ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.50 by dl, Wed Jun 2 23:45:46 2004 UTC vs.
Revision 1.134 by jsr166, Fri Jul 24 20:57:26 2020 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + // OPENJDK import jdk.internal.access.SharedSecrets;
31 + import jdk.internal.util.ArraysSupport;
32 +
33   /**
34 < * An unbounded priority {@linkplain Queue queue} based on a priority
35 < * heap.  This queue orders elements according to an order specified
36 < * at construction time, which is specified either according to their
37 < * <i>natural order</i> (see {@link Comparable}), or according to a
38 < * {@link java.util.Comparator}, depending on which constructor is
39 < * used. A priority queue does not permit <tt>null</tt> elements.
40 < * A priority queue relying on natural ordering also does not
41 < * permit insertion of non-comparable objects (doing so may result
19 < * in <tt>ClassCastException</tt>).
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42   *
43   * <p>The <em>head</em> of this queue is the <em>least</em> element
44   * with respect to the specified ordering.  If multiple elements are
45   * tied for least value, the head is one of those elements -- ties are
46 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
47 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48   * element at the head of the queue.
49   *
50   * <p>A priority queue is unbounded, but has an internal
# Line 34 | Line 56 | package java.util;
56   *
57   * <p>This class and its iterator implement all of the
58   * <em>optional</em> methods of the {@link Collection} and {@link
59 < * Iterator} interfaces.
60 < * The
61 < * Iterator provided in method {@link #iterator()} is <em>not</em>
62 < * guaranteed to traverse the elements of the PriorityQueue in any
63 < * particular order. If you need ordered traversal, consider using
64 < * <tt>Arrays.sort(pq.toArray())</tt>.
65 < *
66 < * <p> <strong>Note that this implementation is not synchronized.</strong>
67 < * Multiple threads should not access a <tt>PriorityQueue</tt>
68 < * instance concurrently if any of the threads modifies the list
47 < * structurally. Instead, use the thread-safe {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69   * java.util.concurrent.PriorityBlockingQueue} class.
70   *
71 < *
72 < * <p>Implementation note: this implementation provides O(log(n)) time
73 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
74 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
75 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
76 < * constant time for the retrieval methods (<tt>peek</tt>,
56 < * <tt>element</tt>, and <tt>size</tt>).
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82   * @since 1.5
83 < * @version %I%, %G%
84 < * @author Josh Bloch
64 < * @param <E> the type of elements held in this collection
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88      implements java.io.Serializable {
89  
90 +    // OPENJDK @java.io.Serial
91      private static final long serialVersionUID = -7720805057305804111L;
92  
93      private static final int DEFAULT_INITIAL_CAPACITY = 11;
94  
95      /**
96 <     * Priority queue represented as a balanced binary heap: the two children
97 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
98 <     * ordered by comparator, or by the elements' natural ordering, if
99 <     * comparator is null:  For each node n in the heap and each descendant d
100 <     * of n, n <= d.
101 <     *
80 <     * The element with the lowest value is in queue[1], assuming the queue is
81 <     * nonempty.  (A one-based array is used in preference to the traditional
82 <     * zero-based array to simplify parent and child calculations.)
83 <     *
84 <     * queue.length must be >= 2, even if size == 0.
96 >     * Priority queue represented as a balanced binary heap: the two
97 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
98 >     * priority queue is ordered by comparator, or by the elements'
99 >     * natural ordering, if comparator is null: For each node n in the
100 >     * heap and each descendant d of n, n <= d.  The element with the
101 >     * lowest value is in queue[0], assuming the queue is nonempty.
102       */
103 <    private transient Object[] queue;
103 >    transient Object[] queue; // non-private to simplify nested class access
104  
105      /**
106       * The number of elements in the priority queue.
107       */
108 <    private int size = 0;
108 >    int size;
109  
110      /**
111       * The comparator, or null if priority queue uses elements'
112       * natural ordering.
113       */
114 +    @SuppressWarnings("serial") // Conditionally serializable
115      private final Comparator<? super E> comparator;
116  
117      /**
118       * The number of times this priority queue has been
119       * <i>structurally modified</i>.  See AbstractList for gory details.
120       */
121 <    private transient int modCount = 0;
121 >    transient int modCount;     // non-private to simplify nested class access
122  
123      /**
124 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
125 <     * (11) that orders its elements according to their natural
126 <     * ordering (using <tt>Comparable</tt>).
124 >     * Creates a {@code PriorityQueue} with the default initial
125 >     * capacity (11) that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127       */
128      public PriorityQueue() {
129          this(DEFAULT_INITIAL_CAPACITY, null);
130      }
131  
132      /**
133 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
134 <     * that orders its elements according to their natural ordering
135 <     * (using <tt>Comparable</tt>).
136 <     *
137 <     * @param initialCapacity the initial capacity for this priority queue.
138 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
139 <     * than 1
133 >     * Creates a {@code PriorityQueue} with the specified initial
134 >     * capacity that orders its elements according to their
135 >     * {@linkplain Comparable natural ordering}.
136 >     *
137 >     * @param initialCapacity the initial capacity for this priority queue
138 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
139 >     *         than 1
140       */
141      public PriorityQueue(int initialCapacity) {
142          this(initialCapacity, null);
143      }
144  
145      /**
146 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
146 >     * Creates a {@code PriorityQueue} with the default initial capacity and
147 >     * whose elements are ordered according to the specified comparator.
148 >     *
149 >     * @param  comparator the comparator that will be used to order this
150 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
151 >     *         natural ordering} of the elements will be used.
152 >     * @since 1.8
153 >     */
154 >    public PriorityQueue(Comparator<? super E> comparator) {
155 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
156 >    }
157 >
158 >    /**
159 >     * Creates a {@code PriorityQueue} with the specified initial capacity
160       * that orders its elements according to the specified comparator.
161       *
162 <     * @param initialCapacity the initial capacity for this priority queue.
163 <     * @param comparator the comparator used to order this priority queue.
164 <     * If <tt>null</tt> then the order depends on the elements' natural
165 <     * ordering.
166 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
167 <     * than 1
162 >     * @param  initialCapacity the initial capacity for this priority queue
163 >     * @param  comparator the comparator that will be used to order this
164 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
165 >     *         natural ordering} of the elements will be used.
166 >     * @throws IllegalArgumentException if {@code initialCapacity} is
167 >     *         less than 1
168       */
169 <    public PriorityQueue(int initialCapacity,
169 >    public PriorityQueue(int initialCapacity,
170                           Comparator<? super E> comparator) {
171 +        // Note: This restriction of at least one is not actually needed,
172 +        // but continues for 1.5 compatibility
173          if (initialCapacity < 1)
174              throw new IllegalArgumentException();
175 <        this.queue = new Object[initialCapacity + 1];
175 >        this.queue = new Object[initialCapacity];
176          this.comparator = comparator;
177      }
178  
179      /**
180 <     * Common code to initialize underlying queue array across
181 <     * constructors below.
180 >     * Creates a {@code PriorityQueue} containing the elements in the
181 >     * specified collection.  If the specified collection is an instance of
182 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
183 >     * priority queue will be ordered according to the same ordering.
184 >     * Otherwise, this priority queue will be ordered according to the
185 >     * {@linkplain Comparable natural ordering} of its elements.
186 >     *
187 >     * @param  c the collection whose elements are to be placed
188 >     *         into this priority queue
189 >     * @throws ClassCastException if elements of the specified collection
190 >     *         cannot be compared to one another according to the priority
191 >     *         queue's ordering
192 >     * @throws NullPointerException if the specified collection or any
193 >     *         of its elements are null
194       */
195 <    private void initializeArray(Collection<? extends E> c) {
196 <        int sz = c.size();
197 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
198 <                                            Integer.MAX_VALUE - 1);
199 <        if (initialCapacity < 1)
200 <            initialCapacity = 1;
201 <
202 <        this.queue = new Object[initialCapacity + 1];
195 >    public PriorityQueue(Collection<? extends E> c) {
196 >        if (c instanceof SortedSet<?>) {
197 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) ss.comparator();
199 >            initElementsFromCollection(ss);
200 >        }
201 >        else if (c instanceof PriorityQueue<?>) {
202 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
203 >            this.comparator = (Comparator<? super E>) pq.comparator();
204 >            initFromPriorityQueue(pq);
205 >        }
206 >        else {
207 >            this.comparator = null;
208 >            initFromCollection(c);
209 >        }
210      }
211  
212      /**
213 <     * Initially fill elements of the queue array under the
214 <     * knowledge that it is sorted or is another PQ, in which
215 <     * case we can just place the elements in the order presented.
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214 >     * specified priority queue.  This priority queue will be
215 >     * ordered according to the same ordering as the given priority
216 >     * queue.
217 >     *
218 >     * @param  c the priority queue whose elements are to be placed
219 >     *         into this priority queue
220 >     * @throws ClassCastException if elements of {@code c} cannot be
221 >     *         compared to one another according to {@code c}'s
222 >     *         ordering
223 >     * @throws NullPointerException if the specified priority queue or any
224 >     *         of its elements are null
225       */
226 <    private void fillFromSorted(Collection<? extends E> c) {
227 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
228 <            queue[++size] = i.next();
226 >    public PriorityQueue(PriorityQueue<? extends E> c) {
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initFromPriorityQueue(c);
229      }
230  
231      /**
232 <     * Initially fill elements of the queue array that is not to our knowledge
233 <     * sorted, so we must rearrange the elements to guarantee the heap
234 <     * invariant.
232 >     * Creates a {@code PriorityQueue} containing the elements in the
233 >     * specified sorted set.   This priority queue will be ordered
234 >     * according to the same ordering as the given sorted set.
235 >     *
236 >     * @param  c the sorted set whose elements are to be placed
237 >     *         into this priority queue
238 >     * @throws ClassCastException if elements of the specified sorted
239 >     *         set cannot be compared to one another according to the
240 >     *         sorted set's ordering
241 >     * @throws NullPointerException if the specified sorted set or any
242 >     *         of its elements are null
243       */
244 <    private void fillFromUnsorted(Collection<? extends E> c) {
245 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
246 <            queue[++size] = i.next();
178 <        heapify();
244 >    public PriorityQueue(SortedSet<? extends E> c) {
245 >        this.comparator = (Comparator<? super E>) c.comparator();
246 >        initElementsFromCollection(c);
247      }
248  
249 <    /**
250 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
251 <     * specified collection.  The priority queue has an initial
252 <     * capacity of 110% of the size of the specified collection or 1
253 <     * if the collection is empty.  If the specified collection is an
254 <     * instance of a {@link java.util.SortedSet} or is another
255 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
256 <     * according to the same comparator, or according to its elements'
257 <     * natural order if the collection is sorted according to its
190 <     * elements' natural order.  Otherwise, the priority queue is
191 <     * ordered according to its elements' natural order.
192 <     *
193 <     * @param c the collection whose elements are to be placed
194 <     *        into this priority queue.
195 <     * @throws ClassCastException if elements of the specified collection
196 <     *         cannot be compared to one another according to the priority
197 <     *         queue's ordering.
198 <     * @throws NullPointerException if <tt>c</tt> or any element within it
199 <     * is <tt>null</tt>
200 <     */
201 <    public PriorityQueue(Collection<? extends E> c) {
202 <        initializeArray(c);
203 <        if (c instanceof SortedSet) {
204 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
205 <            comparator = (Comparator<? super E>)s.comparator();
206 <            fillFromSorted(s);
207 <        } else if (c instanceof PriorityQueue) {
208 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
209 <            comparator = (Comparator<? super E>)s.comparator();
210 <            fillFromSorted(s);
249 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
250 >    private static Object[] ensureNonEmpty(Object[] es) {
251 >        return (es.length > 0) ? es : new Object[1];
252 >    }
253 >
254 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255 >        if (c.getClass() == PriorityQueue.class) {
256 >            this.queue = ensureNonEmpty(c.toArray());
257 >            this.size = c.size();
258          } else {
259 <            comparator = null;
213 <            fillFromUnsorted(c);
259 >            initFromCollection(c);
260          }
261      }
262  
263 +    private void initElementsFromCollection(Collection<? extends E> c) {
264 +        Object[] es = c.toArray();
265 +        int len = es.length;
266 +        if (c.getClass() != ArrayList.class)
267 +            es = Arrays.copyOf(es, len, Object[].class);
268 +        if (len == 1 || this.comparator != null)
269 +            for (Object e : es)
270 +                if (e == null)
271 +                    throw new NullPointerException();
272 +        this.queue = ensureNonEmpty(es);
273 +        this.size = len;
274 +    }
275 +
276      /**
277 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 <     * specified collection.  The priority queue has an initial
220 <     * capacity of 110% of the size of the specified collection or 1
221 <     * if the collection is empty.  This priority queue will be sorted
222 <     * according to the same comparator as the given collection, or
223 <     * according to its elements' natural order if the collection is
224 <     * sorted according to its elements' natural order.
277 >     * Initializes queue array with elements from the given Collection.
278       *
279 <     * @param c the collection whose elements are to be placed
227 <     *        into this priority queue.
228 <     * @throws ClassCastException if elements of the specified collection
229 <     *         cannot be compared to one another according to the priority
230 <     *         queue's ordering.
231 <     * @throws NullPointerException if <tt>c</tt> or any element within it
232 <     * is <tt>null</tt>
279 >     * @param c the collection
280       */
281 <    public PriorityQueue(PriorityQueue<? extends E> c) {
282 <        initializeArray(c);
283 <        comparator = (Comparator<? super E>)c.comparator();
237 <        fillFromSorted(c);
281 >    private void initFromCollection(Collection<? extends E> c) {
282 >        initElementsFromCollection(c);
283 >        heapify();
284      }
285  
286      /**
287 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
242 <     * specified collection.  The priority queue has an initial
243 <     * capacity of 110% of the size of the specified collection or 1
244 <     * if the collection is empty.  This priority queue will be sorted
245 <     * according to the same comparator as the given collection, or
246 <     * according to its elements' natural order if the collection is
247 <     * sorted according to its elements' natural order.
287 >     * Increases the capacity of the array.
288       *
289 <     * @param c the collection whose elements are to be placed
250 <     *        into this priority queue.
251 <     * @throws ClassCastException if elements of the specified collection
252 <     *         cannot be compared to one another according to the priority
253 <     *         queue's ordering.
254 <     * @throws NullPointerException if <tt>c</tt> or any element within it
255 <     * is <tt>null</tt>
289 >     * @param minCapacity the desired minimum capacity
290       */
291 <    public PriorityQueue(SortedSet<? extends E> c) {
292 <        initializeArray(c);
293 <        comparator = (Comparator<? super E>)c.comparator();
294 <        fillFromSorted(c);
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
295 >                minCapacity - oldCapacity, /* minimum growth */
296 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
297 >                                           /* preferred growth */);
298 >        queue = Arrays.copyOf(queue, newCapacity);
299      }
300  
301      /**
302 <     * Resize array, if necessary, to be able to hold given index
303 <     */
304 <    private void grow(int index) {
305 <        int newlen = queue.length;
306 <        if (index < newlen) // don't need to grow
307 <            return;
308 <        if (index == Integer.MAX_VALUE)
309 <            throw new OutOfMemoryError();
310 <        while (newlen <= index) {
311 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
274 <                newlen = Integer.MAX_VALUE;
275 <            else
276 <                newlen <<= 2;
277 <        }
278 <        Object[] newQueue = new Object[newlen];
279 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
280 <        queue = newQueue;
302 >     * Inserts the specified element into this priority queue.
303 >     *
304 >     * @return {@code true} (as specified by {@link Collection#add})
305 >     * @throws ClassCastException if the specified element cannot be
306 >     *         compared with elements currently in this priority queue
307 >     *         according to the priority queue's ordering
308 >     * @throws NullPointerException if the specified element is null
309 >     */
310 >    public boolean add(E e) {
311 >        return offer(e);
312      }
282            
313  
314      /**
315       * Inserts the specified element into this priority queue.
316       *
317 <     * @return <tt>true</tt>
318 <     * @throws ClassCastException if the specified element cannot be compared
319 <     * with elements currently in the priority queue according
320 <     * to the priority queue's ordering.
321 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
317 >     * @return {@code true} (as specified by {@link Queue#offer})
318 >     * @throws ClassCastException if the specified element cannot be
319 >     *         compared with elements currently in this priority queue
320 >     *         according to the priority queue's ordering
321 >     * @throws NullPointerException if the specified element is null
322       */
323 <    public boolean offer(E o) {
324 <        if (o == null)
323 >    public boolean offer(E e) {
324 >        if (e == null)
325              throw new NullPointerException();
326          modCount++;
327 <        ++size;
328 <
329 <        // Grow backing store if necessary
330 <        if (size >= queue.length)
331 <            grow(size);
302 <
303 <        queue[size] = o;
304 <        fixUp(size);
327 >        int i = size;
328 >        if (i >= queue.length)
329 >            grow(i + 1);
330 >        siftUp(i, e);
331 >        size = i + 1;
332          return true;
333      }
334  
335      public E peek() {
336 <        if (size == 0)
310 <            return null;
311 <        return (E) queue[1];
336 >        return (E) queue[0];
337      }
338  
339 <    // Collection Methods - the first two override to update docs
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            final Object[] es = queue;
342 >            for (int i = 0, n = size; i < n; i++)
343 >                if (o.equals(es[i]))
344 >                    return i;
345 >        }
346 >        return -1;
347 >    }
348  
349      /**
350 <     * Adds the specified element to this queue.
351 <     * @return <tt>true</tt> (as per the general contract of
352 <     * <tt>Collection.add</tt>).
350 >     * Removes a single instance of the specified element from this queue,
351 >     * if it is present.  More formally, removes an element {@code e} such
352 >     * that {@code o.equals(e)}, if this queue contains one or more such
353 >     * elements.  Returns {@code true} if and only if this queue contained
354 >     * the specified element (or equivalently, if this queue changed as a
355 >     * result of the call).
356       *
357 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
358 <     * @throws ClassCastException if the specified element cannot be compared
323 <     * with elements currently in the priority queue according
324 <     * to the priority queue's ordering.
357 >     * @param o element to be removed from this queue, if present
358 >     * @return {@code true} if this queue changed as a result of the call
359       */
360 <    public boolean add(E o) {
361 <        return offer(o);
360 >    public boolean remove(Object o) {
361 >        int i = indexOf(o);
362 >        if (i == -1)
363 >            return false;
364 >        else {
365 >            removeAt(i);
366 >            return true;
367 >        }
368      }
369  
370      /**
371 <     * Removes a single instance of the specified element from this
372 <     * queue, if it is present.
371 >     * Identity-based version for use in Itr.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374       */
375 <    public boolean remove(Object o) {
376 <        if (o == null)
377 <            return false;
378 <
379 <        if (comparator == null) {
380 <            for (int i = 1; i <= size; i++) {
340 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
341 <                    removeAt(i);
342 <                    return true;
343 <                }
344 <            }
345 <        } else {
346 <            for (int i = 1; i <= size; i++) {
347 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
348 <                    removeAt(i);
349 <                    return true;
350 <                }
375 >    void removeEq(Object o) {
376 >        final Object[] es = queue;
377 >        for (int i = 0, n = size; i < n; i++) {
378 >            if (o == es[i]) {
379 >                removeAt(i);
380 >                break;
381              }
382          }
383 <        return false;
383 >    }
384 >
385 >    /**
386 >     * Returns {@code true} if this queue contains the specified element.
387 >     * More formally, returns {@code true} if and only if this queue contains
388 >     * at least one element {@code e} such that {@code o.equals(e)}.
389 >     *
390 >     * @param o object to be checked for containment in this queue
391 >     * @return {@code true} if this queue contains the specified element
392 >     */
393 >    public boolean contains(Object o) {
394 >        return indexOf(o) >= 0;
395 >    }
396 >
397 >    /**
398 >     * Returns an array containing all of the elements in this queue.
399 >     * The elements are in no particular order.
400 >     *
401 >     * <p>The returned array will be "safe" in that no references to it are
402 >     * maintained by this queue.  (In other words, this method must allocate
403 >     * a new array).  The caller is thus free to modify the returned array.
404 >     *
405 >     * <p>This method acts as bridge between array-based and collection-based
406 >     * APIs.
407 >     *
408 >     * @return an array containing all of the elements in this queue
409 >     */
410 >    public Object[] toArray() {
411 >        return Arrays.copyOf(queue, size);
412 >    }
413 >
414 >    /**
415 >     * Returns an array containing all of the elements in this queue; the
416 >     * runtime type of the returned array is that of the specified array.
417 >     * The returned array elements are in no particular order.
418 >     * If the queue fits in the specified array, it is returned therein.
419 >     * Otherwise, a new array is allocated with the runtime type of the
420 >     * specified array and the size of this queue.
421 >     *
422 >     * <p>If the queue fits in the specified array with room to spare
423 >     * (i.e., the array has more elements than the queue), the element in
424 >     * the array immediately following the end of the collection is set to
425 >     * {@code null}.
426 >     *
427 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
428 >     * array-based and collection-based APIs.  Further, this method allows
429 >     * precise control over the runtime type of the output array, and may,
430 >     * under certain circumstances, be used to save allocation costs.
431 >     *
432 >     * <p>Suppose {@code x} is a queue known to contain only strings.
433 >     * The following code can be used to dump the queue into a newly
434 >     * allocated array of {@code String}:
435 >     *
436 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 >     *
438 >     * Note that {@code toArray(new Object[0])} is identical in function to
439 >     * {@code toArray()}.
440 >     *
441 >     * @param a the array into which the elements of the queue are to
442 >     *          be stored, if it is big enough; otherwise, a new array of the
443 >     *          same runtime type is allocated for this purpose.
444 >     * @return an array containing all of the elements in this queue
445 >     * @throws ArrayStoreException if the runtime type of the specified array
446 >     *         is not a supertype of the runtime type of every element in
447 >     *         this queue
448 >     * @throws NullPointerException if the specified array is null
449 >     */
450 >    public <T> T[] toArray(T[] a) {
451 >        final int size = this.size;
452 >        if (a.length < size)
453 >            // Make a new array of a's runtime type, but my contents:
454 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
455 >        System.arraycopy(queue, 0, a, 0, size);
456 >        if (a.length > size)
457 >            a[size] = null;
458 >        return a;
459      }
460  
461      /**
462       * Returns an iterator over the elements in this queue. The iterator
463       * does not return the elements in any particular order.
464       *
465 <     * @return an iterator over the elements in this queue.
465 >     * @return an iterator over the elements in this queue
466       */
467      public Iterator<E> iterator() {
468          return new Itr();
469      }
470  
471 <    private class Itr implements Iterator<E> {
367 <
471 >    private final class Itr implements Iterator<E> {
472          /**
473           * Index (into queue array) of element to be returned by
474           * subsequent call to next.
475           */
476 <        private int cursor = 1;
476 >        private int cursor;
477  
478          /**
479           * Index of element returned by most recent call to next,
480           * unless that element came from the forgetMeNot list.
481 <         * Reset to 0 if element is deleted by a call to remove.
481 >         * Set to -1 if element is deleted by a call to remove.
482           */
483 <        private int lastRet = 0;
483 >        private int lastRet = -1;
484  
485          /**
486 <         * The modCount value that the iterator believes that the backing
383 <         * List should have.  If this expectation is violated, the iterator
384 <         * has detected concurrent modification.
385 <         */
386 <        private int expectedModCount = modCount;
387 <
388 <        /**
389 <         * A list of elements that were moved from the unvisited portion of
486 >         * A queue of elements that were moved from the unvisited portion of
487           * the heap into the visited portion as a result of "unlucky" element
488           * removals during the iteration.  (Unlucky element removals are those
489 <         * that require a fixup instead of a fixdown.)  We must visit all of
489 >         * that require a siftup instead of a siftdown.)  We must visit all of
490           * the elements in this list to complete the iteration.  We do this
491           * after we've completed the "normal" iteration.
492           *
493           * We expect that most iterations, even those involving removals,
494 <         * will not use need to store elements in this field.
494 >         * will not need to store elements in this field.
495           */
496 <        private ArrayList<E> forgetMeNot = null;
496 >        private ArrayDeque<E> forgetMeNot;
497  
498          /**
499           * Element returned by the most recent call to next iff that
500           * element was drawn from the forgetMeNot list.
501           */
502 <        private Object lastRetElt = null;
502 >        private E lastRetElt;
503 >
504 >        /**
505 >         * The modCount value that the iterator believes that the backing
506 >         * Queue should have.  If this expectation is violated, the iterator
507 >         * has detected concurrent modification.
508 >         */
509 >        private int expectedModCount = modCount;
510 >
511 >        Itr() {}                        // prevent access constructor creation
512  
513          public boolean hasNext() {
514 <            return cursor <= size || forgetMeNot != null;
514 >            return cursor < size ||
515 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
516          }
517  
518          public E next() {
519 <            checkForComodification();
520 <            E result;
521 <            if (cursor <= size) {
522 <                result = (E) queue[cursor];
523 <                lastRet = cursor++;
524 <            }
525 <            else if (forgetMeNot == null)
526 <                throw new NoSuchElementException();
527 <            else {
421 <                int remaining = forgetMeNot.size();
422 <                result = forgetMeNot.remove(remaining - 1);
423 <                if (remaining == 1)
424 <                    forgetMeNot = null;
425 <                lastRet = 0;
426 <                lastRetElt = result;
519 >            if (expectedModCount != modCount)
520 >                throw new ConcurrentModificationException();
521 >            if (cursor < size)
522 >                return (E) queue[lastRet = cursor++];
523 >            if (forgetMeNot != null) {
524 >                lastRet = -1;
525 >                lastRetElt = forgetMeNot.poll();
526 >                if (lastRetElt != null)
527 >                    return lastRetElt;
528              }
529 <            return result;
529 >            throw new NoSuchElementException();
530          }
531  
532          public void remove() {
533 <            checkForComodification();
534 <
535 <            if (lastRet != 0) {
533 >            if (expectedModCount != modCount)
534 >                throw new ConcurrentModificationException();
535 >            if (lastRet != -1) {
536                  E moved = PriorityQueue.this.removeAt(lastRet);
537 <                lastRet = 0;
538 <                if (moved == null) {
537 >                lastRet = -1;
538 >                if (moved == null)
539                      cursor--;
540 <                } else {
540 >                else {
541                      if (forgetMeNot == null)
542 <                        forgetMeNot = new ArrayList<E>();
542 >                        forgetMeNot = new ArrayDeque<>();
543                      forgetMeNot.add(moved);
544                  }
545              } else if (lastRetElt != null) {
546 <                PriorityQueue.this.remove(lastRetElt);
546 >                PriorityQueue.this.removeEq(lastRetElt);
547                  lastRetElt = null;
548              } else {
549                  throw new IllegalStateException();
550              }
450
551              expectedModCount = modCount;
552          }
453
454        final void checkForComodification() {
455            if (modCount != expectedModCount)
456                throw new ConcurrentModificationException();
457        }
553      }
554  
555      public int size() {
# Line 462 | Line 557 | public class PriorityQueue<E> extends Ab
557      }
558  
559      /**
560 <     * Removes all elements from the priority queue.
560 >     * Removes all of the elements from this priority queue.
561       * The queue will be empty after this call returns.
562       */
563      public void clear() {
564          modCount++;
565 <
566 <        // Null out element references to prevent memory leak
567 <        for (int i=1; i<=size; i++)
473 <            queue[i] = null;
474 <
565 >        final Object[] es = queue;
566 >        for (int i = 0, n = size; i < n; i++)
567 >            es[i] = null;
568          size = 0;
569      }
570  
571      public E poll() {
572 <        if (size == 0)
573 <            return null;
481 <        modCount++;
482 <
483 <        E result = (E) queue[1];
484 <        queue[1] = queue[size];
485 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
486 <        if (size > 1)
487 <            fixDown(1);
572 >        final Object[] es;
573 >        final E result;
574  
575 +        if ((result = (E) ((es = queue)[0])) != null) {
576 +            modCount++;
577 +            final int n;
578 +            final E x = (E) es[(n = --size)];
579 +            es[n] = null;
580 +            if (n > 0) {
581 +                final Comparator<? super E> cmp;
582 +                if ((cmp = comparator) == null)
583 +                    siftDownComparable(0, x, es, n);
584 +                else
585 +                    siftDownUsingComparator(0, x, es, n, cmp);
586 +            }
587 +        }
588          return result;
589      }
590  
591      /**
592 <     * Removes and returns the ith element from queue.  (Recall that queue
494 <     * is one-based, so 1 <= i <= size.)
592 >     * Removes the ith element from queue.
593       *
594 <     * Normally this method leaves the elements at positions from 1 up to i-1,
595 <     * inclusive, untouched.  Under these circumstances, it returns null.
596 <     * Occasionally, in order to maintain the heap invariant, it must move
597 <     * the last element of the list to some index in the range [2, i-1],
598 <     * and move the element previously at position (i/2) to position i.
599 <     * Under these circumstances, this method returns the element that was
600 <     * previously at the end of the list and is now at some position between
601 <     * 2 and i-1 inclusive.
602 <     */
603 <    private E removeAt(int i) {
604 <        assert i > 0 && i <= size;
594 >     * Normally this method leaves the elements at up to i-1,
595 >     * inclusive, untouched.  Under these circumstances, it returns
596 >     * null.  Occasionally, in order to maintain the heap invariant,
597 >     * it must swap a later element of the list with one earlier than
598 >     * i.  Under these circumstances, this method returns the element
599 >     * that was previously at the end of the list and is now at some
600 >     * position before i. This fact is used by iterator.remove so as to
601 >     * avoid missing traversing elements.
602 >     */
603 >    E removeAt(int i) {
604 >        // assert i >= 0 && i < size;
605 >        final Object[] es = queue;
606          modCount++;
607 <
608 <        E moved = (E) queue[size];
609 <        queue[i] = moved;
610 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
611 <        if (i <= size) {
612 <            fixDown(i);
613 <            if (queue[i] == moved) {
614 <                fixUp(i);
615 <                if (queue[i] != moved)
607 >        int s = --size;
608 >        if (s == i) // removed last element
609 >            es[i] = null;
610 >        else {
611 >            E moved = (E) es[s];
612 >            es[s] = null;
613 >            siftDown(i, moved);
614 >            if (es[i] == moved) {
615 >                siftUp(i, moved);
616 >                if (es[i] != moved)
617                      return moved;
618              }
619          }
# Line 521 | Line 621 | public class PriorityQueue<E> extends Ab
621      }
622  
623      /**
624 <     * Establishes the heap invariant (described above) assuming the heap
625 <     * satisfies the invariant except possibly for the leaf-node indexed by k
626 <     * (which may have a nextExecutionTime less than its parent's).
627 <     *
628 <     * This method functions by "promoting" queue[k] up the hierarchy
629 <     * (by swapping it with its parent) repeatedly until queue[k]
630 <     * is greater than or equal to its parent.
631 <     */
632 <    private void fixUp(int k) {
633 <        if (comparator == null) {
634 <            while (k > 1) {
635 <                int j = k >> 1;
636 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
637 <                    break;
638 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
639 <                k = j;
640 <            }
641 <        } else {
642 <            while (k > 1) {
643 <                int j = k >>> 1;
644 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
645 <                    break;
646 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
647 <                k = j;
648 <            }
624 >     * Inserts item x at position k, maintaining heap invariant by
625 >     * promoting x up the tree until it is greater than or equal to
626 >     * its parent, or is the root.
627 >     *
628 >     * To simplify and speed up coercions and comparisons, the
629 >     * Comparable and Comparator versions are separated into different
630 >     * methods that are otherwise identical. (Similarly for siftDown.)
631 >     *
632 >     * @param k the position to fill
633 >     * @param x the item to insert
634 >     */
635 >    private void siftUp(int k, E x) {
636 >        if (comparator != null)
637 >            siftUpUsingComparator(k, x, queue, comparator);
638 >        else
639 >            siftUpComparable(k, x, queue);
640 >    }
641 >
642 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
643 >        Comparable<? super T> key = (Comparable<? super T>) x;
644 >        while (k > 0) {
645 >            int parent = (k - 1) >>> 1;
646 >            Object e = es[parent];
647 >            if (key.compareTo((T) e) >= 0)
648 >                break;
649 >            es[k] = e;
650 >            k = parent;
651 >        }
652 >        es[k] = key;
653 >    }
654 >
655 >    private static <T> void siftUpUsingComparator(
656 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
657 >        while (k > 0) {
658 >            int parent = (k - 1) >>> 1;
659 >            Object e = es[parent];
660 >            if (cmp.compare(x, (T) e) >= 0)
661 >                break;
662 >            es[k] = e;
663 >            k = parent;
664          }
665 +        es[k] = x;
666      }
667  
668      /**
669 <     * Establishes the heap invariant (described above) in the subtree
670 <     * rooted at k, which is assumed to satisfy the heap invariant except
671 <     * possibly for node k itself (which may be greater than its children).
672 <     *
673 <     * This method functions by "demoting" queue[k] down the hierarchy
674 <     * (by swapping it with its smaller child) repeatedly until queue[k]
675 <     * is less than or equal to its children.
676 <     */
677 <    private void fixDown(int k) {
678 <        int j;
679 <        if (comparator == null) {
680 <            while ((j = k << 1) <= size && (j > 0)) {
681 <                if (j<size &&
682 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
683 <                    j++; // j indexes smallest kid
684 <
685 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
686 <                    break;
687 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
688 <                k = j;
689 <            }
690 <        } else {
691 <            while ((j = k << 1) <= size && (j > 0)) {
692 <                if (j<size &&
693 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
694 <                    j++; // j indexes smallest kid
695 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
696 <                    break;
697 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
698 <                k = j;
699 <            }
669 >     * Inserts item x at position k, maintaining heap invariant by
670 >     * demoting x down the tree repeatedly until it is less than or
671 >     * equal to its children or is a leaf.
672 >     *
673 >     * @param k the position to fill
674 >     * @param x the item to insert
675 >     */
676 >    private void siftDown(int k, E x) {
677 >        if (comparator != null)
678 >            siftDownUsingComparator(k, x, queue, size, comparator);
679 >        else
680 >            siftDownComparable(k, x, queue, size);
681 >    }
682 >
683 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
684 >        // assert n > 0;
685 >        Comparable<? super T> key = (Comparable<? super T>)x;
686 >        int half = n >>> 1;           // loop while a non-leaf
687 >        while (k < half) {
688 >            int child = (k << 1) + 1; // assume left child is least
689 >            Object c = es[child];
690 >            int right = child + 1;
691 >            if (right < n &&
692 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
693 >                c = es[child = right];
694 >            if (key.compareTo((T) c) <= 0)
695 >                break;
696 >            es[k] = c;
697 >            k = child;
698 >        }
699 >        es[k] = key;
700 >    }
701 >
702 >    private static <T> void siftDownUsingComparator(
703 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
704 >        // assert n > 0;
705 >        int half = n >>> 1;
706 >        while (k < half) {
707 >            int child = (k << 1) + 1;
708 >            Object c = es[child];
709 >            int right = child + 1;
710 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
711 >                c = es[child = right];
712 >            if (cmp.compare(x, (T) c) <= 0)
713 >                break;
714 >            es[k] = c;
715 >            k = child;
716          }
717 +        es[k] = x;
718      }
719  
720      /**
721       * Establishes the heap invariant (described above) in the entire tree,
722       * assuming nothing about the order of the elements prior to the call.
723 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
724       */
725      private void heapify() {
726 <        for (int i = size/2; i >= 1; i--)
727 <            fixDown(i);
726 >        final Object[] es = queue;
727 >        int n = size, i = (n >>> 1) - 1;
728 >        final Comparator<? super E> cmp;
729 >        if ((cmp = comparator) == null)
730 >            for (; i >= 0; i--)
731 >                siftDownComparable(i, (E) es[i], es, n);
732 >        else
733 >            for (; i >= 0; i--)
734 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
735      }
736  
737      /**
738 <     * Returns the comparator used to order this collection, or <tt>null</tt>
739 <     * if this collection is sorted according to its elements natural ordering
740 <     * (using <tt>Comparable</tt>).
741 <     *
742 <     * @return the comparator used to order this collection, or <tt>null</tt>
743 <     * if this collection is sorted according to its elements natural ordering.
738 >     * Returns the comparator used to order the elements in this
739 >     * queue, or {@code null} if this queue is sorted according to
740 >     * the {@linkplain Comparable natural ordering} of its elements.
741 >     *
742 >     * @return the comparator used to order this queue, or
743 >     *         {@code null} if this queue is sorted according to the
744 >     *         natural ordering of its elements
745       */
746      public Comparator<? super E> comparator() {
747          return comparator;
748      }
749  
750      /**
751 <     * Save the state of the instance to a stream (that
610 <     * is, serialize it).
751 >     * Saves this queue to a stream (that is, serializes it).
752       *
612     * @serialData The length of the array backing the instance is
613     * emitted (int), followed by all of its elements (each an
614     * <tt>Object</tt>) in the proper order.
753       * @param s the stream
754 +     * @throws java.io.IOException if an I/O error occurs
755 +     * @serialData The length of the array backing the instance is
756 +     *             emitted (int), followed by all of its elements
757 +     *             (each an {@code Object}) in the proper order.
758       */
759 +    // OPENJDK @java.io.Serial
760      private void writeObject(java.io.ObjectOutputStream s)
761 <        throws java.io.IOException{
761 >        throws java.io.IOException {
762          // Write out element count, and any hidden stuff
763          s.defaultWriteObject();
764  
765 <        // Write out array length
766 <        s.writeInt(queue.length);
765 >        // Write out array length, for compatibility with 1.5 version
766 >        s.writeInt(Math.max(2, size + 1));
767  
768 <        // Write out all elements in the proper order.
769 <        for (int i=1; i<=size; i++)
770 <            s.writeObject(queue[i]);
768 >        // Write out all elements in the "proper order".
769 >        final Object[] es = queue;
770 >        for (int i = 0, n = size; i < n; i++)
771 >            s.writeObject(es[i]);
772      }
773  
774      /**
775 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
776 <     * deserialize it).
775 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
776 >     * (that is, deserializes it).
777 >     *
778       * @param s the stream
779 +     * @throws ClassNotFoundException if the class of a serialized object
780 +     *         could not be found
781 +     * @throws java.io.IOException if an I/O error occurs
782       */
783 +    // OPENJDK @java.io.Serial
784      private void readObject(java.io.ObjectInputStream s)
785          throws java.io.IOException, ClassNotFoundException {
786          // Read in size, and any hidden stuff
787          s.defaultReadObject();
788  
789 <        // Read in array length and allocate array
790 <        int arrayLength = s.readInt();
791 <        queue = new Object[arrayLength];
792 <
793 <        // Read in all elements in the proper order.
794 <        for (int i=1; i<=size; i++)
795 <            queue[i] = (E) s.readObject();
789 >        // Read in (and discard) array length
790 >        s.readInt();
791 >
792 >        jsr166.Platform.checkArray(s, Object[].class, size);
793 >        final Object[] es = queue = new Object[Math.max(size, 1)];
794 >
795 >        // Read in all elements.
796 >        for (int i = 0, n = size; i < n; i++)
797 >            es[i] = s.readObject();
798 >
799 >        // Elements are guaranteed to be in "proper order", but the
800 >        // spec has never explained what that might be.
801 >        heapify();
802      }
803  
804 +    /**
805 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
806 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
807 +     * queue. The spliterator does not traverse elements in any particular order
808 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
809 +     *
810 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
811 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
812 +     * Overriding implementations should document the reporting of additional
813 +     * characteristic values.
814 +     *
815 +     * @return a {@code Spliterator} over the elements in this queue
816 +     * @since 1.8
817 +     */
818 +    public final Spliterator<E> spliterator() {
819 +        return new PriorityQueueSpliterator(0, -1, 0);
820 +    }
821 +
822 +    final class PriorityQueueSpliterator implements Spliterator<E> {
823 +        private int index;            // current index, modified on advance/split
824 +        private int fence;            // -1 until first use
825 +        private int expectedModCount; // initialized when fence set
826 +
827 +        /** Creates new spliterator covering the given range. */
828 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
829 +            this.index = origin;
830 +            this.fence = fence;
831 +            this.expectedModCount = expectedModCount;
832 +        }
833 +
834 +        private int getFence() { // initialize fence to size on first use
835 +            int hi;
836 +            if ((hi = fence) < 0) {
837 +                expectedModCount = modCount;
838 +                hi = fence = size;
839 +            }
840 +            return hi;
841 +        }
842 +
843 +        public PriorityQueueSpliterator trySplit() {
844 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
845 +            return (lo >= mid) ? null :
846 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
847 +        }
848 +
849 +        public void forEachRemaining(Consumer<? super E> action) {
850 +            if (action == null)
851 +                throw new NullPointerException();
852 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
853 +            final Object[] es = queue;
854 +            int i, hi; E e;
855 +            for (i = index, index = hi = fence; i < hi; i++) {
856 +                if ((e = (E) es[i]) == null)
857 +                    break;      // must be CME
858 +                action.accept(e);
859 +            }
860 +            if (modCount != expectedModCount)
861 +                throw new ConcurrentModificationException();
862 +        }
863 +
864 +        public boolean tryAdvance(Consumer<? super E> action) {
865 +            if (action == null)
866 +                throw new NullPointerException();
867 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
868 +            int i;
869 +            if ((i = index) < fence) {
870 +                index = i + 1;
871 +                E e;
872 +                if ((e = (E) queue[i]) == null
873 +                    || modCount != expectedModCount)
874 +                    throw new ConcurrentModificationException();
875 +                action.accept(e);
876 +                return true;
877 +            }
878 +            return false;
879 +        }
880 +
881 +        public long estimateSize() {
882 +            return getFence() - index;
883 +        }
884 +
885 +        public int characteristics() {
886 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
887 +        }
888 +    }
889 +
890 +    /**
891 +     * @throws NullPointerException {@inheritDoc}
892 +     */
893 +    public boolean removeIf(Predicate<? super E> filter) {
894 +        Objects.requireNonNull(filter);
895 +        return bulkRemove(filter);
896 +    }
897 +
898 +    /**
899 +     * @throws NullPointerException {@inheritDoc}
900 +     */
901 +    public boolean removeAll(Collection<?> c) {
902 +        Objects.requireNonNull(c);
903 +        return bulkRemove(e -> c.contains(e));
904 +    }
905 +
906 +    /**
907 +     * @throws NullPointerException {@inheritDoc}
908 +     */
909 +    public boolean retainAll(Collection<?> c) {
910 +        Objects.requireNonNull(c);
911 +        return bulkRemove(e -> !c.contains(e));
912 +    }
913 +
914 +    // A tiny bit set implementation
915 +
916 +    private static long[] nBits(int n) {
917 +        return new long[((n - 1) >> 6) + 1];
918 +    }
919 +    private static void setBit(long[] bits, int i) {
920 +        bits[i >> 6] |= 1L << i;
921 +    }
922 +    private static boolean isClear(long[] bits, int i) {
923 +        return (bits[i >> 6] & (1L << i)) == 0;
924 +    }
925 +
926 +    /** Implementation of bulk remove methods. */
927 +    private boolean bulkRemove(Predicate<? super E> filter) {
928 +        final int expectedModCount = ++modCount;
929 +        final Object[] es = queue;
930 +        final int end = size;
931 +        int i;
932 +        // Optimize for initial run of survivors
933 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
934 +            ;
935 +        if (i >= end) {
936 +            if (modCount != expectedModCount)
937 +                throw new ConcurrentModificationException();
938 +            return false;
939 +        }
940 +        // Tolerate predicates that reentrantly access the collection for
941 +        // read (but writers still get CME), so traverse once to find
942 +        // elements to delete, a second pass to physically expunge.
943 +        final int beg = i;
944 +        final long[] deathRow = nBits(end - beg);
945 +        deathRow[0] = 1L;   // set bit 0
946 +        for (i = beg + 1; i < end; i++)
947 +            if (filter.test((E) es[i]))
948 +                setBit(deathRow, i - beg);
949 +        if (modCount != expectedModCount)
950 +            throw new ConcurrentModificationException();
951 +        int w = beg;
952 +        for (i = beg; i < end; i++)
953 +            if (isClear(deathRow, i - beg))
954 +                es[w++] = es[i];
955 +        for (i = size = w; i < end; i++)
956 +            es[i] = null;
957 +        heapify();
958 +        return true;
959 +    }
960 +
961 +    /**
962 +     * @throws NullPointerException {@inheritDoc}
963 +     */
964 +    public void forEach(Consumer<? super E> action) {
965 +        Objects.requireNonNull(action);
966 +        final int expectedModCount = modCount;
967 +        final Object[] es = queue;
968 +        for (int i = 0, n = size; i < n; i++)
969 +            action.accept((E) es[i]);
970 +        if (expectedModCount != modCount)
971 +            throw new ConcurrentModificationException();
972 +    }
973   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines