ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.5 by dl, Tue May 27 18:20:06 2003 UTC vs.
Revision 1.125 by jsr166, Sun May 6 21:07:41 2018 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded priority queue based on a priority heap.  This queue orders
33 < * elements according to the order specified at creation time.  This order is
34 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
38 < * minimal element with respect to the specified ordering.  If multiple
39 < * these elements are tied for least value, no guarantees are made as to
40 < * which of elements is returned.
41 < *
42 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
43 < * the array used to store the elements on the queue.  It is always at least
44 < * as large as the queue size.  As elements are added to a priority list,
45 < * its capacity grows automatically.  The details of the growth policy are not
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53   * specified.
54   *
55 < *<p>Implementation note: this implementation provides O(log(n)) time for
56 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
57 < * methods; linear time for the <tt>remove(Object)</tt> and
58 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
59 < * <tt>element</tt>, and <tt>size</tt> methods.
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80 + * @since 1.5
81 + * @author Josh Bloch, Doug Lea
82 + * @param <E> the type of elements held in this queue
83   */
84 + @SuppressWarnings("unchecked")
85   public class PriorityQueue<E> extends AbstractQueue<E>
86 <                              implements Queue<E>
87 < {
86 >    implements java.io.Serializable {
87 >
88 >    private static final long serialVersionUID = -7720805057305804111L;
89 >
90      private static final int DEFAULT_INITIAL_CAPACITY = 11;
91  
92      /**
93 <     * Priority queue represented as a balanced binary heap: the two children
94 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
95 <     * ordered by comparator, or by the elements' natural ordering, if
96 <     * comparator is null:  For each node n in the heap, and each descendant
97 <     * of n, d, n <= d.
98 <     *
42 <     * The element with the lowest value is in queue[1] (assuming the queue is
43 <     * nonempty). A one-based array is used in preference to the traditional
44 <     * zero-based array to simplify parent and child calculations.
45 <     *
46 <     * queue.length must be >= 2, even if size == 0.
93 >     * Priority queue represented as a balanced binary heap: the two
94 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
95 >     * priority queue is ordered by comparator, or by the elements'
96 >     * natural ordering, if comparator is null: For each node n in the
97 >     * heap and each descendant d of n, n <= d.  The element with the
98 >     * lowest value is in queue[0], assuming the queue is nonempty.
99       */
100 <    private transient E[] queue;
100 >    transient Object[] queue; // non-private to simplify nested class access
101  
102      /**
103       * The number of elements in the priority queue.
104       */
105 <    private int size = 0;
105 >    int size;
106  
107      /**
108       * The comparator, or null if priority queue uses elements'
109       * natural ordering.
110       */
111 <    private final Comparator<E> comparator;
111 >    private final Comparator<? super E> comparator;
112  
113      /**
114       * The number of times this priority queue has been
115       * <i>structurally modified</i>.  See AbstractList for gory details.
116       */
117 <    private transient int modCount = 0;
117 >    transient int modCount;     // non-private to simplify nested class access
118  
119      /**
120 <     * Create a new priority queue with the default initial capacity (11)
121 <     * that orders its elements according to their natural ordering.
120 >     * Creates a {@code PriorityQueue} with the default initial
121 >     * capacity (11) that orders its elements according to their
122 >     * {@linkplain Comparable natural ordering}.
123       */
124      public PriorityQueue() {
125 <        this(DEFAULT_INITIAL_CAPACITY);
125 >        this(DEFAULT_INITIAL_CAPACITY, null);
126      }
127  
128      /**
129 <     * Create a new priority queue with the specified initial capacity
130 <     * that orders its elements according to their natural ordering.
129 >     * Creates a {@code PriorityQueue} with the specified initial
130 >     * capacity that orders its elements according to their
131 >     * {@linkplain Comparable natural ordering}.
132       *
133 <     * @param initialCapacity the initial capacity for this priority queue.
133 >     * @param initialCapacity the initial capacity for this priority queue
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136       */
137      public PriorityQueue(int initialCapacity) {
138          this(initialCapacity, null);
139      }
140  
141      /**
142 <     * Create a new priority queue with the specified initial capacity (11)
143 <     * that orders its elements according to the specified comparator.
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144       *
145 <     * @param initialCapacity the initial capacity for this priority queue.
146 <     * @param comparator the comparator used to order this priority queue.
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149       */
150 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152 >    }
153 >
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156 >     * that orders its elements according to the specified comparator.
157 >     *
158 >     * @param  initialCapacity the initial capacity for this priority queue
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163 >     *         less than 1
164 >     */
165 >    public PriorityQueue(int initialCapacity,
166 >                         Comparator<? super E> comparator) {
167 >        // Note: This restriction of at least one is not actually needed,
168 >        // but continues for 1.5 compatibility
169          if (initialCapacity < 1)
170 <            initialCapacity = 1;
171 <        queue = new E[initialCapacity + 1];
170 >            throw new IllegalArgumentException();
171 >        this.queue = new Object[initialCapacity];
172          this.comparator = comparator;
173      }
174  
175      /**
176 <     * Create a new priority queue containing the elements in the specified
177 <     * collection.  The priority queue has an initial capacity of 110% of the
178 <     * size of the specified collection. If the specified collection
179 <     * implements the {@link Sorted} interface, the priority queue will be
180 <     * sorted according to the same comparator, or according to its elements'
181 <     * natural order if the collection is sorted according to its elements'
106 <     * natural order.  If the specified collection does not implement the
107 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
108 <     * its elements' natural order.
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182       *
183 <     * @param initialElements the collection whose elements are to be placed
184 <     *        into this priority queue.
183 >     * @param  c the collection whose elements are to be placed
184 >     *         into this priority queue
185       * @throws ClassCastException if elements of the specified collection
186       *         cannot be compared to one another according to the priority
187 <     *         queue's ordering.
188 <     * @throws NullPointerException if the specified collection or an
189 <     *         element of the specified collection is <tt>null</tt>.
190 <     */
191 <    public PriorityQueue(Collection<E> initialElements) {
192 <        int sz = initialElements.size();
193 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
194 <                                            Integer.MAX_VALUE - 1);
195 <        if (initialCapacity < 1)
196 <            initialCapacity = 1;
197 <        queue = new E[initialCapacity + 1];
187 >     *         queue's ordering
188 >     * @throws NullPointerException if the specified collection or any
189 >     *         of its elements are null
190 >     */
191 >    public PriorityQueue(Collection<? extends E> c) {
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206 >    }
207  
208 <        /* Commented out to compile with generics compiler
208 >    /**
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211 >     * ordered according to the same ordering as the given priority
212 >     * queue.
213 >     *
214 >     * @param  c the priority queue whose elements are to be placed
215 >     *         into this priority queue
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218 >     *         ordering
219 >     * @throws NullPointerException if the specified priority queue or any
220 >     *         of its elements are null
221 >     */
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225 >    }
226  
227 <        if (initialElements instanceof Sorted) {
228 <            comparator = ((Sorted)initialElements).comparator();
229 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
230 <                queue[++size] = i.next();
227 >    /**
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239 >     */
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
246 >    private static Object[] ensureNonEmpty(Object[] es) {
247 >        return (es.length > 0) ? es : new Object[1];
248 >    }
249 >
250 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 >        if (c.getClass() == PriorityQueue.class) {
252 >            this.queue = ensureNonEmpty(c.toArray());
253 >            this.size = c.size();
254          } else {
255 <        */
134 <        {
135 <            comparator = null;
136 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 <                add(i.next());
255 >            initFromCollection(c);
256          }
257      }
258  
259 <    // Queue Methods
259 >    private void initElementsFromCollection(Collection<? extends E> c) {
260 >        Object[] es = c.toArray();
261 >        int len = es.length;
262 >        // If c.toArray incorrectly doesn't return Object[], copy it.
263 >        if (es.getClass() != Object[].class)
264 >            es = Arrays.copyOf(es, len, Object[].class);
265 >        if (len == 1 || this.comparator != null)
266 >            for (Object e : es)
267 >                if (e == null)
268 >                    throw new NullPointerException();
269 >        this.queue = ensureNonEmpty(es);
270 >        this.size = len;
271 >    }
272  
273      /**
274 <     * Remove and return the minimal element from this priority queue if
145 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
146 <     * <i>minimal</i> is defined according to this priority queue's order.
274 >     * Initializes queue array with elements from the given Collection.
275       *
276 <     * @return the minimal element from this priority queue if it contains
149 <     *         one or more elements, otherwise <tt>null</tt>.
276 >     * @param c the collection
277       */
278 <    public E poll() {
279 <        if (size == 0)
280 <            return null;
154 <        return remove(1);
278 >    private void initFromCollection(Collection<? extends E> c) {
279 >        initElementsFromCollection(c);
280 >        heapify();
281      }
282  
283      /**
284 <     * Return, but do not remove, the minimal element from the priority queue,
285 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
286 <     * defined according to this priority queue's order.  This method returns
287 <     * the same object reference that would be returned by by the
288 <     * <tt>poll</tt> method.  The two methods differ in that this method
289 <     * does not remove the element from the priority queue.
284 >     * The maximum size of array to allocate.
285 >     * Some VMs reserve some header words in an array.
286 >     * Attempts to allocate larger arrays may result in
287 >     * OutOfMemoryError: Requested array size exceeds VM limit
288 >     */
289 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290 >
291 >    /**
292 >     * Increases the capacity of the array.
293       *
294 <     * @return the minimal element from this priority queue if it contains
166 <     *         one or more elements, otherwise <tt>null</tt>.
294 >     * @param minCapacity the desired minimum capacity
295       */
296 <    public E peek() {
297 <        return queue[1];
296 >    private void grow(int minCapacity) {
297 >        int oldCapacity = queue.length;
298 >        // Double size if small; else grow by 50%
299 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 >                                         (oldCapacity + 2) :
301 >                                         (oldCapacity >> 1));
302 >        // overflow-conscious code
303 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
304 >            newCapacity = hugeCapacity(minCapacity);
305 >        queue = Arrays.copyOf(queue, newCapacity);
306      }
307  
308 <    // Collection Methods
308 >    private static int hugeCapacity(int minCapacity) {
309 >        if (minCapacity < 0) // overflow
310 >            throw new OutOfMemoryError();
311 >        return (minCapacity > MAX_ARRAY_SIZE) ?
312 >            Integer.MAX_VALUE :
313 >            MAX_ARRAY_SIZE;
314 >    }
315  
316      /**
317 <     * Removes a single instance of the specified element from this priority
318 <     * queue, if it is present.  Returns true if this collection contained the
319 <     * specified element (or equivalently, if this collection changed as a
320 <     * result of the call).
317 >     * Inserts the specified element into this priority queue.
318 >     *
319 >     * @return {@code true} (as specified by {@link Collection#add})
320 >     * @throws ClassCastException if the specified element cannot be
321 >     *         compared with elements currently in this priority queue
322 >     *         according to the priority queue's ordering
323 >     * @throws NullPointerException if the specified element is null
324 >     */
325 >    public boolean add(E e) {
326 >        return offer(e);
327 >    }
328 >
329 >    /**
330 >     * Inserts the specified element into this priority queue.
331       *
332 <     * @param o element to be removed from this collection, if present.
333 <     * @return <tt>true</tt> if this collection changed as a result of the
334 <     *         call
335 <     * @throws ClassCastException if the specified element cannot be compared
336 <     *            with elements currently in the priority queue according
185 <     *            to the priority queue's ordering.
186 <     * @throws NullPointerException if the specified element is null.
332 >     * @return {@code true} (as specified by {@link Queue#offer})
333 >     * @throws ClassCastException if the specified element cannot be
334 >     *         compared with elements currently in this priority queue
335 >     *         according to the priority queue's ordering
336 >     * @throws NullPointerException if the specified element is null
337       */
338 <    public boolean remove(Object element) {
339 <        if (element == null)
338 >    public boolean offer(E e) {
339 >        if (e == null)
340              throw new NullPointerException();
341 +        modCount++;
342 +        int i = size;
343 +        if (i >= queue.length)
344 +            grow(i + 1);
345 +        siftUp(i, e);
346 +        size = i + 1;
347 +        return true;
348 +    }
349  
350 <        if (comparator == null) {
351 <            for (int i = 1; i <= size; i++) {
352 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
353 <                    remove(i);
354 <                    return true;
355 <                }
356 <            }
357 <        } else {
358 <            for (int i = 1; i <= size; i++) {
359 <                if (comparator.compare(queue[i], (E) element) == 0) {
202 <                    remove(i);
203 <                    return true;
204 <                }
205 <            }
350 >    public E peek() {
351 >        return (E) queue[0];
352 >    }
353 >
354 >    private int indexOf(Object o) {
355 >        if (o != null) {
356 >            final Object[] es = queue;
357 >            for (int i = 0, n = size; i < n; i++)
358 >                if (o.equals(es[i]))
359 >                    return i;
360          }
361 <        return false;
361 >        return -1;
362      }
363  
364      /**
365 <     * Returns an iterator over the elements in this priority queue.  The
366 <     * first element returned by this iterator is the same element that
367 <     * would be returned by a call to <tt>peek</tt>.
368 <     *
369 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
365 >     * Removes a single instance of the specified element from this queue,
366 >     * if it is present.  More formally, removes an element {@code e} such
367 >     * that {@code o.equals(e)}, if this queue contains one or more such
368 >     * elements.  Returns {@code true} if and only if this queue contained
369 >     * the specified element (or equivalently, if this queue changed as a
370 >     * result of the call).
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     * @return {@code true} if this queue changed as a result of the call
374       */
375 <    public Iterator<E> iterator() {
376 <        return new Itr();
375 >    public boolean remove(Object o) {
376 >        int i = indexOf(o);
377 >        if (i == -1)
378 >            return false;
379 >        else {
380 >            removeAt(i);
381 >            return true;
382 >        }
383      }
384  
385 <    private class Itr implements Iterator<E> {
386 <        /**
387 <         * Index (into queue array) of element to be returned by
388 <         * subsequent call to next.
389 <         */
390 <        int cursor = 1;
385 >    /**
386 >     * Identity-based version for use in Itr.remove.
387 >     *
388 >     * @param o element to be removed from this queue, if present
389 >     */
390 >    void removeEq(Object o) {
391 >        final Object[] es = queue;
392 >        for (int i = 0, n = size; i < n; i++) {
393 >            if (o == es[i]) {
394 >                removeAt(i);
395 >                break;
396 >            }
397 >        }
398 >    }
399  
400 <        /**
401 <         * Index of element returned by most recent call to next or
402 <         * previous.  Reset to 0 if this element is deleted by a call
403 <         * to remove.
404 <         */
405 <        int lastRet = 0;
406 <
407 <        /**
408 <         * The modCount value that the iterator believes that the backing
409 <         * List should have.  If this expectation is violated, the iterator
410 <         * has detected concurrent modification.
239 <         */
240 <        int expectedModCount = modCount;
241 <
242 <        public boolean hasNext() {
243 <            return cursor <= size;
244 <        }
245 <
246 <        public E next() {
247 <            checkForComodification();
248 <            if (cursor > size)
249 <                throw new NoSuchElementException();
250 <            E result = queue[cursor];
251 <            lastRet = cursor++;
252 <            return result;
253 <        }
254 <
255 <        public void remove() {
256 <            if (lastRet == 0)
257 <                throw new IllegalStateException();
258 <            checkForComodification();
259 <
260 <            PriorityQueue.this.remove(lastRet);
261 <            if (lastRet < cursor)
262 <                cursor--;
263 <            lastRet = 0;
264 <            expectedModCount = modCount;
265 <        }
400 >    /**
401 >     * Returns {@code true} if this queue contains the specified element.
402 >     * More formally, returns {@code true} if and only if this queue contains
403 >     * at least one element {@code e} such that {@code o.equals(e)}.
404 >     *
405 >     * @param o object to be checked for containment in this queue
406 >     * @return {@code true} if this queue contains the specified element
407 >     */
408 >    public boolean contains(Object o) {
409 >        return indexOf(o) >= 0;
410 >    }
411  
412 <        final void checkForComodification() {
413 <            if (modCount != expectedModCount)
414 <                throw new ConcurrentModificationException();
415 <        }
412 >    /**
413 >     * Returns an array containing all of the elements in this queue.
414 >     * The elements are in no particular order.
415 >     *
416 >     * <p>The returned array will be "safe" in that no references to it are
417 >     * maintained by this queue.  (In other words, this method must allocate
418 >     * a new array).  The caller is thus free to modify the returned array.
419 >     *
420 >     * <p>This method acts as bridge between array-based and collection-based
421 >     * APIs.
422 >     *
423 >     * @return an array containing all of the elements in this queue
424 >     */
425 >    public Object[] toArray() {
426 >        return Arrays.copyOf(queue, size);
427      }
428  
429      /**
430 <     * Returns the number of elements in this priority queue.
431 <     *
432 <     * @return the number of elements in this priority queue.
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436 >     *
437 >     * <p>If the queue fits in the specified array with room to spare
438 >     * (i.e., the array has more elements than the queue), the element in
439 >     * the array immediately following the end of the collection is set to
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455 >     *
456 >     * @param a the array into which the elements of the queue are to
457 >     *          be stored, if it is big enough; otherwise, a new array of the
458 >     *          same runtime type is allocated for this purpose.
459 >     * @return an array containing all of the elements in this queue
460 >     * @throws ArrayStoreException if the runtime type of the specified array
461 >     *         is not a supertype of the runtime type of every element in
462 >     *         this queue
463 >     * @throws NullPointerException if the specified array is null
464       */
465 <    public int size() {
466 <        return size;
465 >    public <T> T[] toArray(T[] a) {
466 >        final int size = this.size;
467 >        if (a.length < size)
468 >            // Make a new array of a's runtime type, but my contents:
469 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 >        System.arraycopy(queue, 0, a, 0, size);
471 >        if (a.length > size)
472 >            a[size] = null;
473 >        return a;
474      }
475  
476      /**
477 <     * Add the specified element to this priority queue.
477 >     * Returns an iterator over the elements in this queue. The iterator
478 >     * does not return the elements in any particular order.
479       *
480 <     * @param element the element to add.
286 <     * @return true
287 <     * @throws ClassCastException if the specified element cannot be compared
288 <     *            with elements currently in the priority queue according
289 <     *            to the priority queue's ordering.
290 <     * @throws NullPointerException if the specified element is null.
480 >     * @return an iterator over the elements in this queue
481       */
482 <    public boolean offer(E element) {
483 <        if (element == null)
484 <            throw new NullPointerException();
295 <        modCount++;
482 >    public Iterator<E> iterator() {
483 >        return new Itr();
484 >    }
485  
486 <        // Grow backing store if necessary
487 <        if (++size == queue.length) {
488 <            E[] newQueue = new E[2 * queue.length];
489 <            System.arraycopy(queue, 0, newQueue, 0, size);
490 <            queue = newQueue;
486 >    private final class Itr implements Iterator<E> {
487 >        /**
488 >         * Index (into queue array) of element to be returned by
489 >         * subsequent call to next.
490 >         */
491 >        private int cursor;
492 >
493 >        /**
494 >         * Index of element returned by most recent call to next,
495 >         * unless that element came from the forgetMeNot list.
496 >         * Set to -1 if element is deleted by a call to remove.
497 >         */
498 >        private int lastRet = -1;
499 >
500 >        /**
501 >         * A queue of elements that were moved from the unvisited portion of
502 >         * the heap into the visited portion as a result of "unlucky" element
503 >         * removals during the iteration.  (Unlucky element removals are those
504 >         * that require a siftup instead of a siftdown.)  We must visit all of
505 >         * the elements in this list to complete the iteration.  We do this
506 >         * after we've completed the "normal" iteration.
507 >         *
508 >         * We expect that most iterations, even those involving removals,
509 >         * will not need to store elements in this field.
510 >         */
511 >        private ArrayDeque<E> forgetMeNot;
512 >
513 >        /**
514 >         * Element returned by the most recent call to next iff that
515 >         * element was drawn from the forgetMeNot list.
516 >         */
517 >        private E lastRetElt;
518 >
519 >        /**
520 >         * The modCount value that the iterator believes that the backing
521 >         * Queue should have.  If this expectation is violated, the iterator
522 >         * has detected concurrent modification.
523 >         */
524 >        private int expectedModCount = modCount;
525 >
526 >        Itr() {}                        // prevent access constructor creation
527 >
528 >        public boolean hasNext() {
529 >            return cursor < size ||
530 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
531          }
532  
533 <        queue[size] = element;
534 <        fixUp(size);
535 <        return true;
533 >        public E next() {
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543 >            }
544 >            throw new NoSuchElementException();
545 >        }
546 >
547 >        public void remove() {
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551 >                E moved = PriorityQueue.this.removeAt(lastRet);
552 >                lastRet = -1;
553 >                if (moved == null)
554 >                    cursor--;
555 >                else {
556 >                    if (forgetMeNot == null)
557 >                        forgetMeNot = new ArrayDeque<>();
558 >                    forgetMeNot.add(moved);
559 >                }
560 >            } else if (lastRetElt != null) {
561 >                PriorityQueue.this.removeEq(lastRetElt);
562 >                lastRetElt = null;
563 >            } else {
564 >                throw new IllegalStateException();
565 >            }
566 >            expectedModCount = modCount;
567 >        }
568 >    }
569 >
570 >    public int size() {
571 >        return size;
572      }
573  
574      /**
575 <     * Remove all elements from the priority queue.
575 >     * Removes all of the elements from this priority queue.
576 >     * The queue will be empty after this call returns.
577       */
578      public void clear() {
579          modCount++;
580 +        final Object[] es = queue;
581 +        for (int i = 0, n = size; i < n; i++)
582 +            es[i] = null;
583 +        size = 0;
584 +    }
585  
586 <        // Null out element references to prevent memory leak
587 <        for (int i=1; i<=size; i++)
588 <            queue[i] = null;
586 >    public E poll() {
587 >        final Object[] es;
588 >        final E result;
589  
590 <        size = 0;
590 >        if ((result = (E) ((es = queue)[0])) != null) {
591 >            modCount++;
592 >            final int n;
593 >            final E x = (E) es[(n = --size)];
594 >            es[n] = null;
595 >            if (n > 0) {
596 >                final Comparator<? super E> cmp;
597 >                if ((cmp = comparator) == null)
598 >                    siftDownComparable(0, x, es, n);
599 >                else
600 >                    siftDownUsingComparator(0, x, es, n, cmp);
601 >            }
602 >        }
603 >        return result;
604      }
605  
606      /**
607 <     * Removes and returns the ith element from queue.  Recall
324 <     * that queue is one-based, so 1 <= i <= size.
607 >     * Removes the ith element from queue.
608       *
609 <     * XXX: Could further special-case i==size, but is it worth it?
610 <     * XXX: Could special-case i==0, but is it worth it?
609 >     * Normally this method leaves the elements at up to i-1,
610 >     * inclusive, untouched.  Under these circumstances, it returns
611 >     * null.  Occasionally, in order to maintain the heap invariant,
612 >     * it must swap a later element of the list with one earlier than
613 >     * i.  Under these circumstances, this method returns the element
614 >     * that was previously at the end of the list and is now at some
615 >     * position before i. This fact is used by iterator.remove so as to
616 >     * avoid missing traversing elements.
617       */
618 <    private E remove(int i) {
619 <        assert i <= size;
618 >    E removeAt(int i) {
619 >        // assert i >= 0 && i < size;
620          modCount++;
621 <
622 <        E result = queue[i];
623 <        queue[i] = queue[size];
624 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
625 <        if (i <= size)
626 <            fixDown(i);
627 <        return result;
621 >        int s = --size;
622 >        if (s == i) // removed last element
623 >            queue[i] = null;
624 >        else {
625 >            E moved = (E) queue[s];
626 >            queue[s] = null;
627 >            siftDown(i, moved);
628 >            if (queue[i] == moved) {
629 >                siftUp(i, moved);
630 >                if (queue[i] != moved)
631 >                    return moved;
632 >            }
633 >        }
634 >        return null;
635      }
636  
637      /**
638 <     * Establishes the heap invariant (described above) assuming the heap
639 <     * satisfies the invariant except possibly for the leaf-node indexed by k
640 <     * (which may have a nextExecutionTime less than its parent's).
641 <     *
642 <     * This method functions by "promoting" queue[k] up the hierarchy
643 <     * (by swapping it with its parent) repeatedly until queue[k]
644 <     * is greater than or equal to its parent.
645 <     */
646 <    private void fixUp(int k) {
647 <        if (comparator == null) {
648 <            while (k > 1) {
649 <                int j = k >> 1;
650 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
651 <                    break;
652 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
653 <                k = j;
654 <            }
655 <        } else {
656 <            while (k > 1) {
657 <                int j = k >> 1;
658 <                if (comparator.compare(queue[j], queue[k]) <= 0)
659 <                    break;
660 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
661 <                k = j;
662 <            }
638 >     * Inserts item x at position k, maintaining heap invariant by
639 >     * promoting x up the tree until it is greater than or equal to
640 >     * its parent, or is the root.
641 >     *
642 >     * To simplify and speed up coercions and comparisons, the
643 >     * Comparable and Comparator versions are separated into different
644 >     * methods that are otherwise identical. (Similarly for siftDown.)
645 >     *
646 >     * @param k the position to fill
647 >     * @param x the item to insert
648 >     */
649 >    private void siftUp(int k, E x) {
650 >        if (comparator != null)
651 >            siftUpUsingComparator(k, x, queue, comparator);
652 >        else
653 >            siftUpComparable(k, x, queue);
654 >    }
655 >
656 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
657 >        Comparable<? super T> key = (Comparable<? super T>) x;
658 >        while (k > 0) {
659 >            int parent = (k - 1) >>> 1;
660 >            Object e = es[parent];
661 >            if (key.compareTo((T) e) >= 0)
662 >                break;
663 >            es[k] = e;
664 >            k = parent;
665          }
666 +        es[k] = key;
667 +    }
668 +
669 +    private static <T> void siftUpUsingComparator(
670 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
671 +        while (k > 0) {
672 +            int parent = (k - 1) >>> 1;
673 +            Object e = es[parent];
674 +            if (cmp.compare(x, (T) e) >= 0)
675 +                break;
676 +            es[k] = e;
677 +            k = parent;
678 +        }
679 +        es[k] = x;
680      }
681  
682      /**
683 <     * Establishes the heap invariant (described above) in the subtree
684 <     * rooted at k, which is assumed to satisfy the heap invariant except
685 <     * possibly for node k itself (which may be greater than its children).
686 <     *
687 <     * This method functions by "demoting" queue[k] down the hierarchy
688 <     * (by swapping it with its smaller child) repeatedly until queue[k]
689 <     * is less than or equal to its children.
690 <     */
691 <    private void fixDown(int k) {
692 <        int j;
693 <        if (comparator == null) {
694 <            while ((j = k << 1) <= size) {
695 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
696 <                    j++; // j indexes smallest kid
697 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
698 <                    break;
699 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
700 <                k = j;
701 <            }
702 <        } else {
703 <            while ((j = k << 1) <= size) {
704 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
705 <                    j++; // j indexes smallest kid
706 <                if (comparator.compare(queue[k], queue[j]) <= 0)
707 <                    break;
708 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
709 <                k = j;
710 <            }
683 >     * Inserts item x at position k, maintaining heap invariant by
684 >     * demoting x down the tree repeatedly until it is less than or
685 >     * equal to its children or is a leaf.
686 >     *
687 >     * @param k the position to fill
688 >     * @param x the item to insert
689 >     */
690 >    private void siftDown(int k, E x) {
691 >        if (comparator != null)
692 >            siftDownUsingComparator(k, x, queue, size, comparator);
693 >        else
694 >            siftDownComparable(k, x, queue, size);
695 >    }
696 >
697 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
698 >        // assert n > 0;
699 >        Comparable<? super T> key = (Comparable<? super T>)x;
700 >        int half = n >>> 1;           // loop while a non-leaf
701 >        while (k < half) {
702 >            int child = (k << 1) + 1; // assume left child is least
703 >            Object c = es[child];
704 >            int right = child + 1;
705 >            if (right < n &&
706 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
707 >                c = es[child = right];
708 >            if (key.compareTo((T) c) <= 0)
709 >                break;
710 >            es[k] = c;
711 >            k = child;
712 >        }
713 >        es[k] = key;
714 >    }
715 >
716 >    private static <T> void siftDownUsingComparator(
717 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
718 >        // assert n > 0;
719 >        int half = n >>> 1;
720 >        while (k < half) {
721 >            int child = (k << 1) + 1;
722 >            Object c = es[child];
723 >            int right = child + 1;
724 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
725 >                c = es[child = right];
726 >            if (cmp.compare(x, (T) c) <= 0)
727 >                break;
728 >            es[k] = c;
729 >            k = child;
730          }
731 +        es[k] = x;
732      }
733  
734      /**
735 <     * Returns the comparator associated with this priority queue, or
736 <     * <tt>null</tt> if it uses its elements' natural ordering.
735 >     * Establishes the heap invariant (described above) in the entire tree,
736 >     * assuming nothing about the order of the elements prior to the call.
737 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
738 >     */
739 >    private void heapify() {
740 >        final Object[] es = queue;
741 >        int n = size, i = (n >>> 1) - 1;
742 >        final Comparator<? super E> cmp;
743 >        if ((cmp = comparator) == null)
744 >            for (; i >= 0; i--)
745 >                siftDownComparable(i, (E) es[i], es, n);
746 >        else
747 >            for (; i >= 0; i--)
748 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
749 >    }
750 >
751 >    /**
752 >     * Returns the comparator used to order the elements in this
753 >     * queue, or {@code null} if this queue is sorted according to
754 >     * the {@linkplain Comparable natural ordering} of its elements.
755       *
756 <     * @return the comparator associated with this priority queue, or
757 <     *         <tt>null</tt> if it uses its elements' natural ordering.
756 >     * @return the comparator used to order this queue, or
757 >     *         {@code null} if this queue is sorted according to the
758 >     *         natural ordering of its elements
759       */
760 <    Comparator comparator() {
760 >    public Comparator<? super E> comparator() {
761          return comparator;
762      }
763  
764      /**
765 <     * Save the state of the instance to a stream (that
415 <     * is, serialize it).
765 >     * Saves this queue to a stream (that is, serializes it).
766       *
767 +     * @param s the stream
768 +     * @throws java.io.IOException if an I/O error occurs
769       * @serialData The length of the array backing the instance is
770 <     * emitted (int), followed by all of its elements (each an
771 <     * <tt>Object</tt>) in the proper order.
770 >     *             emitted (int), followed by all of its elements
771 >     *             (each an {@code Object}) in the proper order.
772       */
773 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
774 <        throws java.io.IOException{
775 <        // Write out element count, and any hidden stuff
776 <        s.defaultWriteObject();
773 >    private void writeObject(java.io.ObjectOutputStream s)
774 >        throws java.io.IOException {
775 >        // Write out element count, and any hidden stuff
776 >        s.defaultWriteObject();
777  
778 <        // Write out array length
779 <        s.writeInt(queue.length);
778 >        // Write out array length, for compatibility with 1.5 version
779 >        s.writeInt(Math.max(2, size + 1));
780  
781 <        // Write out all elements in the proper order.
782 <        for (int i=0; i<size; i++)
783 <            s.writeObject(queue[i]);
781 >        // Write out all elements in the "proper order".
782 >        final Object[] es = queue;
783 >        for (int i = 0, n = size; i < n; i++)
784 >            s.writeObject(es[i]);
785      }
786  
787      /**
788 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
789 <     * deserialize it).
788 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
789 >     * (that is, deserializes it).
790 >     *
791 >     * @param s the stream
792 >     * @throws ClassNotFoundException if the class of a serialized object
793 >     *         could not be found
794 >     * @throws java.io.IOException if an I/O error occurs
795       */
796 <    private synchronized void readObject(java.io.ObjectInputStream s)
796 >    private void readObject(java.io.ObjectInputStream s)
797          throws java.io.IOException, ClassNotFoundException {
798 <        // Read in size, and any hidden stuff
799 <        s.defaultReadObject();
798 >        // Read in size, and any hidden stuff
799 >        s.defaultReadObject();
800 >
801 >        // Read in (and discard) array length
802 >        s.readInt();
803  
804 <        // Read in array length and allocate array
805 <        int arrayLength = s.readInt();
806 <        queue = new E[arrayLength];
807 <
808 <        // Read in all elements in the proper order.
809 <        for (int i=0; i<size; i++)
810 <            queue[i] = (E)s.readObject();
804 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
805 >        final Object[] es = queue = new Object[Math.max(size, 1)];
806 >
807 >        // Read in all elements.
808 >        for (int i = 0, n = size; i < n; i++)
809 >            es[i] = s.readObject();
810 >
811 >        // Elements are guaranteed to be in "proper order", but the
812 >        // spec has never explained what that might be.
813 >        heapify();
814 >    }
815 >
816 >    /**
817 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
818 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
819 >     * queue. The spliterator does not traverse elements in any particular order
820 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
821 >     *
822 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
823 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
824 >     * Overriding implementations should document the reporting of additional
825 >     * characteristic values.
826 >     *
827 >     * @return a {@code Spliterator} over the elements in this queue
828 >     * @since 1.8
829 >     */
830 >    public final Spliterator<E> spliterator() {
831 >        return new PriorityQueueSpliterator(0, -1, 0);
832      }
833  
834 +    final class PriorityQueueSpliterator implements Spliterator<E> {
835 +        private int index;            // current index, modified on advance/split
836 +        private int fence;            // -1 until first use
837 +        private int expectedModCount; // initialized when fence set
838 +
839 +        /** Creates new spliterator covering the given range. */
840 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
841 +            this.index = origin;
842 +            this.fence = fence;
843 +            this.expectedModCount = expectedModCount;
844 +        }
845 +
846 +        private int getFence() { // initialize fence to size on first use
847 +            int hi;
848 +            if ((hi = fence) < 0) {
849 +                expectedModCount = modCount;
850 +                hi = fence = size;
851 +            }
852 +            return hi;
853 +        }
854 +
855 +        public PriorityQueueSpliterator trySplit() {
856 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
857 +            return (lo >= mid) ? null :
858 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
859 +        }
860 +
861 +        public void forEachRemaining(Consumer<? super E> action) {
862 +            if (action == null)
863 +                throw new NullPointerException();
864 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 +            final Object[] es = queue;
866 +            int i, hi; E e;
867 +            for (i = index, index = hi = fence; i < hi; i++) {
868 +                if ((e = (E) es[i]) == null)
869 +                    break;      // must be CME
870 +                action.accept(e);
871 +            }
872 +            if (modCount != expectedModCount)
873 +                throw new ConcurrentModificationException();
874 +        }
875 +
876 +        public boolean tryAdvance(Consumer<? super E> action) {
877 +            if (action == null)
878 +                throw new NullPointerException();
879 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
880 +            int i;
881 +            if ((i = index) < fence) {
882 +                index = i + 1;
883 +                E e;
884 +                if ((e = (E) queue[i]) == null
885 +                    || modCount != expectedModCount)
886 +                    throw new ConcurrentModificationException();
887 +                action.accept(e);
888 +                return true;
889 +            }
890 +            return false;
891 +        }
892 +
893 +        public long estimateSize() {
894 +            return getFence() - index;
895 +        }
896 +
897 +        public int characteristics() {
898 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
899 +        }
900 +    }
901 +
902 +    /**
903 +     * @throws NullPointerException {@inheritDoc}
904 +     */
905 +    public void forEach(Consumer<? super E> action) {
906 +        Objects.requireNonNull(action);
907 +        final int expectedModCount = modCount;
908 +        final Object[] es = queue;
909 +        for (int i = 0, n = size; i < n; i++)
910 +            action.accept((E) es[i]);
911 +        if (expectedModCount != modCount)
912 +            throw new ConcurrentModificationException();
913 +    }
914   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines