ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.50 by dl, Wed Jun 2 23:45:46 2004 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  This queue orders elements according to an order specified
13 > * at construction time, which is specified either according to their
14 > * <i>natural order</i> (see {@link Comparable}), or according to a
15 > * {@link java.util.Comparator}, depending on which constructor is
16 > * used. A priority queue does not permit <tt>null</tt> elements.
17 > * A priority queue relying on natural ordering also does not
18 > * permit insertion of non-comparable objects (doing so may result
19 > * in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27 > *
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34 > *
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.
38 > * The
39 > * Iterator provided in method {@link #iterator()} is <em>not</em>
40 > * guaranteed to traverse the elements of the PriorityQueue in any
41 > * particular order. If you need ordered traversal, consider using
42 > * <tt>Arrays.sort(pq.toArray())</tt>.
43 > *
44 > * <p> <strong>Note that this implementation is not synchronized.</strong>
45 > * Multiple threads should not access a <tt>PriorityQueue</tt>
46 > * instance concurrently if any of the threads modifies the list
47 > * structurally. Instead, use the thread-safe {@link
48 > * java.util.concurrent.PriorityBlockingQueue} class.
49 > *
50 > *
51 > * <p>Implementation note: this implementation provides O(log(n)) time
52 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
53 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
54 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
55 > * constant time for the retrieval methods (<tt>peek</tt>,
56 > * <tt>element</tt>, and <tt>size</tt>).
57 > *
58 > * <p>This class is a member of the
59 > * <a href="{@docRoot}/../guide/collections/index.html">
60 > * Java Collections Framework</a>.
61 > * @since 1.5
62 > * @version %I%, %G%
63 > * @author Josh Bloch
64 > * @param <E> the type of elements held in this collection
65 > */
66 > public class PriorityQueue<E> extends AbstractQueue<E>
67 >    implements java.io.Serializable {
68  
69 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
69 >    private static final long serialVersionUID = -7720805057305804111L;
70  
71 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
71 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
72  
73 <    public boolean add(E x) {
74 <        return false;
73 >    /**
74 >     * Priority queue represented as a balanced binary heap: the two children
75 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
76 >     * ordered by comparator, or by the elements' natural ordering, if
77 >     * comparator is null:  For each node n in the heap and each descendant d
78 >     * of n, n <= d.
79 >     *
80 >     * The element with the lowest value is in queue[1], assuming the queue is
81 >     * nonempty.  (A one-based array is used in preference to the traditional
82 >     * zero-based array to simplify parent and child calculations.)
83 >     *
84 >     * queue.length must be >= 2, even if size == 0.
85 >     */
86 >    private transient Object[] queue;
87 >
88 >    /**
89 >     * The number of elements in the priority queue.
90 >     */
91 >    private int size = 0;
92 >
93 >    /**
94 >     * The comparator, or null if priority queue uses elements'
95 >     * natural ordering.
96 >     */
97 >    private final Comparator<? super E> comparator;
98 >
99 >    /**
100 >     * The number of times this priority queue has been
101 >     * <i>structurally modified</i>.  See AbstractList for gory details.
102 >     */
103 >    private transient int modCount = 0;
104 >
105 >    /**
106 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
107 >     * (11) that orders its elements according to their natural
108 >     * ordering (using <tt>Comparable</tt>).
109 >     */
110 >    public PriorityQueue() {
111 >        this(DEFAULT_INITIAL_CAPACITY, null);
112      }
113 <    public boolean offer(E x) {
114 <        return false;
113 >
114 >    /**
115 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
116 >     * that orders its elements according to their natural ordering
117 >     * (using <tt>Comparable</tt>).
118 >     *
119 >     * @param initialCapacity the initial capacity for this priority queue.
120 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
121 >     * than 1
122 >     */
123 >    public PriorityQueue(int initialCapacity) {
124 >        this(initialCapacity, null);
125      }
126 <    public boolean remove(Object x) {
127 <        return false;
126 >
127 >    /**
128 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
129 >     * that orders its elements according to the specified comparator.
130 >     *
131 >     * @param initialCapacity the initial capacity for this priority queue.
132 >     * @param comparator the comparator used to order this priority queue.
133 >     * If <tt>null</tt> then the order depends on the elements' natural
134 >     * ordering.
135 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
136 >     * than 1
137 >     */
138 >    public PriorityQueue(int initialCapacity,
139 >                         Comparator<? super E> comparator) {
140 >        if (initialCapacity < 1)
141 >            throw new IllegalArgumentException();
142 >        this.queue = new Object[initialCapacity + 1];
143 >        this.comparator = comparator;
144      }
145  
146 <    public E remove() {
147 <        return null;
146 >    /**
147 >     * Common code to initialize underlying queue array across
148 >     * constructors below.
149 >     */
150 >    private void initializeArray(Collection<? extends E> c) {
151 >        int sz = c.size();
152 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
153 >                                            Integer.MAX_VALUE - 1);
154 >        if (initialCapacity < 1)
155 >            initialCapacity = 1;
156 >
157 >        this.queue = new Object[initialCapacity + 1];
158      }
159 <    public Iterator<E> iterator() {
160 <      return null;
159 >
160 >    /**
161 >     * Initially fill elements of the queue array under the
162 >     * knowledge that it is sorted or is another PQ, in which
163 >     * case we can just place the elements in the order presented.
164 >     */
165 >    private void fillFromSorted(Collection<? extends E> c) {
166 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
167 >            queue[++size] = i.next();
168      }
169  
170 <    public E element() {
171 <        return null;
170 >    /**
171 >     * Initially fill elements of the queue array that is not to our knowledge
172 >     * sorted, so we must rearrange the elements to guarantee the heap
173 >     * invariant.
174 >     */
175 >    private void fillFromUnsorted(Collection<? extends E> c) {
176 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
177 >            queue[++size] = i.next();
178 >        heapify();
179      }
180 <    public E poll() {
181 <        return null;
180 >
181 >    /**
182 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
183 >     * specified collection.  The priority queue has an initial
184 >     * capacity of 110% of the size of the specified collection or 1
185 >     * if the collection is empty.  If the specified collection is an
186 >     * instance of a {@link java.util.SortedSet} or is another
187 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
188 >     * according to the same comparator, or according to its elements'
189 >     * natural order if the collection is sorted according to its
190 >     * elements' natural order.  Otherwise, the priority queue is
191 >     * ordered according to its elements' natural order.
192 >     *
193 >     * @param c the collection whose elements are to be placed
194 >     *        into this priority queue.
195 >     * @throws ClassCastException if elements of the specified collection
196 >     *         cannot be compared to one another according to the priority
197 >     *         queue's ordering.
198 >     * @throws NullPointerException if <tt>c</tt> or any element within it
199 >     * is <tt>null</tt>
200 >     */
201 >    public PriorityQueue(Collection<? extends E> c) {
202 >        initializeArray(c);
203 >        if (c instanceof SortedSet) {
204 >            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
205 >            comparator = (Comparator<? super E>)s.comparator();
206 >            fillFromSorted(s);
207 >        } else if (c instanceof PriorityQueue) {
208 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
209 >            comparator = (Comparator<? super E>)s.comparator();
210 >            fillFromSorted(s);
211 >        } else {
212 >            comparator = null;
213 >            fillFromUnsorted(c);
214 >        }
215 >    }
216 >
217 >    /**
218 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 >     * specified collection.  The priority queue has an initial
220 >     * capacity of 110% of the size of the specified collection or 1
221 >     * if the collection is empty.  This priority queue will be sorted
222 >     * according to the same comparator as the given collection, or
223 >     * according to its elements' natural order if the collection is
224 >     * sorted according to its elements' natural order.
225 >     *
226 >     * @param c the collection whose elements are to be placed
227 >     *        into this priority queue.
228 >     * @throws ClassCastException if elements of the specified collection
229 >     *         cannot be compared to one another according to the priority
230 >     *         queue's ordering.
231 >     * @throws NullPointerException if <tt>c</tt> or any element within it
232 >     * is <tt>null</tt>
233 >     */
234 >    public PriorityQueue(PriorityQueue<? extends E> c) {
235 >        initializeArray(c);
236 >        comparator = (Comparator<? super E>)c.comparator();
237 >        fillFromSorted(c);
238 >    }
239 >
240 >    /**
241 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
242 >     * specified collection.  The priority queue has an initial
243 >     * capacity of 110% of the size of the specified collection or 1
244 >     * if the collection is empty.  This priority queue will be sorted
245 >     * according to the same comparator as the given collection, or
246 >     * according to its elements' natural order if the collection is
247 >     * sorted according to its elements' natural order.
248 >     *
249 >     * @param c the collection whose elements are to be placed
250 >     *        into this priority queue.
251 >     * @throws ClassCastException if elements of the specified collection
252 >     *         cannot be compared to one another according to the priority
253 >     *         queue's ordering.
254 >     * @throws NullPointerException if <tt>c</tt> or any element within it
255 >     * is <tt>null</tt>
256 >     */
257 >    public PriorityQueue(SortedSet<? extends E> c) {
258 >        initializeArray(c);
259 >        comparator = (Comparator<? super E>)c.comparator();
260 >        fillFromSorted(c);
261 >    }
262 >
263 >    /**
264 >     * Resize array, if necessary, to be able to hold given index
265 >     */
266 >    private void grow(int index) {
267 >        int newlen = queue.length;
268 >        if (index < newlen) // don't need to grow
269 >            return;
270 >        if (index == Integer.MAX_VALUE)
271 >            throw new OutOfMemoryError();
272 >        while (newlen <= index) {
273 >            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
274 >                newlen = Integer.MAX_VALUE;
275 >            else
276 >                newlen <<= 2;
277 >        }
278 >        Object[] newQueue = new Object[newlen];
279 >        System.arraycopy(queue, 0, newQueue, 0, queue.length);
280 >        queue = newQueue;
281      }
282 +            
283 +
284 +    /**
285 +     * Inserts the specified element into this priority queue.
286 +     *
287 +     * @return <tt>true</tt>
288 +     * @throws ClassCastException if the specified element cannot be compared
289 +     * with elements currently in the priority queue according
290 +     * to the priority queue's ordering.
291 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
292 +     */
293 +    public boolean offer(E o) {
294 +        if (o == null)
295 +            throw new NullPointerException();
296 +        modCount++;
297 +        ++size;
298 +
299 +        // Grow backing store if necessary
300 +        if (size >= queue.length)
301 +            grow(size);
302 +
303 +        queue[size] = o;
304 +        fixUp(size);
305 +        return true;
306 +    }
307 +
308      public E peek() {
309 <        return null;
309 >        if (size == 0)
310 >            return null;
311 >        return (E) queue[1];
312      }
313  
314 <    public boolean isEmpty() {
314 >    // Collection Methods - the first two override to update docs
315 >
316 >    /**
317 >     * Adds the specified element to this queue.
318 >     * @return <tt>true</tt> (as per the general contract of
319 >     * <tt>Collection.add</tt>).
320 >     *
321 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
322 >     * @throws ClassCastException if the specified element cannot be compared
323 >     * with elements currently in the priority queue according
324 >     * to the priority queue's ordering.
325 >     */
326 >    public boolean add(E o) {
327 >        return offer(o);
328 >    }
329 >
330 >    /**
331 >     * Removes a single instance of the specified element from this
332 >     * queue, if it is present.
333 >     */
334 >    public boolean remove(Object o) {
335 >        if (o == null)
336 >            return false;
337 >
338 >        if (comparator == null) {
339 >            for (int i = 1; i <= size; i++) {
340 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
341 >                    removeAt(i);
342 >                    return true;
343 >                }
344 >            }
345 >        } else {
346 >            for (int i = 1; i <= size; i++) {
347 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
348 >                    removeAt(i);
349 >                    return true;
350 >                }
351 >            }
352 >        }
353          return false;
354      }
355 +
356 +    /**
357 +     * Returns an iterator over the elements in this queue. The iterator
358 +     * does not return the elements in any particular order.
359 +     *
360 +     * @return an iterator over the elements in this queue.
361 +     */
362 +    public Iterator<E> iterator() {
363 +        return new Itr();
364 +    }
365 +
366 +    private class Itr implements Iterator<E> {
367 +
368 +        /**
369 +         * Index (into queue array) of element to be returned by
370 +         * subsequent call to next.
371 +         */
372 +        private int cursor = 1;
373 +
374 +        /**
375 +         * Index of element returned by most recent call to next,
376 +         * unless that element came from the forgetMeNot list.
377 +         * Reset to 0 if element is deleted by a call to remove.
378 +         */
379 +        private int lastRet = 0;
380 +
381 +        /**
382 +         * The modCount value that the iterator believes that the backing
383 +         * List should have.  If this expectation is violated, the iterator
384 +         * has detected concurrent modification.
385 +         */
386 +        private int expectedModCount = modCount;
387 +
388 +        /**
389 +         * A list of elements that were moved from the unvisited portion of
390 +         * the heap into the visited portion as a result of "unlucky" element
391 +         * removals during the iteration.  (Unlucky element removals are those
392 +         * that require a fixup instead of a fixdown.)  We must visit all of
393 +         * the elements in this list to complete the iteration.  We do this
394 +         * after we've completed the "normal" iteration.
395 +         *
396 +         * We expect that most iterations, even those involving removals,
397 +         * will not use need to store elements in this field.
398 +         */
399 +        private ArrayList<E> forgetMeNot = null;
400 +
401 +        /**
402 +         * Element returned by the most recent call to next iff that
403 +         * element was drawn from the forgetMeNot list.
404 +         */
405 +        private Object lastRetElt = null;
406 +
407 +        public boolean hasNext() {
408 +            return cursor <= size || forgetMeNot != null;
409 +        }
410 +
411 +        public E next() {
412 +            checkForComodification();
413 +            E result;
414 +            if (cursor <= size) {
415 +                result = (E) queue[cursor];
416 +                lastRet = cursor++;
417 +            }
418 +            else if (forgetMeNot == null)
419 +                throw new NoSuchElementException();
420 +            else {
421 +                int remaining = forgetMeNot.size();
422 +                result = forgetMeNot.remove(remaining - 1);
423 +                if (remaining == 1)
424 +                    forgetMeNot = null;
425 +                lastRet = 0;
426 +                lastRetElt = result;
427 +            }
428 +            return result;
429 +        }
430 +
431 +        public void remove() {
432 +            checkForComodification();
433 +
434 +            if (lastRet != 0) {
435 +                E moved = PriorityQueue.this.removeAt(lastRet);
436 +                lastRet = 0;
437 +                if (moved == null) {
438 +                    cursor--;
439 +                } else {
440 +                    if (forgetMeNot == null)
441 +                        forgetMeNot = new ArrayList<E>();
442 +                    forgetMeNot.add(moved);
443 +                }
444 +            } else if (lastRetElt != null) {
445 +                PriorityQueue.this.remove(lastRetElt);
446 +                lastRetElt = null;
447 +            } else {
448 +                throw new IllegalStateException();
449 +            }
450 +
451 +            expectedModCount = modCount;
452 +        }
453 +
454 +        final void checkForComodification() {
455 +            if (modCount != expectedModCount)
456 +                throw new ConcurrentModificationException();
457 +        }
458 +    }
459 +
460      public int size() {
461 <        return 0;
461 >        return size;
462      }
463 <    public Object[] toArray() {
464 <        return null;
463 >
464 >    /**
465 >     * Removes all elements from the priority queue.
466 >     * The queue will be empty after this call returns.
467 >     */
468 >    public void clear() {
469 >        modCount++;
470 >
471 >        // Null out element references to prevent memory leak
472 >        for (int i=1; i<=size; i++)
473 >            queue[i] = null;
474 >
475 >        size = 0;
476      }
477  
478 <    public <T> T[] toArray(T[] array) {
478 >    public E poll() {
479 >        if (size == 0)
480 >            return null;
481 >        modCount++;
482 >
483 >        E result = (E) queue[1];
484 >        queue[1] = queue[size];
485 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
486 >        if (size > 1)
487 >            fixDown(1);
488 >
489 >        return result;
490 >    }
491 >
492 >    /**
493 >     * Removes and returns the ith element from queue.  (Recall that queue
494 >     * is one-based, so 1 <= i <= size.)
495 >     *
496 >     * Normally this method leaves the elements at positions from 1 up to i-1,
497 >     * inclusive, untouched.  Under these circumstances, it returns null.
498 >     * Occasionally, in order to maintain the heap invariant, it must move
499 >     * the last element of the list to some index in the range [2, i-1],
500 >     * and move the element previously at position (i/2) to position i.
501 >     * Under these circumstances, this method returns the element that was
502 >     * previously at the end of the list and is now at some position between
503 >     * 2 and i-1 inclusive.
504 >     */
505 >    private E removeAt(int i) {
506 >        assert i > 0 && i <= size;
507 >        modCount++;
508 >
509 >        E moved = (E) queue[size];
510 >        queue[i] = moved;
511 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
512 >        if (i <= size) {
513 >            fixDown(i);
514 >            if (queue[i] == moved) {
515 >                fixUp(i);
516 >                if (queue[i] != moved)
517 >                    return moved;
518 >            }
519 >        }
520          return null;
521      }
522  
523 +    /**
524 +     * Establishes the heap invariant (described above) assuming the heap
525 +     * satisfies the invariant except possibly for the leaf-node indexed by k
526 +     * (which may have a nextExecutionTime less than its parent's).
527 +     *
528 +     * This method functions by "promoting" queue[k] up the hierarchy
529 +     * (by swapping it with its parent) repeatedly until queue[k]
530 +     * is greater than or equal to its parent.
531 +     */
532 +    private void fixUp(int k) {
533 +        if (comparator == null) {
534 +            while (k > 1) {
535 +                int j = k >> 1;
536 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
537 +                    break;
538 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
539 +                k = j;
540 +            }
541 +        } else {
542 +            while (k > 1) {
543 +                int j = k >>> 1;
544 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
545 +                    break;
546 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
547 +                k = j;
548 +            }
549 +        }
550 +    }
551 +
552 +    /**
553 +     * Establishes the heap invariant (described above) in the subtree
554 +     * rooted at k, which is assumed to satisfy the heap invariant except
555 +     * possibly for node k itself (which may be greater than its children).
556 +     *
557 +     * This method functions by "demoting" queue[k] down the hierarchy
558 +     * (by swapping it with its smaller child) repeatedly until queue[k]
559 +     * is less than or equal to its children.
560 +     */
561 +    private void fixDown(int k) {
562 +        int j;
563 +        if (comparator == null) {
564 +            while ((j = k << 1) <= size && (j > 0)) {
565 +                if (j<size &&
566 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
567 +                    j++; // j indexes smallest kid
568 +
569 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
570 +                    break;
571 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
572 +                k = j;
573 +            }
574 +        } else {
575 +            while ((j = k << 1) <= size && (j > 0)) {
576 +                if (j<size &&
577 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
578 +                    j++; // j indexes smallest kid
579 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
580 +                    break;
581 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
582 +                k = j;
583 +            }
584 +        }
585 +    }
586 +
587 +    /**
588 +     * Establishes the heap invariant (described above) in the entire tree,
589 +     * assuming nothing about the order of the elements prior to the call.
590 +     */
591 +    private void heapify() {
592 +        for (int i = size/2; i >= 1; i--)
593 +            fixDown(i);
594 +    }
595 +
596 +    /**
597 +     * Returns the comparator used to order this collection, or <tt>null</tt>
598 +     * if this collection is sorted according to its elements natural ordering
599 +     * (using <tt>Comparable</tt>).
600 +     *
601 +     * @return the comparator used to order this collection, or <tt>null</tt>
602 +     * if this collection is sorted according to its elements natural ordering.
603 +     */
604 +    public Comparator<? super E> comparator() {
605 +        return comparator;
606 +    }
607 +
608 +    /**
609 +     * Save the state of the instance to a stream (that
610 +     * is, serialize it).
611 +     *
612 +     * @serialData The length of the array backing the instance is
613 +     * emitted (int), followed by all of its elements (each an
614 +     * <tt>Object</tt>) in the proper order.
615 +     * @param s the stream
616 +     */
617 +    private void writeObject(java.io.ObjectOutputStream s)
618 +        throws java.io.IOException{
619 +        // Write out element count, and any hidden stuff
620 +        s.defaultWriteObject();
621 +
622 +        // Write out array length
623 +        s.writeInt(queue.length);
624 +
625 +        // Write out all elements in the proper order.
626 +        for (int i=1; i<=size; i++)
627 +            s.writeObject(queue[i]);
628 +    }
629 +
630 +    /**
631 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
632 +     * deserialize it).
633 +     * @param s the stream
634 +     */
635 +    private void readObject(java.io.ObjectInputStream s)
636 +        throws java.io.IOException, ClassNotFoundException {
637 +        // Read in size, and any hidden stuff
638 +        s.defaultReadObject();
639 +
640 +        // Read in array length and allocate array
641 +        int arrayLength = s.readInt();
642 +        queue = new Object[arrayLength];
643 +
644 +        // Read in all elements in the proper order.
645 +        for (int i=1; i<=size; i++)
646 +            queue[i] = (E) s.readObject();
647 +    }
648 +
649   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines