ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.52 by dl, Tue Nov 22 11:44:47 2005 UTC vs.
Revision 1.60 by jsr166, Mon Dec 5 02:56:59 2005 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * %W% %E%
3   *
4 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
# Line 68 | Line 68 | public class PriorityQueue<E> extends Ab
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 134 | Line 129 | public class PriorityQueue<E> extends Ab
129       */
130      public PriorityQueue(int initialCapacity,
131                           Comparator<? super E> comparator) {
132 +        // Note: This restriction of at least one is not actually needed,
133 +        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
144     * Common code to initialize underlying queue array across
145     * constructors below.
146     */
147    private void initializeArray(Collection<? extends E> c) {
148        int sz = c.size();
149        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150                                            Integer.MAX_VALUE - 1);
151        if (initialCapacity < 1)
152            initialCapacity = 1;
153
154        this.queue = new Object[initialCapacity + 1];
155    }
156
157    /**
158     * Initially fill elements of the queue array under the
159     * knowledge that it is sorted or is another PQ, in which
160     * case we can just place the elements in the order presented.
161     */
162    private void fillFromSorted(Collection<? extends E> c) {
163        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164            int k = ++size;
165            if (k >= queue.length)
166                grow(k);
167            queue[k] = i.next();
168        }
169    }
170
171    /**
172     * Initially fill elements of the queue array that is not to our knowledge
173     * sorted, so we must rearrange the elements to guarantee the heap
174     * invariant.
175     */
176    private void fillFromUnsorted(Collection<? extends E> c) {
177        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178            int k = ++size;
179            if (k >= queue.length)
180                grow(k);
181            queue[k] = i.next();
182        }
183        heapify();
184    }
185
186    /**
141       * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
142 >     * specified collection.   If the specified collection is an
143       * instance of a {@link java.util.SortedSet} or is another
144       * <tt>PriorityQueue</tt>, the priority queue will be ordered
145       * according to the same ordering.  Otherwise, this priority queue
# Line 202 | Line 154 | public class PriorityQueue<E> extends Ab
154       *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        initializeArray(c);
158 <        if (c instanceof SortedSet) {
159 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
160 <            comparator = (Comparator<? super E>)s.comparator();
161 <            fillFromSorted(s);
162 <        } else if (c instanceof PriorityQueue) {
163 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
164 <            comparator = (Comparator<? super E>)s.comparator();
213 <            fillFromSorted(s);
214 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            fillFromUnsorted(c);
166 >            heapify();
167          }
168      }
169  
170      /**
171       * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
172 >     * specified priority queue.  This priority queue will be
173       * ordered according to the same ordering as the given priority
174       * queue.
175       *
# Line 234 | Line 182 | public class PriorityQueue<E> extends Ab
182       *         of its elements are null
183       */
184      public PriorityQueue(PriorityQueue<? extends E> c) {
237        initializeArray(c);
185          comparator = (Comparator<? super E>)c.comparator();
186 <        fillFromSorted(c);
186 >        initFromCollection(c);
187      }
188  
189      /**
190       * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
191 >     * specified sorted set.  This priority queue will be ordered
192       * according to the same ordering as the given sorted set.
193       *
194       * @param  c the sorted set whose elements are to be placed
# Line 255 | Line 200 | public class PriorityQueue<E> extends Ab
200       *         of its elements are null
201       */
202      public PriorityQueue(SortedSet<? extends E> c) {
258        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205      }
206  
207      /**
208 <     * Resize array, if necessary, to be able to hold given index.
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210       */
211 <    private void grow(int index) {
212 <        int newlen = queue.length;
213 <        if (index < newlen) // don't need to grow
214 <            return;
215 <        if (index == Integer.MAX_VALUE)
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218 >    }
219 >
220 >    /**
221 >     * Increases the capacity of the array.
222 >     *
223 >     * @param minCapacity the desired minimum capacity
224 >     */
225 >    private void grow(int minCapacity) {
226 >        if (minCapacity < 0) // overflow
227              throw new OutOfMemoryError();
228 <        while (newlen <= index) {
229 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
230 <                newlen = Integer.MAX_VALUE;
231 <            else
232 <                newlen <<= 2;
233 <        }
234 <        queue = Arrays.copyOf(queue, newlen);
228 >        int oldCapacity = queue.length;
229 >        // Double size if small; else grow by 50%
230 >        int newCapacity = ((oldCapacity < 64)?
231 >                           ((oldCapacity + 1) * 2):
232 >                           ((oldCapacity / 2) * 3));
233 >        if (newCapacity < 0) // overflow
234 >            newCapacity = Integer.MAX_VALUE;
235 >        if (newCapacity < minCapacity)
236 >            newCapacity = minCapacity;
237 >        queue = Arrays.copyOf(queue, newCapacity);
238      }
239  
240      /**
# Line 304 | Line 263 | public class PriorityQueue<E> extends Ab
263          if (e == null)
264              throw new NullPointerException();
265          modCount++;
266 <        ++size;
267 <
268 <        // Grow backing store if necessary
269 <        if (size >= queue.length)
270 <            grow(size);
271 <
272 <        queue[size] = e;
273 <        fixUp(size);
266 >        int i = size;
267 >        if (i >= queue.length)
268 >            grow(i + 1);
269 >        size = i + 1;
270 >        if (i == 0)
271 >            queue[0] = e;
272 >        else
273 >            siftUp(i, e);
274          return true;
275      }
276  
277      public E peek() {
278          if (size == 0)
279              return null;
280 <        return (E) queue[1];
280 >        return (E) queue[0];
281      }
282  
283      private int indexOf(Object o) {
284 <        if (o == null)
285 <            return -1;
286 <        for (int i = 1; i <= size; i++)
287 <            if (o.equals(queue[i]))
288 <                return i;
284 >        if (o != null) {
285 >            for (int i = 0; i < size; i++)
286 >                if (o.equals(queue[i]))
287 >                    return i;
288 >        }
289          return -1;
290      }
291  
# Line 351 | Line 310 | public class PriorityQueue<E> extends Ab
310      }
311  
312      /**
313 +     * Version of remove using reference equality, not equals.
314 +     * Needed by iterator.remove.
315 +     *
316 +     * @param o element to be removed from this queue, if present
317 +     * @return <tt>true</tt> if removed
318 +     */
319 +    boolean removeEq(Object o) {
320 +        for (int i = 0; i < size; i++) {
321 +            if (o == queue[i]) {
322 +                removeAt(i);
323 +                return true;
324 +            }
325 +        }
326 +        return false;
327 +    }
328 +
329 +    /**
330       * Returns <tt>true</tt> if this queue contains the specified element.
331       * More formally, returns <tt>true</tt> if and only if this queue contains
332       * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
# Line 370 | Line 346 | public class PriorityQueue<E> extends Ab
346       * maintained by this list.  (In other words, this method must allocate
347       * a new array).  The caller is thus free to modify the returned array.
348       *
349 <     * @return an array containing all of the elements in this queue.
349 >     * @return an array containing all of the elements in this queue
350       */
351      public Object[] toArray() {
352 <        return Arrays.copyOfRange(queue, 1, size+1);
352 >        return Arrays.copyOf(queue, size);
353      }
354  
355      /**
# Line 403 | Line 379 | public class PriorityQueue<E> extends Ab
379      public <T> T[] toArray(T[] a) {
380          if (a.length < size)
381              // Make a new array of a's runtime type, but my contents:
382 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
383 <        System.arraycopy(queue, 1, a, 0, size);
382 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
383 >        System.arraycopy(queue, 0, a, 0, size);
384          if (a.length > size)
385              a[size] = null;
386          return a;
# Line 420 | Line 396 | public class PriorityQueue<E> extends Ab
396          return new Itr();
397      }
398  
399 <    private class Itr implements Iterator<E> {
424 <
399 >    private final class Itr implements Iterator<E> {
400          /**
401           * Index (into queue array) of element to be returned by
402           * subsequent call to next.
403           */
404 <        private int cursor = 1;
404 >        private int cursor = 0;
405  
406          /**
407           * Index of element returned by most recent call to next,
408           * unless that element came from the forgetMeNot list.
409 <         * Reset to 0 if element is deleted by a call to remove.
435 <         */
436 <        private int lastRet = 0;
437 <
438 <        /**
439 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
409 >         * Set to -1 if element is deleted by a call to remove.
410           */
411 <        private int expectedModCount = modCount;
411 >        private int lastRet = -1;
412  
413          /**
414 <         * A list of elements that were moved from the unvisited portion of
414 >         * A queue of elements that were moved from the unvisited portion of
415           * the heap into the visited portion as a result of "unlucky" element
416           * removals during the iteration.  (Unlucky element removals are those
417 <         * that require a fixup instead of a fixdown.)  We must visit all of
417 >         * that require a siftup instead of a siftdown.)  We must visit all of
418           * the elements in this list to complete the iteration.  We do this
419           * after we've completed the "normal" iteration.
420           *
421           * We expect that most iterations, even those involving removals,
422           * will not use need to store elements in this field.
423           */
424 <        private ArrayList<E> forgetMeNot = null;
424 >        private ArrayDeque<E> forgetMeNot = null;
425  
426          /**
427           * Element returned by the most recent call to next iff that
428           * element was drawn from the forgetMeNot list.
429           */
430 <        private Object lastRetElt = null;
430 >        private E lastRetElt = null;
431 >
432 >        /**
433 >         * The modCount value that the iterator believes that the backing
434 >         * List should have.  If this expectation is violated, the iterator
435 >         * has detected concurrent modification.
436 >         */
437 >        private int expectedModCount = modCount;
438  
439          public boolean hasNext() {
440 <            return cursor <= size || forgetMeNot != null;
440 >            return cursor < size ||
441 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
442          }
443  
444          public E next() {
445 <            checkForComodification();
446 <            E result;
447 <            if (cursor <= size) {
448 <                result = (E) queue[cursor];
449 <                lastRet = cursor++;
450 <            }
451 <            else if (forgetMeNot == null)
452 <                throw new NoSuchElementException();
453 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
445 >            if (expectedModCount != modCount)
446 >                throw new ConcurrentModificationException();
447 >            if (cursor < size)
448 >                return (E) queue[lastRet = cursor++];
449 >            if (forgetMeNot != null) {
450 >                lastRet = -1;
451 >                lastRetElt = forgetMeNot.poll();
452 >                if (lastRetElt != null)
453 >                    return lastRetElt;
454              }
455 <            return result;
455 >            throw new NoSuchElementException();
456          }
457  
458          public void remove() {
459 <            checkForComodification();
460 <
461 <            if (lastRet != 0) {
459 >            if (expectedModCount != modCount)
460 >                throw new ConcurrentModificationException();
461 >            if (lastRet == -1 && lastRetElt == null)
462 >                throw new IllegalStateException();
463 >            if (lastRet != -1) {
464                  E moved = PriorityQueue.this.removeAt(lastRet);
465 <                lastRet = 0;
466 <                if (moved == null) {
465 >                lastRet = -1;
466 >                if (moved == null)
467                      cursor--;
468 <                } else {
468 >                else {
469                      if (forgetMeNot == null)
470 <                        forgetMeNot = new ArrayList<E>();
470 >                        forgetMeNot = new ArrayDeque<E>();
471                      forgetMeNot.add(moved);
472                  }
501            } else if (lastRetElt != null) {
502                PriorityQueue.this.remove(lastRetElt);
503                lastRetElt = null;
473              } else {
474 <                throw new IllegalStateException();
474 >                PriorityQueue.this.removeEq(lastRetElt);
475 >                lastRetElt = null;
476              }
507
477              expectedModCount = modCount;
478          }
479  
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
480      }
481  
482      public int size() {
# Line 524 | Line 489 | public class PriorityQueue<E> extends Ab
489       */
490      public void clear() {
491          modCount++;
492 <
528 <        // Null out element references to prevent memory leak
529 <        for (int i=1; i<=size; i++)
492 >        for (int i = 0; i < size; i++)
493              queue[i] = null;
531
494          size = 0;
495      }
496  
497      public E poll() {
498          if (size == 0)
499              return null;
500 +        int s = --size;
501          modCount++;
502 <
503 <        E result = (E) queue[1];
504 <        queue[1] = queue[size];
505 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
506 <        if (size > 1)
544 <            fixDown(1);
545 <
502 >        E result = (E)queue[0];
503 >        E x = (E)queue[s];
504 >        queue[s] = null;
505 >        if (s != 0)
506 >            siftDown(0, x);
507          return result;
508      }
509  
510      /**
511 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
511 >     * Removes the ith element from queue.
512       *
513 <     * Normally this method leaves the elements at positions from 1 up to i-1,
514 <     * inclusive, untouched.  Under these circumstances, it returns null.
515 <     * Occasionally, in order to maintain the heap invariant, it must move
516 <     * the last element of the list to some index in the range [2, i-1],
517 <     * and move the element previously at position (i/2) to position i.
518 <     * Under these circumstances, this method returns the element that was
519 <     * previously at the end of the list and is now at some position between
520 <     * 2 and i-1 inclusive.
513 >     * Normally this method leaves the elements at up to i-1,
514 >     * inclusive, untouched.  Under these circumstances, it returns
515 >     * null.  Occasionally, in order to maintain the heap invariant,
516 >     * it must swap a later element of the list with one earlier than
517 >     * i.  Under these circumstances, this method returns the element
518 >     * that was previously at the end of the list and is now at some
519 >     * position before i. This fact is used by iterator.remove so as to
520 >     * avoid missing traverseing elements.
521       */
522      private E removeAt(int i) {
523 <        assert i > 0 && i <= size;
523 >        assert i >= 0 && i < size;
524          modCount++;
525 <
526 <        E moved = (E) queue[size];
527 <        queue[i] = moved;
528 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
529 <        if (i <= size) {
530 <            fixDown(i);
525 >        int s = --size;
526 >        if (s == i) // removed last element
527 >            queue[i] = null;
528 >        else {
529 >            E moved = (E) queue[s];
530 >            queue[s] = null;
531 >            siftDown(i, moved);
532              if (queue[i] == moved) {
533 <                fixUp(i);
533 >                siftUp(i, moved);
534                  if (queue[i] != moved)
535                      return moved;
536              }
# Line 578 | Line 539 | public class PriorityQueue<E> extends Ab
539      }
540  
541      /**
542 <     * Establishes the heap invariant (described above) assuming the heap
543 <     * satisfies the invariant except possibly for the leaf-node indexed by k
544 <     * (which may have a nextExecutionTime less than its parent's).
545 <     *
546 <     * This method functions by "promoting" queue[k] up the hierarchy
547 <     * (by swapping it with its parent) repeatedly until queue[k]
548 <     * is greater than or equal to its parent.
549 <     */
550 <    private void fixUp(int k) {
551 <        if (comparator == null) {
552 <            while (k > 1) {
553 <                int j = k >> 1;
554 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
555 <                    break;
556 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
557 <                k = j;
558 <            }
559 <        } else {
560 <            while (k > 1) {
561 <                int j = k >>> 1;
562 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
563 <                    break;
564 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
565 <                k = j;
566 <            }
567 <        }
568 <    }
569 <
570 <    /**
571 <     * Establishes the heap invariant (described above) in the subtree
572 <     * rooted at k, which is assumed to satisfy the heap invariant except
573 <     * possibly for node k itself (which may be greater than its children).
574 <     *
575 <     * This method functions by "demoting" queue[k] down the hierarchy
576 <     * (by swapping it with its smaller child) repeatedly until queue[k]
577 <     * is less than or equal to its children.
578 <     */
579 <    private void fixDown(int k) {
580 <        int j;
581 <        if (comparator == null) {
582 <            while ((j = k << 1) <= size && (j > 0)) {
583 <                if (j<size &&
584 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
585 <                    j++; // j indexes smallest kid
586 <
587 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
588 <                    break;
589 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
590 <                k = j;
591 <            }
592 <        } else {
593 <            while ((j = k << 1) <= size && (j > 0)) {
594 <                if (j<size &&
595 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
596 <                    j++; // j indexes smallest kid
597 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
598 <                    break;
599 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
600 <                k = j;
601 <            }
542 >     * Inserts item x at position k, maintaining heap invariant by
543 >     * promoting x up the tree until it is greater than or equal to
544 >     * its parent, or is the root.
545 >     *
546 >     * To simplify and speed up coercions and comparisons. the
547 >     * Comparable and Comparator versions are separated into different
548 >     * methods that are otherwise identical. (Similarly for siftDown.)
549 >     *
550 >     * @param k the position to fill
551 >     * @param x the item to insert
552 >     */
553 >    private void siftUp(int k, E x) {
554 >        if (comparator != null)
555 >            siftUpUsingComparator(k, x);
556 >        else
557 >            siftUpComparable(k, x);
558 >    }
559 >
560 >    private void siftUpComparable(int k, E x) {
561 >        Comparable<? super E> key = (Comparable<? super E>) x;
562 >        while (k > 0) {
563 >            int parent = (k - 1) >>> 1;
564 >            Object e = queue[parent];
565 >            if (key.compareTo((E)e) >= 0)
566 >                break;
567 >            queue[k] = e;
568 >            k = parent;
569 >        }
570 >        queue[k] = key;
571 >    }
572 >
573 >    private void siftUpUsingComparator(int k, E x) {
574 >        while (k > 0) {
575 >            int parent = (k - 1) >>> 1;
576 >            Object e = queue[parent];
577 >            if (comparator.compare(x, (E)e) >= 0)
578 >                break;
579 >            queue[k] = e;
580 >            k = parent;
581 >        }
582 >        queue[k] = x;
583 >    }
584 >
585 >    /**
586 >     * Inserts item x at position k, maintaining heap invariant by
587 >     * demoting x down the tree repeatedly until it is less than or
588 >     * equal to its children or is a leaf.
589 >     *
590 >     * @param k the position to fill
591 >     * @param x the item to insert
592 >     */
593 >    private void siftDown(int k, E x) {
594 >        if (comparator != null)
595 >            siftDownUsingComparator(k, x);
596 >        else
597 >            siftDownComparable(k, x);
598 >    }
599 >
600 >    private void siftDownComparable(int k, E x) {
601 >        Comparable<? super E> key = (Comparable<? super E>)x;
602 >        int half = size >>> 1;        // loop while a non-leaf
603 >        while (k < half) {
604 >            int child = (k << 1) + 1; // assume left child is least
605 >            Object c = queue[child];
606 >            int right = child + 1;
607 >            if (right < size &&
608 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
609 >                c = queue[child = right];
610 >            if (key.compareTo((E)c) <= 0)
611 >                break;
612 >            queue[k] = c;
613 >            k = child;
614 >        }
615 >        queue[k] = key;
616 >    }
617 >
618 >    private void siftDownUsingComparator(int k, E x) {
619 >        int half = size >>> 1;
620 >        while (k < half) {
621 >            int child = (k << 1) + 1;
622 >            Object c = queue[child];
623 >            int right = child + 1;
624 >            if (right < size &&
625 >                comparator.compare((E)c, (E)queue[right]) > 0)
626 >                c = queue[child = right];
627 >            if (comparator.compare(x, (E)c) <= 0)
628 >                break;
629 >            queue[k] = c;
630 >            k = child;
631          }
632 +        queue[k] = x;
633      }
634  
635      /**
# Line 646 | Line 637 | public class PriorityQueue<E> extends Ab
637       * assuming nothing about the order of the elements prior to the call.
638       */
639      private void heapify() {
640 <        for (int i = size/2; i >= 1; i--)
641 <            fixDown(i);
640 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
641 >            siftDown(i, (E)queue[i]);
642      }
643  
644      /**
# Line 678 | Line 669 | public class PriorityQueue<E> extends Ab
669          s.defaultWriteObject();
670  
671          // Write out array length
672 <        s.writeInt(queue.length);
672 >        // For compatibility with 1.5 version, must be at least 2.
673 >        s.writeInt(Math.max(2, queue.length));
674  
675          // Write out all elements in the proper order.
676 <        for (int i=1; i<=size; i++)
676 >        for (int i=0; i<size; i++)
677              s.writeObject(queue[i]);
678      }
679  
# Line 700 | Line 692 | public class PriorityQueue<E> extends Ab
692          queue = new Object[arrayLength];
693  
694          // Read in all elements in the proper order.
695 <        for (int i=1; i<=size; i++)
695 >        for (int i=0; i<size; i++)
696              queue[i] = (E) s.readObject();
697      }
698  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines