void siftUpUsingComparator(int k, E x) {
573 >        while (k > 0) {
574 >            int parent = (k - 1) >>> 1;
575 >            Object e = queue[parent];
576 >            if (comparator.compare(x, (E)e) >= 0)
577 >                break;
578 >            queue[k] = e;
579 >            k = parent;
580          }
581 +        queue[k] = x;
582      }
583  
584      /**
585 <     * Establishes the heap invariant (described above) in the subtree
586 <     * rooted at k, which is assumed to satisfy the heap invariant except
587 <     * possibly for node k itself (which may be greater than its children).
588 <     *
589 <     * This method functions by "demoting" queue[k] down the hierarchy
590 <     * (by swapping it with its smaller child) repeatedly until queue[k]
591 <     * is less than or equal to its children.
592 <     */
593 <    private void fixDown(int k) {
594 <        int j;
595 <        if (comparator == null) {
596 <            while ((j = k << 1) <= size && (j > 0)) {
597 <                if (j<size &&
598 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
599 <                    j++; // j indexes smallest kid
600 <
601 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
602 <                    break;
603 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
604 <                k = j;
605 <            }
606 <        } else {
607 <            while ((j = k << 1) <= size && (j > 0)) {
608 <                if (j<size &&
609 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
610 <                    j++; // j indexes smallest kid
611 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
612 <                    break;
613 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
614 <                k = j;
615 <            }
585 >     * Inserts item x at position k, maintaining heap invariant by
586 >     * demoting x down the tree repeatedly until it is less than or
587 >     * equal to its children or is a leaf.
588 >     *
589 >     * @param k the position to fill
590 >     * @param x the item to insert
591 >     */
592 >    private void siftDown(int k, E x) {
593 >        if (comparator != null)
594 >            siftDownUsingComparator(k, x);
595 >        else
596 >            siftDownComparable(k, x);
597 >    }
598 >
599 >    private void siftDownComparable(int k, E x) {
600 >        Comparable<? super E> key = (Comparable<? super E>)x;
601 >        int half = size >>> 1;        // loop while a non-leaf
602 >        while (k < half) {
603 >            int child = (k << 1) + 1; // assume left child is least
604 >            Object c = queue[child];
605 >            int right = child + 1;
606 >            if (right < size &&
607 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
608 >                c = queue[child = right];
609 >            if (key.compareTo((E)c) <= 0)
610 >                break;
611 >            queue[k] = c;
612 >            k = child;
613 >        }
614 >        queue[k] = key;
615 >    }
616 >
617 >    private void siftDownUsingComparator(int k, E x) {
618 >        int half = size >>> 1;
619 >        while (k < half) {
620 >            int child = (k << 1) + 1;
621 >            Object c = queue[child];
622 >            int right = child + 1;
623 >            if (right < size &&
624 >                comparator.compare((E)c, (E)queue[right]) > 0)
625 >                c = queue[child = right];
626 >            if (comparator.compare(x, (E)c) <= 0)
627 >                break;
628 >            queue[k] = c;
629 >            k = child;
630          }
631 +        queue[k] = x;
632      }
633  
634      /**
# Line 603 | Line 636 | public class PriorityQueue<E> extends Ab
636       * assuming nothing about the order of the elements prior to the call.
637       */
638      private void heapify() {
639 <        for (int i = size/2; i >= 1; i--)
640 <            fixDown(i);
639 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
640 >            siftDown(i, (E)queue[i]);
641      }
642  
643      /**
644 <     * Returns the comparator used to order this collection, or <tt>null</tt>
645 <     * if this collection is sorted according to its elements natural ordering
646 <     * (using <tt>Comparable</tt>).
644 >     * Returns the comparator used to order the elements in this
645 >     * queue, or <tt>null</tt> if this queue is sorted according to
646 >     * the {@linkplain Comparable natural ordering} of its elements.
647       *
648 <     * @return the comparator used to order this collection, or <tt>null</tt>
649 <     * if this collection is sorted according to its elements natural ordering.
648 >     * @return the comparator used to order this queue, or
649 >     *         <tt>null</tt> if this queue is sorted according to the
650 >     *         natural ordering of its elements.
651       */
652      public Comparator<? super E> comparator() {
653          return comparator;
# Line 634 | Line 668 | public class PriorityQueue<E> extends Ab
668          s.defaultWriteObject();
669  
670          // Write out array length
671 <        s.writeInt(queue.length);
671 >        // For compatibility with 1.5 version, must be at least 2.
672 >        s.writeInt(Math.max(2, queue.length));
673  
674          // Write out all elements in the proper order.
675 <        for (int i=1; i<=size; i++)
675 >        for (int i=0; i<size; i++)
676              s.writeObject(queue[i]);
677      }
678  
679      /**
680 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
681 <     * deserialize it).
680 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
681 >     * (that is, deserialize it).
682       * @param s the stream
683       */
684      private void readObject(java.io.ObjectInputStream s)
# Line 656 | Line 691 | public class PriorityQueue<E> extends Ab
691          queue = new Object[arrayLength];
692  
693          // Read in all elements in the proper order.
694 <        for (int i=1; i<=size; i++)
694 >        for (int i=0; i<size; i++)
695              queue[i] = (E) s.readObject();
696      }
697  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines