ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.48 by jsr166, Sun Apr 11 04:50:24 2004 UTC vs.
Revision 1.88 by dl, Fri Feb 1 16:23:04 2013 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 + import java.util.stream.Stream;
28 + import java.util.Spliterator;
29 + import java.util.stream.Streams;
30 + import java.util.function.Consumer;
31  
32   /**
33 < * An unbounded priority {@linkplain Queue queue} based on a priority
34 < * heap.  This queue orders elements according to an order specified
35 < * at construction time, which is specified either according to their
36 < * <i>natural order</i> (see {@link Comparable}), or according to a
37 < * {@link java.util.Comparator}, depending on which constructor is
38 < * used. A priority queue does not permit <tt>null</tt> elements.
39 < * A priority queue relying on natural ordering also does not
40 < * permit insertion of non-comparable objects (doing so may result
19 < * in <tt>ClassCastException</tt>).
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41   *
42   * <p>The <em>head</em> of this queue is the <em>least</em> element
43   * with respect to the specified ordering.  If multiple elements are
44   * tied for least value, the head is one of those elements -- ties are
45 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
46 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47   * element at the head of the queue.
48   *
49   * <p>A priority queue is unbounded, but has an internal
# Line 32 | Line 53 | package java.util;
53   * grows automatically.  The details of the growth policy are not
54   * specified.
55   *
56 < * <p>This class implements all of the <em>optional</em> methods of
57 < * the {@link Collection} and {@link Iterator} interfaces.  The
58 < * Iterator provided in method {@link #iterator()} is <em>not</em>
59 < * guaranteed to traverse the elements of the PriorityQueue in any
60 < * particular order. If you need ordered traversal, consider using
61 < * <tt>Arrays.sort(pq.toArray())</tt>.
62 < *
63 < * <p> <strong>Note that this implementation is not synchronized.</strong>
64 < * Multiple threads should not access a <tt>PriorityQueue</tt>
65 < * instance concurrently if any of the threads modifies the list
66 < * structurally. Instead, use the thread-safe {@link
56 > * <p>This class and its iterator implement all of the
57 > * <em>optional</em> methods of the {@link Collection} and {@link
58 > * Iterator} interfaces.  The Iterator provided in method {@link
59 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67   * java.util.concurrent.PriorityBlockingQueue} class.
68   *
69 < *
70 < * <p>Implementation note: this implementation provides O(log(n)) time
71 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
72 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
73 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
74 < * constant time for the retrieval methods (<tt>peek</tt>,
54 < * <tt>element</tt>, and <tt>size</tt>).
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueing and dequeing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @version %I%, %G%
61 < * @author Josh Bloch
81 > * @author Josh Bloch, Doug Lea
82   * @param <E> the type of elements held in this collection
83   */
84   public class PriorityQueue<E> extends AbstractQueue<E>
# Line 69 | Line 89 | public class PriorityQueue<E> extends Ab
89      private static final int DEFAULT_INITIAL_CAPACITY = 11;
90  
91      /**
92 <     * Priority queue represented as a balanced binary heap: the two children
93 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
94 <     * ordered by comparator, or by the elements' natural ordering, if
95 <     * comparator is null:  For each node n in the heap and each descendant d
96 <     * of n, n <= d.
97 <     *
78 <     * The element with the lowest value is in queue[1], assuming the queue is
79 <     * nonempty.  (A one-based array is used in preference to the traditional
80 <     * zero-based array to simplify parent and child calculations.)
81 <     *
82 <     * queue.length must be >= 2, even if size == 0.
92 >     * Priority queue represented as a balanced binary heap: the two
93 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
94 >     * priority queue is ordered by comparator, or by the elements'
95 >     * natural ordering, if comparator is null: For each node n in the
96 >     * heap and each descendant d of n, n <= d.  The element with the
97 >     * lowest value is in queue[0], assuming the queue is nonempty.
98       */
99 <    private transient Object[] queue;
99 >    transient Object[] queue; // non-private to simplify nested class access
100  
101      /**
102       * The number of elements in the priority queue.
# Line 98 | Line 113 | public class PriorityQueue<E> extends Ab
113       * The number of times this priority queue has been
114       * <i>structurally modified</i>.  See AbstractList for gory details.
115       */
116 <    private transient int modCount = 0;
116 >    transient int modCount = 0; // non-private to simplify nested class access
117  
118      /**
119 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
120 <     * (11) that orders its elements according to their natural
121 <     * ordering (using <tt>Comparable</tt>).
119 >     * Creates a {@code PriorityQueue} with the default initial
120 >     * capacity (11) that orders its elements according to their
121 >     * {@linkplain Comparable natural ordering}.
122       */
123      public PriorityQueue() {
124          this(DEFAULT_INITIAL_CAPACITY, null);
125      }
126  
127      /**
128 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
129 <     * that orders its elements according to their natural ordering
130 <     * (using <tt>Comparable</tt>).
131 <     *
132 <     * @param initialCapacity the initial capacity for this priority queue.
133 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134 <     * than 1
128 >     * Creates a {@code PriorityQueue} with the specified initial
129 >     * capacity that orders its elements according to their
130 >     * {@linkplain Comparable natural ordering}.
131 >     *
132 >     * @param initialCapacity the initial capacity for this priority queue
133 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
134 >     *         than 1
135       */
136      public PriorityQueue(int initialCapacity) {
137          this(initialCapacity, null);
138      }
139  
140      /**
141 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
141 >     * Creates a {@code PriorityQueue} with the specified initial capacity
142       * that orders its elements according to the specified comparator.
143       *
144 <     * @param initialCapacity the initial capacity for this priority queue.
145 <     * @param comparator the comparator used to order this priority queue.
146 <     * If <tt>null</tt> then the order depends on the elements' natural
147 <     * ordering.
148 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
149 <     * than 1
144 >     * @param  initialCapacity the initial capacity for this priority queue
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @throws IllegalArgumentException if {@code initialCapacity} is
149 >     *         less than 1
150       */
151 <    public PriorityQueue(int initialCapacity,
151 >    public PriorityQueue(int initialCapacity,
152                           Comparator<? super E> comparator) {
153 +        // Note: This restriction of at least one is not actually needed,
154 +        // but continues for 1.5 compatibility
155          if (initialCapacity < 1)
156              throw new IllegalArgumentException();
157 <        this.queue = new Object[initialCapacity + 1];
157 >        this.queue = new Object[initialCapacity];
158          this.comparator = comparator;
159      }
160  
161      /**
162 <     * Common code to initialize underlying queue array across
163 <     * constructors below.
162 >     * Creates a {@code PriorityQueue} containing the elements in the
163 >     * specified collection.  If the specified collection is an instance of
164 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
165 >     * priority queue will be ordered according to the same ordering.
166 >     * Otherwise, this priority queue will be ordered according to the
167 >     * {@linkplain Comparable natural ordering} of its elements.
168 >     *
169 >     * @param  c the collection whose elements are to be placed
170 >     *         into this priority queue
171 >     * @throws ClassCastException if elements of the specified collection
172 >     *         cannot be compared to one another according to the priority
173 >     *         queue's ordering
174 >     * @throws NullPointerException if the specified collection or any
175 >     *         of its elements are null
176       */
177 <    private void initializeArray(Collection<? extends E> c) {
178 <        int sz = c.size();
179 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
180 <                                            Integer.MAX_VALUE - 1);
181 <        if (initialCapacity < 1)
182 <            initialCapacity = 1;
183 <
184 <        this.queue = new Object[initialCapacity + 1];
177 >    @SuppressWarnings("unchecked")
178 >    public PriorityQueue(Collection<? extends E> c) {
179 >        if (c instanceof SortedSet<?>) {
180 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
181 >            this.comparator = (Comparator<? super E>) ss.comparator();
182 >            initElementsFromCollection(ss);
183 >        }
184 >        else if (c instanceof PriorityQueue<?>) {
185 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
186 >            this.comparator = (Comparator<? super E>) pq.comparator();
187 >            initFromPriorityQueue(pq);
188 >        }
189 >        else {
190 >            this.comparator = null;
191 >            initFromCollection(c);
192 >        }
193      }
194  
195      /**
196 <     * Initially fill elements of the queue array under the
197 <     * knowledge that it is sorted or is another PQ, in which
198 <     * case we can just place the elements in the order presented.
196 >     * Creates a {@code PriorityQueue} containing the elements in the
197 >     * specified priority queue.  This priority queue will be
198 >     * ordered according to the same ordering as the given priority
199 >     * queue.
200 >     *
201 >     * @param  c the priority queue whose elements are to be placed
202 >     *         into this priority queue
203 >     * @throws ClassCastException if elements of {@code c} cannot be
204 >     *         compared to one another according to {@code c}'s
205 >     *         ordering
206 >     * @throws NullPointerException if the specified priority queue or any
207 >     *         of its elements are null
208       */
209 <    private void fillFromSorted(Collection<? extends E> c) {
210 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
211 <            queue[++size] = i.next();
209 >    @SuppressWarnings("unchecked")
210 >    public PriorityQueue(PriorityQueue<? extends E> c) {
211 >        this.comparator = (Comparator<? super E>) c.comparator();
212 >        initFromPriorityQueue(c);
213      }
214  
215      /**
216 <     * Initially fill elements of the queue array that is not to our knowledge
217 <     * sorted, so we must rearrange the elements to guarantee the heap
218 <     * invariant.
216 >     * Creates a {@code PriorityQueue} containing the elements in the
217 >     * specified sorted set.   This priority queue will be ordered
218 >     * according to the same ordering as the given sorted set.
219 >     *
220 >     * @param  c the sorted set whose elements are to be placed
221 >     *         into this priority queue
222 >     * @throws ClassCastException if elements of the specified sorted
223 >     *         set cannot be compared to one another according to the
224 >     *         sorted set's ordering
225 >     * @throws NullPointerException if the specified sorted set or any
226 >     *         of its elements are null
227       */
228 <    private void fillFromUnsorted(Collection<? extends E> c) {
229 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
230 <            queue[++size] = i.next();
231 <        heapify();
228 >    @SuppressWarnings("unchecked")
229 >    public PriorityQueue(SortedSet<? extends E> c) {
230 >        this.comparator = (Comparator<? super E>) c.comparator();
231 >        initElementsFromCollection(c);
232      }
233  
234 <    /**
235 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
236 <     * specified collection.  The priority queue has an initial
237 <     * capacity of 110% of the size of the specified collection or 1
183 <     * if the collection is empty.  If the specified collection is an
184 <     * instance of a {@link java.util.SortedSet} or is another
185 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 <     * according to the same comparator, or according to its elements'
187 <     * natural order if the collection is sorted according to its
188 <     * elements' natural order.  Otherwise, the priority queue is
189 <     * ordered according to its elements' natural order.
190 <     *
191 <     * @param c the collection whose elements are to be placed
192 <     *        into this priority queue.
193 <     * @throws ClassCastException if elements of the specified collection
194 <     *         cannot be compared to one another according to the priority
195 <     *         queue's ordering.
196 <     * @throws NullPointerException if <tt>c</tt> or any element within it
197 <     * is <tt>null</tt>
198 <     */
199 <    public PriorityQueue(Collection<? extends E> c) {
200 <        initializeArray(c);
201 <        if (c instanceof SortedSet) {
202 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
203 <            comparator = (Comparator<? super E>)s.comparator();
204 <            fillFromSorted(s);
205 <        } else if (c instanceof PriorityQueue) {
206 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
207 <            comparator = (Comparator<? super E>)s.comparator();
208 <            fillFromSorted(s);
234 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
235 >        if (c.getClass() == PriorityQueue.class) {
236 >            this.queue = c.toArray();
237 >            this.size = c.size();
238          } else {
239 <            comparator = null;
211 <            fillFromUnsorted(c);
239 >            initFromCollection(c);
240          }
241      }
242  
243 +    private void initElementsFromCollection(Collection<? extends E> c) {
244 +        Object[] a = c.toArray();
245 +        // If c.toArray incorrectly doesn't return Object[], copy it.
246 +        if (a.getClass() != Object[].class)
247 +            a = Arrays.copyOf(a, a.length, Object[].class);
248 +        int len = a.length;
249 +        if (len == 1 || this.comparator != null)
250 +            for (int i = 0; i < len; i++)
251 +                if (a[i] == null)
252 +                    throw new NullPointerException();
253 +        this.queue = a;
254 +        this.size = a.length;
255 +    }
256 +
257      /**
258 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
217 <     * specified collection.  The priority queue has an initial
218 <     * capacity of 110% of the size of the specified collection or 1
219 <     * if the collection is empty.  This priority queue will be sorted
220 <     * according to the same comparator as the given collection, or
221 <     * according to its elements' natural order if the collection is
222 <     * sorted according to its elements' natural order.
258 >     * Initializes queue array with elements from the given Collection.
259       *
260 <     * @param c the collection whose elements are to be placed
225 <     *        into this priority queue.
226 <     * @throws ClassCastException if elements of the specified collection
227 <     *         cannot be compared to one another according to the priority
228 <     *         queue's ordering.
229 <     * @throws NullPointerException if <tt>c</tt> or any element within it
230 <     * is <tt>null</tt>
260 >     * @param c the collection
261       */
262 <    public PriorityQueue(PriorityQueue<? extends E> c) {
263 <        initializeArray(c);
264 <        comparator = (Comparator<? super E>)c.comparator();
235 <        fillFromSorted(c);
262 >    private void initFromCollection(Collection<? extends E> c) {
263 >        initElementsFromCollection(c);
264 >        heapify();
265      }
266  
267      /**
268 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
269 <     * specified collection.  The priority queue has an initial
270 <     * capacity of 110% of the size of the specified collection or 1
271 <     * if the collection is empty.  This priority queue will be sorted
272 <     * according to the same comparator as the given collection, or
273 <     * according to its elements' natural order if the collection is
274 <     * sorted according to its elements' natural order.
268 >     * The maximum size of array to allocate.
269 >     * Some VMs reserve some header words in an array.
270 >     * Attempts to allocate larger arrays may result in
271 >     * OutOfMemoryError: Requested array size exceeds VM limit
272 >     */
273 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274 >
275 >    /**
276 >     * Increases the capacity of the array.
277       *
278 <     * @param c the collection whose elements are to be placed
248 <     *        into this priority queue.
249 <     * @throws ClassCastException if elements of the specified collection
250 <     *         cannot be compared to one another according to the priority
251 <     *         queue's ordering.
252 <     * @throws NullPointerException if <tt>c</tt> or any element within it
253 <     * is <tt>null</tt>
278 >     * @param minCapacity the desired minimum capacity
279       */
280 <    public PriorityQueue(SortedSet<? extends E> c) {
281 <        initializeArray(c);
282 <        comparator = (Comparator<? super E>)c.comparator();
283 <        fillFromSorted(c);
280 >    private void grow(int minCapacity) {
281 >        int oldCapacity = queue.length;
282 >        // Double size if small; else grow by 50%
283 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
284 >                                         (oldCapacity + 2) :
285 >                                         (oldCapacity >> 1));
286 >        // overflow-conscious code
287 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
288 >            newCapacity = hugeCapacity(minCapacity);
289 >        queue = Arrays.copyOf(queue, newCapacity);
290 >    }
291 >
292 >    private static int hugeCapacity(int minCapacity) {
293 >        if (minCapacity < 0) // overflow
294 >            throw new OutOfMemoryError();
295 >        return (minCapacity > MAX_ARRAY_SIZE) ?
296 >            Integer.MAX_VALUE :
297 >            MAX_ARRAY_SIZE;
298      }
299  
300      /**
301 <     * Resize array, if necessary, to be able to hold given index
301 >     * Inserts the specified element into this priority queue.
302 >     *
303 >     * @return {@code true} (as specified by {@link Collection#add})
304 >     * @throws ClassCastException if the specified element cannot be
305 >     *         compared with elements currently in this priority queue
306 >     *         according to the priority queue's ordering
307 >     * @throws NullPointerException if the specified element is null
308       */
309 <    private void grow(int index) {
310 <        int newlen = queue.length;
266 <        if (index < newlen) // don't need to grow
267 <            return;
268 <        if (index == Integer.MAX_VALUE)
269 <            throw new OutOfMemoryError();
270 <        while (newlen <= index) {
271 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
272 <                newlen = Integer.MAX_VALUE;
273 <            else
274 <                newlen <<= 2;
275 <        }
276 <        Object[] newQueue = new Object[newlen];
277 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
278 <        queue = newQueue;
309 >    public boolean add(E e) {
310 >        return offer(e);
311      }
280            
312  
313      /**
314       * Inserts the specified element into this priority queue.
315       *
316 <     * @return <tt>true</tt>
317 <     * @throws ClassCastException if the specified element cannot be compared
318 <     * with elements currently in the priority queue according
319 <     * to the priority queue's ordering.
320 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
316 >     * @return {@code true} (as specified by {@link Queue#offer})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321       */
322 <    public boolean offer(E o) {
323 <        if (o == null)
322 >    public boolean offer(E e) {
323 >        if (e == null)
324              throw new NullPointerException();
325          modCount++;
326 <        ++size;
327 <
328 <        // Grow backing store if necessary
329 <        if (size >= queue.length)
330 <            grow(size);
331 <
332 <        queue[size] = o;
333 <        fixUp(size);
326 >        int i = size;
327 >        if (i >= queue.length)
328 >            grow(i + 1);
329 >        size = i + 1;
330 >        if (i == 0)
331 >            queue[0] = e;
332 >        else
333 >            siftUp(i, e);
334          return true;
335      }
336  
337 +    @SuppressWarnings("unchecked")
338      public E peek() {
339 <        if (size == 0)
308 <            return null;
309 <        return (E) queue[1];
339 >        return (size == 0) ? null : (E) queue[0];
340      }
341  
342 <    // Collection Methods - the first two override to update docs
342 >    private int indexOf(Object o) {
343 >        if (o != null) {
344 >            for (int i = 0; i < size; i++)
345 >                if (o.equals(queue[i]))
346 >                    return i;
347 >        }
348 >        return -1;
349 >    }
350  
351      /**
352 <     * Adds the specified element to this queue.
353 <     * @return <tt>true</tt> (as per the general contract of
354 <     * <tt>Collection.add</tt>).
352 >     * Removes a single instance of the specified element from this queue,
353 >     * if it is present.  More formally, removes an element {@code e} such
354 >     * that {@code o.equals(e)}, if this queue contains one or more such
355 >     * elements.  Returns {@code true} if and only if this queue contained
356 >     * the specified element (or equivalently, if this queue changed as a
357 >     * result of the call).
358       *
359 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
360 <     * @throws ClassCastException if the specified element cannot be compared
321 <     * with elements currently in the priority queue according
322 <     * to the priority queue's ordering.
359 >     * @param o element to be removed from this queue, if present
360 >     * @return {@code true} if this queue changed as a result of the call
361       */
324    public boolean add(E o) {
325        return offer(o);
326    }
327
362      public boolean remove(Object o) {
363 <        if (o == null)
363 >        int i = indexOf(o);
364 >        if (i == -1)
365              return false;
366 +        else {
367 +            removeAt(i);
368 +            return true;
369 +        }
370 +    }
371  
372 <        if (comparator == null) {
373 <            for (int i = 1; i <= size; i++) {
374 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
375 <                    removeAt(i);
376 <                    return true;
377 <                }
378 <            }
379 <        } else {
380 <            for (int i = 1; i <= size; i++) {
381 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
382 <                    removeAt(i);
383 <                    return true;
344 <                }
372 >    /**
373 >     * Version of remove using reference equality, not equals.
374 >     * Needed by iterator.remove.
375 >     *
376 >     * @param o element to be removed from this queue, if present
377 >     * @return {@code true} if removed
378 >     */
379 >    boolean removeEq(Object o) {
380 >        for (int i = 0; i < size; i++) {
381 >            if (o == queue[i]) {
382 >                removeAt(i);
383 >                return true;
384              }
385          }
386          return false;
387      }
388  
389      /**
390 +     * Returns {@code true} if this queue contains the specified element.
391 +     * More formally, returns {@code true} if and only if this queue contains
392 +     * at least one element {@code e} such that {@code o.equals(e)}.
393 +     *
394 +     * @param o object to be checked for containment in this queue
395 +     * @return {@code true} if this queue contains the specified element
396 +     */
397 +    public boolean contains(Object o) {
398 +        return indexOf(o) != -1;
399 +    }
400 +
401 +    /**
402 +     * Returns an array containing all of the elements in this queue.
403 +     * The elements are in no particular order.
404 +     *
405 +     * <p>The returned array will be "safe" in that no references to it are
406 +     * maintained by this queue.  (In other words, this method must allocate
407 +     * a new array).  The caller is thus free to modify the returned array.
408 +     *
409 +     * <p>This method acts as bridge between array-based and collection-based
410 +     * APIs.
411 +     *
412 +     * @return an array containing all of the elements in this queue
413 +     */
414 +    public Object[] toArray() {
415 +        return Arrays.copyOf(queue, size);
416 +    }
417 +
418 +    /**
419 +     * Returns an array containing all of the elements in this queue; the
420 +     * runtime type of the returned array is that of the specified array.
421 +     * The returned array elements are in no particular order.
422 +     * If the queue fits in the specified array, it is returned therein.
423 +     * Otherwise, a new array is allocated with the runtime type of the
424 +     * specified array and the size of this queue.
425 +     *
426 +     * <p>If the queue fits in the specified array with room to spare
427 +     * (i.e., the array has more elements than the queue), the element in
428 +     * the array immediately following the end of the collection is set to
429 +     * {@code null}.
430 +     *
431 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
432 +     * array-based and collection-based APIs.  Further, this method allows
433 +     * precise control over the runtime type of the output array, and may,
434 +     * under certain circumstances, be used to save allocation costs.
435 +     *
436 +     * <p>Suppose {@code x} is a queue known to contain only strings.
437 +     * The following code can be used to dump the queue into a newly
438 +     * allocated array of {@code String}:
439 +     *
440 +     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
441 +     *
442 +     * Note that {@code toArray(new Object[0])} is identical in function to
443 +     * {@code toArray()}.
444 +     *
445 +     * @param a the array into which the elements of the queue are to
446 +     *          be stored, if it is big enough; otherwise, a new array of the
447 +     *          same runtime type is allocated for this purpose.
448 +     * @return an array containing all of the elements in this queue
449 +     * @throws ArrayStoreException if the runtime type of the specified array
450 +     *         is not a supertype of the runtime type of every element in
451 +     *         this queue
452 +     * @throws NullPointerException if the specified array is null
453 +     */
454 +    @SuppressWarnings("unchecked")
455 +    public <T> T[] toArray(T[] a) {
456 +        final int size = this.size;
457 +        if (a.length < size)
458 +            // Make a new array of a's runtime type, but my contents:
459 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
460 +        System.arraycopy(queue, 0, a, 0, size);
461 +        if (a.length > size)
462 +            a[size] = null;
463 +        return a;
464 +    }
465 +
466 +    /**
467       * Returns an iterator over the elements in this queue. The iterator
468       * does not return the elements in any particular order.
469       *
470 <     * @return an iterator over the elements in this queue.
470 >     * @return an iterator over the elements in this queue
471       */
472      public Iterator<E> iterator() {
473          return new Itr();
474      }
475  
476 <    private class Itr implements Iterator<E> {
361 <
476 >    private final class Itr implements Iterator<E> {
477          /**
478           * Index (into queue array) of element to be returned by
479           * subsequent call to next.
480           */
481 <        private int cursor = 1;
481 >        private int cursor = 0;
482  
483          /**
484           * Index of element returned by most recent call to next,
485           * unless that element came from the forgetMeNot list.
486 <         * Reset to 0 if element is deleted by a call to remove.
486 >         * Set to -1 if element is deleted by a call to remove.
487           */
488 <        private int lastRet = 0;
488 >        private int lastRet = -1;
489  
490          /**
491 <         * The modCount value that the iterator believes that the backing
377 <         * List should have.  If this expectation is violated, the iterator
378 <         * has detected concurrent modification.
379 <         */
380 <        private int expectedModCount = modCount;
381 <
382 <        /**
383 <         * A list of elements that were moved from the unvisited portion of
491 >         * A queue of elements that were moved from the unvisited portion of
492           * the heap into the visited portion as a result of "unlucky" element
493           * removals during the iteration.  (Unlucky element removals are those
494 <         * that require a fixup instead of a fixdown.)  We must visit all of
494 >         * that require a siftup instead of a siftdown.)  We must visit all of
495           * the elements in this list to complete the iteration.  We do this
496           * after we've completed the "normal" iteration.
497           *
498           * We expect that most iterations, even those involving removals,
499 <         * will not use need to store elements in this field.
499 >         * will not need to store elements in this field.
500           */
501 <        private ArrayList<E> forgetMeNot = null;
501 >        private ArrayDeque<E> forgetMeNot = null;
502  
503          /**
504           * Element returned by the most recent call to next iff that
505           * element was drawn from the forgetMeNot list.
506           */
507 <        private Object lastRetElt = null;
507 >        private E lastRetElt = null;
508 >
509 >        /**
510 >         * The modCount value that the iterator believes that the backing
511 >         * Queue should have.  If this expectation is violated, the iterator
512 >         * has detected concurrent modification.
513 >         */
514 >        private int expectedModCount = modCount;
515  
516          public boolean hasNext() {
517 <            return cursor <= size || forgetMeNot != null;
517 >            return cursor < size ||
518 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
519          }
520  
521 +        @SuppressWarnings("unchecked")
522          public E next() {
523 <            checkForComodification();
524 <            E result;
525 <            if (cursor <= size) {
526 <                result = (E) queue[cursor];
527 <                lastRet = cursor++;
528 <            }
529 <            else if (forgetMeNot == null)
530 <                throw new NoSuchElementException();
531 <            else {
415 <                int remaining = forgetMeNot.size();
416 <                result = forgetMeNot.remove(remaining - 1);
417 <                if (remaining == 1)
418 <                    forgetMeNot = null;
419 <                lastRet = 0;
420 <                lastRetElt = result;
523 >            if (expectedModCount != modCount)
524 >                throw new ConcurrentModificationException();
525 >            if (cursor < size)
526 >                return (E) queue[lastRet = cursor++];
527 >            if (forgetMeNot != null) {
528 >                lastRet = -1;
529 >                lastRetElt = forgetMeNot.poll();
530 >                if (lastRetElt != null)
531 >                    return lastRetElt;
532              }
533 <            return result;
533 >            throw new NoSuchElementException();
534          }
535  
536          public void remove() {
537 <            checkForComodification();
538 <
539 <            if (lastRet != 0) {
537 >            if (expectedModCount != modCount)
538 >                throw new ConcurrentModificationException();
539 >            if (lastRet != -1) {
540                  E moved = PriorityQueue.this.removeAt(lastRet);
541 <                lastRet = 0;
542 <                if (moved == null) {
541 >                lastRet = -1;
542 >                if (moved == null)
543                      cursor--;
544 <                } else {
544 >                else {
545                      if (forgetMeNot == null)
546 <                        forgetMeNot = new ArrayList<E>();
546 >                        forgetMeNot = new ArrayDeque<E>();
547                      forgetMeNot.add(moved);
548                  }
549              } else if (lastRetElt != null) {
550 <                PriorityQueue.this.remove(lastRetElt);
550 >                PriorityQueue.this.removeEq(lastRetElt);
551                  lastRetElt = null;
552              } else {
553                  throw new IllegalStateException();
554              }
444
555              expectedModCount = modCount;
556          }
447
448        final void checkForComodification() {
449            if (modCount != expectedModCount)
450                throw new ConcurrentModificationException();
451        }
557      }
558  
559      public int size() {
# Line 456 | Line 561 | public class PriorityQueue<E> extends Ab
561      }
562  
563      /**
564 <     * Remove all elements from the priority queue.
564 >     * Removes all of the elements from this priority queue.
565 >     * The queue will be empty after this call returns.
566       */
567      public void clear() {
568          modCount++;
569 <
464 <        // Null out element references to prevent memory leak
465 <        for (int i=1; i<=size; i++)
569 >        for (int i = 0; i < size; i++)
570              queue[i] = null;
467
571          size = 0;
572      }
573  
574 +    @SuppressWarnings("unchecked")
575      public E poll() {
576          if (size == 0)
577              return null;
578 +        int s = --size;
579          modCount++;
580 <
581 <        E result = (E) queue[1];
582 <        queue[1] = queue[size];
583 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
584 <        if (size > 1)
480 <            fixDown(1);
481 <
580 >        E result = (E) queue[0];
581 >        E x = (E) queue[s];
582 >        queue[s] = null;
583 >        if (s != 0)
584 >            siftDown(0, x);
585          return result;
586      }
587  
588      /**
589 <     * Removes and returns the ith element from queue.  (Recall that queue
487 <     * is one-based, so 1 <= i <= size.)
589 >     * Removes the ith element from queue.
590       *
591 <     * Normally this method leaves the elements at positions from 1 up to i-1,
592 <     * inclusive, untouched.  Under these circumstances, it returns null.
593 <     * Occasionally, in order to maintain the heap invariant, it must move
594 <     * the last element of the list to some index in the range [2, i-1],
595 <     * and move the element previously at position (i/2) to position i.
596 <     * Under these circumstances, this method returns the element that was
597 <     * previously at the end of the list and is now at some position between
598 <     * 2 and i-1 inclusive.
599 <     */
600 <    private E removeAt(int i) {
601 <        assert i > 0 && i <= size;
591 >     * Normally this method leaves the elements at up to i-1,
592 >     * inclusive, untouched.  Under these circumstances, it returns
593 >     * null.  Occasionally, in order to maintain the heap invariant,
594 >     * it must swap a later element of the list with one earlier than
595 >     * i.  Under these circumstances, this method returns the element
596 >     * that was previously at the end of the list and is now at some
597 >     * position before i. This fact is used by iterator.remove so as to
598 >     * avoid missing traversing elements.
599 >     */
600 >    @SuppressWarnings("unchecked")
601 >    private E removeAt(int i) {
602 >        // assert i >= 0 && i < size;
603          modCount++;
604 <
605 <        E moved = (E) queue[size];
606 <        queue[i] = moved;
607 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
608 <        if (i <= size) {
609 <            fixDown(i);
604 >        int s = --size;
605 >        if (s == i) // removed last element
606 >            queue[i] = null;
607 >        else {
608 >            E moved = (E) queue[s];
609 >            queue[s] = null;
610 >            siftDown(i, moved);
611              if (queue[i] == moved) {
612 <                fixUp(i);
612 >                siftUp(i, moved);
613                  if (queue[i] != moved)
614                      return moved;
615              }
# Line 514 | Line 618 | public class PriorityQueue<E> extends Ab
618      }
619  
620      /**
621 <     * Establishes the heap invariant (described above) assuming the heap
622 <     * satisfies the invariant except possibly for the leaf-node indexed by k
623 <     * (which may have a nextExecutionTime less than its parent's).
624 <     *
625 <     * This method functions by "promoting" queue[k] up the hierarchy
626 <     * (by swapping it with its parent) repeatedly until queue[k]
627 <     * is greater than or equal to its parent.
628 <     */
629 <    private void fixUp(int k) {
630 <        if (comparator == null) {
631 <            while (k > 1) {
632 <                int j = k >> 1;
633 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
634 <                    break;
635 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
636 <                k = j;
637 <            }
638 <        } else {
639 <            while (k > 1) {
640 <                int j = k >>> 1;
641 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
642 <                    break;
643 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
644 <                k = j;
645 <            }
621 >     * Inserts item x at position k, maintaining heap invariant by
622 >     * promoting x up the tree until it is greater than or equal to
623 >     * its parent, or is the root.
624 >     *
625 >     * To simplify and speed up coercions and comparisons. the
626 >     * Comparable and Comparator versions are separated into different
627 >     * methods that are otherwise identical. (Similarly for siftDown.)
628 >     *
629 >     * @param k the position to fill
630 >     * @param x the item to insert
631 >     */
632 >    private void siftUp(int k, E x) {
633 >        if (comparator != null)
634 >            siftUpUsingComparator(k, x);
635 >        else
636 >            siftUpComparable(k, x);
637 >    }
638 >
639 >    @SuppressWarnings("unchecked")
640 >    private void siftUpComparable(int k, E x) {
641 >        Comparable<? super E> key = (Comparable<? super E>) x;
642 >        while (k > 0) {
643 >            int parent = (k - 1) >>> 1;
644 >            Object e = queue[parent];
645 >            if (key.compareTo((E) e) >= 0)
646 >                break;
647 >            queue[k] = e;
648 >            k = parent;
649          }
650 +        queue[k] = key;
651 +    }
652 +
653 +    @SuppressWarnings("unchecked")
654 +    private void siftUpUsingComparator(int k, E x) {
655 +        while (k > 0) {
656 +            int parent = (k - 1) >>> 1;
657 +            Object e = queue[parent];
658 +            if (comparator.compare(x, (E) e) >= 0)
659 +                break;
660 +            queue[k] = e;
661 +            k = parent;
662 +        }
663 +        queue[k] = x;
664      }
665  
666      /**
667 <     * Establishes the heap invariant (described above) in the subtree
668 <     * rooted at k, which is assumed to satisfy the heap invariant except
669 <     * possibly for node k itself (which may be greater than its children).
670 <     *
671 <     * This method functions by "demoting" queue[k] down the hierarchy
672 <     * (by swapping it with its smaller child) repeatedly until queue[k]
673 <     * is less than or equal to its children.
674 <     */
675 <    private void fixDown(int k) {
676 <        int j;
677 <        if (comparator == null) {
678 <            while ((j = k << 1) <= size && (j > 0)) {
679 <                if (j<size &&
680 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
681 <                    j++; // j indexes smallest kid
682 <
683 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
684 <                    break;
685 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
686 <                k = j;
687 <            }
688 <        } else {
689 <            while ((j = k << 1) <= size && (j > 0)) {
690 <                if (j<size &&
691 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
692 <                    j++; // j indexes smallest kid
693 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
694 <                    break;
695 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
696 <                k = j;
697 <            }
667 >     * Inserts item x at position k, maintaining heap invariant by
668 >     * demoting x down the tree repeatedly until it is less than or
669 >     * equal to its children or is a leaf.
670 >     *
671 >     * @param k the position to fill
672 >     * @param x the item to insert
673 >     */
674 >    private void siftDown(int k, E x) {
675 >        if (comparator != null)
676 >            siftDownUsingComparator(k, x);
677 >        else
678 >            siftDownComparable(k, x);
679 >    }
680 >
681 >    @SuppressWarnings("unchecked")
682 >    private void siftDownComparable(int k, E x) {
683 >        Comparable<? super E> key = (Comparable<? super E>)x;
684 >        int half = size >>> 1;        // loop while a non-leaf
685 >        while (k < half) {
686 >            int child = (k << 1) + 1; // assume left child is least
687 >            Object c = queue[child];
688 >            int right = child + 1;
689 >            if (right < size &&
690 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
691 >                c = queue[child = right];
692 >            if (key.compareTo((E) c) <= 0)
693 >                break;
694 >            queue[k] = c;
695 >            k = child;
696 >        }
697 >        queue[k] = key;
698 >    }
699 >
700 >    @SuppressWarnings("unchecked")
701 >    private void siftDownUsingComparator(int k, E x) {
702 >        int half = size >>> 1;
703 >        while (k < half) {
704 >            int child = (k << 1) + 1;
705 >            Object c = queue[child];
706 >            int right = child + 1;
707 >            if (right < size &&
708 >                comparator.compare((E) c, (E) queue[right]) > 0)
709 >                c = queue[child = right];
710 >            if (comparator.compare(x, (E) c) <= 0)
711 >                break;
712 >            queue[k] = c;
713 >            k = child;
714          }
715 +        queue[k] = x;
716      }
717  
718      /**
719       * Establishes the heap invariant (described above) in the entire tree,
720       * assuming nothing about the order of the elements prior to the call.
721       */
722 +    @SuppressWarnings("unchecked")
723      private void heapify() {
724 <        for (int i = size/2; i >= 1; i--)
725 <            fixDown(i);
724 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
725 >            siftDown(i, (E) queue[i]);
726      }
727  
728      /**
729 <     * Returns the comparator used to order this collection, or <tt>null</tt>
730 <     * if this collection is sorted according to its elements natural ordering
731 <     * (using <tt>Comparable</tt>).
729 >     * Returns the comparator used to order the elements in this
730 >     * queue, or {@code null} if this queue is sorted according to
731 >     * the {@linkplain Comparable natural ordering} of its elements.
732       *
733 <     * @return the comparator used to order this collection, or <tt>null</tt>
734 <     * if this collection is sorted according to its elements natural ordering.
733 >     * @return the comparator used to order this queue, or
734 >     *         {@code null} if this queue is sorted according to the
735 >     *         natural ordering of its elements
736       */
737      public Comparator<? super E> comparator() {
738          return comparator;
739      }
740  
741      /**
742 <     * Save the state of the instance to a stream (that
603 <     * is, serialize it).
742 >     * Saves this queue to a stream (that is, serializes it).
743       *
744       * @serialData The length of the array backing the instance is
745 <     * emitted (int), followed by all of its elements (each an
746 <     * <tt>Object</tt>) in the proper order.
745 >     *             emitted (int), followed by all of its elements
746 >     *             (each an {@code Object}) in the proper order.
747       * @param s the stream
748       */
749      private void writeObject(java.io.ObjectOutputStream s)
750 <        throws java.io.IOException{
750 >        throws java.io.IOException {
751          // Write out element count, and any hidden stuff
752          s.defaultWriteObject();
753  
754 <        // Write out array length
755 <        s.writeInt(queue.length);
754 >        // Write out array length, for compatibility with 1.5 version
755 >        s.writeInt(Math.max(2, size + 1));
756  
757 <        // Write out all elements in the proper order.
758 <        for (int i=1; i<=size; i++)
757 >        // Write out all elements in the "proper order".
758 >        for (int i = 0; i < size; i++)
759              s.writeObject(queue[i]);
760      }
761  
762      /**
763 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
764 <     * deserialize it).
763 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
764 >     * (that is, deserializes it).
765 >     *
766       * @param s the stream
767       */
768      private void readObject(java.io.ObjectInputStream s)
# Line 630 | Line 770 | public class PriorityQueue<E> extends Ab
770          // Read in size, and any hidden stuff
771          s.defaultReadObject();
772  
773 <        // Read in array length and allocate array
774 <        int arrayLength = s.readInt();
775 <        queue = new Object[arrayLength];
776 <
777 <        // Read in all elements in the proper order.
778 <        for (int i=1; i<=size; i++)
779 <            queue[i] = (E) s.readObject();
773 >        // Read in (and discard) array length
774 >        s.readInt();
775 >
776 >        queue = new Object[size];
777 >
778 >        // Read in all elements.
779 >        for (int i = 0; i < size; i++)
780 >            queue[i] = s.readObject();
781 >
782 >        // Elements are guaranteed to be in "proper order", but the
783 >        // spec has never explained what that might be.
784 >        heapify();
785      }
786  
787 +    // wrapping constructor in method avoids transient javac problems
788 +    final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
789 +                                                  int expectedModCount) {
790 +        return new PriorityQueueSpliterator<E>(this, origin, fence,
791 +                                               expectedModCount);
792 +    }
793 +
794 +    public Stream<E> stream() {
795 +        int flags = Streams.STREAM_IS_SIZED;
796 +        return Streams.stream
797 +            (() -> spliterator(0, size, modCount), flags);
798 +    }
799 +    public Stream<E> parallelStream() {
800 +        int flags = Streams.STREAM_IS_SIZED;
801 +        return Streams.parallelStream
802 +            (() -> spliterator(0, size, modCount), flags);
803 +    }
804 +
805 +    /** Index-based split-by-two Spliterator */
806 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
807 +        private final PriorityQueue<E> pq;
808 +        private int index;           // current index, modified on advance/split
809 +        private final int fence;     // one past last index
810 +        private final int expectedModCount; // for comodification checks
811 +
812 +        /** Create new spliterator covering the given  range */
813 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
814 +                             int expectedModCount) {
815 +            this.pq = pq; this.index = origin; this.fence = fence;
816 +            this.expectedModCount = expectedModCount;
817 +        }
818 +
819 +        public PriorityQueueSpliterator<E> trySplit() {
820 +            int lo = index, mid = (lo + fence) >>> 1;
821 +            return (lo >= mid) ? null :
822 +                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
823 +                                                expectedModCount);
824 +        }
825 +
826 +        public void forEach(Consumer<? super E> block) {
827 +            Object[] a; int i, hi; // hoist accesses and checks from loop
828 +            if (block == null)
829 +                throw new NullPointerException();
830 +            if ((a = pq.queue).length >= (hi = fence) &&
831 +                (i = index) >= 0 && i < hi) {
832 +                index = hi;
833 +                do {
834 +                    @SuppressWarnings("unchecked") E e = (E) a[i];
835 +                    block.accept(e);
836 +                } while (++i < hi);
837 +                if (pq.modCount != expectedModCount)
838 +                    throw new ConcurrentModificationException();
839 +            }
840 +        }
841 +
842 +        public boolean tryAdvance(Consumer<? super E> block) {
843 +            if (index >= 0 && index < fence) {
844 +                @SuppressWarnings("unchecked") E e =
845 +                    (E)pq.queue[index++];
846 +                block.accept(e);
847 +                if (pq.modCount != expectedModCount)
848 +                    throw new ConcurrentModificationException();
849 +                return true;
850 +            }
851 +            return false;
852 +        }
853 +
854 +        public long estimateSize() { return (long)(fence - index); }
855 +        public boolean hasExactSize() { return true; }
856 +        public boolean hasExactSplits() { return true; }
857 +    }
858   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines