ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.53 by jsr166, Wed Nov 23 05:33:25 2005 UTC vs.
Revision 1.102 by jsr166, Wed Dec 31 07:54:13 2014 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.stream.Stream;
30  
31   /**
32 < * An unbounded priority {@linkplain Queue queue} based on a priority
33 < * heap.  The elements of the priority queue are ordered according to
34 < * their {@linkplain Comparable natural ordering}, or by a {@link
35 < * Comparator} provided at queue construction time, depending on which
36 < * constructor is used.  A priority queue does not permit
37 < * <tt>null</tt> elements.  A priority queue relying on natural
38 < * ordering also does not permit insertion of non-comparable objects
39 < * (doing so may result in <tt>ClassCastException</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40   *
41   * <p>The <em>head</em> of this queue is the <em>least</em> element
42   * with respect to the specified ordering.  If multiple elements are
43   * tied for least value, the head is one of those elements -- ties are
44 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
45 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46   * element at the head of the queue.
47   *
48   * <p>A priority queue is unbounded, but has an internal
# Line 37 | Line 57 | import java.util.*; // for javadoc (till
57   * Iterator} interfaces.  The Iterator provided in method {@link
58   * #iterator()} is <em>not</em> guaranteed to traverse the elements of
59   * the priority queue in any particular order. If you need ordered
60 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
60 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61   *
62 < * <p> <strong>Note that this implementation is not synchronized.</strong>
63 < * Multiple threads should not access a <tt>PriorityQueue</tt>
64 < * instance concurrently if any of the threads modifies the list
65 < * structurally. Instead, use the thread-safe {@link
62 > * <p><strong>Note that this implementation is not synchronized.</strong>
63 > * Multiple threads should not access a {@code PriorityQueue}
64 > * instance concurrently if any of the threads modifies the queue.
65 > * Instead, use the thread-safe {@link
66   * java.util.concurrent.PriorityBlockingQueue} class.
67   *
68 < * <p>Implementation note: this implementation provides O(log(n)) time
69 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
70 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
71 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
72 < * constant time for the retrieval methods (<tt>peek</tt>,
73 < * <tt>element</tt>, and <tt>size</tt>).
68 > * <p>Implementation note: this implementation provides
69 > * O(log(n)) time for the enqueuing and dequeuing methods
70 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 > * methods; and constant time for the retrieval methods
73 > * ({@code peek}, {@code element}, and {@code size}).
74   *
75   * <p>This class is a member of the
76 < * <a href="{@docRoot}/../guide/collections/index.html">
76 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77   * Java Collections Framework</a>.
78 + *
79   * @since 1.5
80 < * @version 1.8, 08/27/05
81 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
80 > * @author Josh Bloch, Doug Lea
81 > * @param <E> the type of elements held in this queue
82   */
83   public class PriorityQueue<E> extends AbstractQueue<E>
84      implements java.io.Serializable {
# Line 68 | Line 88 | public class PriorityQueue<E> extends Ab
88      private static final int DEFAULT_INITIAL_CAPACITY = 11;
89  
90      /**
91 <     * Priority queue represented as a balanced binary heap: the two children
92 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
93 <     * ordered by comparator, or by the elements' natural ordering, if
94 <     * comparator is null:  For each node n in the heap and each descendant d
95 <     * of n, n <= d.
96 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
91 >     * Priority queue represented as a balanced binary heap: the two
92 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
93 >     * priority queue is ordered by comparator, or by the elements'
94 >     * natural ordering, if comparator is null: For each node n in the
95 >     * heap and each descendant d of n, n <= d.  The element with the
96 >     * lowest value is in queue[0], assuming the queue is nonempty.
97       */
98 <    private transient Object[] queue;
98 >    transient Object[] queue; // non-private to simplify nested class access
99  
100      /**
101       * The number of elements in the priority queue.
102       */
103 <    private int size = 0;
103 >    private int size;
104  
105      /**
106       * The comparator, or null if priority queue uses elements'
# Line 97 | Line 112 | public class PriorityQueue<E> extends Ab
112       * The number of times this priority queue has been
113       * <i>structurally modified</i>.  See AbstractList for gory details.
114       */
115 <    private transient int modCount = 0;
115 >    transient int modCount = 0; // non-private to simplify nested class access
116  
117      /**
118 <     * Creates a <tt>PriorityQueue</tt> with the default initial
118 >     * Creates a {@code PriorityQueue} with the default initial
119       * capacity (11) that orders its elements according to their
120       * {@linkplain Comparable natural ordering}.
121       */
# Line 109 | Line 124 | public class PriorityQueue<E> extends Ab
124      }
125  
126      /**
127 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
127 >     * Creates a {@code PriorityQueue} with the specified initial
128       * capacity that orders its elements according to their
129       * {@linkplain Comparable natural ordering}.
130       *
131       * @param initialCapacity the initial capacity for this priority queue
132 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
133 <     * than 1
132 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
133 >     *         than 1
134       */
135      public PriorityQueue(int initialCapacity) {
136          this(initialCapacity, null);
137      }
138  
139      /**
140 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
140 >     * Creates a {@code PriorityQueue} with the specified initial capacity
141       * that orders its elements according to the specified comparator.
142       *
143       * @param  initialCapacity the initial capacity for this priority queue
144 <     * @param  comparator the comparator that will be used to order
145 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
146 <     *         ordering</i> of the elements will be used.
147 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
144 >     * @param  comparator the comparator that will be used to order this
145 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
146 >     *         natural ordering} of the elements will be used.
147 >     * @throws IllegalArgumentException if {@code initialCapacity} is
148       *         less than 1
149       */
150      public PriorityQueue(int initialCapacity,
151                           Comparator<? super E> comparator) {
152 +        // Note: This restriction of at least one is not actually needed,
153 +        // but continues for 1.5 compatibility
154          if (initialCapacity < 1)
155              throw new IllegalArgumentException();
156 <        this.queue = new Object[initialCapacity + 1];
156 >        this.queue = new Object[initialCapacity];
157          this.comparator = comparator;
158      }
159  
160      /**
161 <     * Common code to initialize underlying queue array across
162 <     * constructors below.
163 <     */
164 <    private void initializeArray(Collection<? extends E> c) {
165 <        int sz = c.size();
166 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
186 <    /**
187 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
191 <     * instance of a {@link java.util.SortedSet} or is another
192 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 <     * according to the same ordering.  Otherwise, this priority queue
194 <     * will be ordered according to the natural ordering of its elements.
161 >     * Creates a {@code PriorityQueue} containing the elements in the
162 >     * specified collection.  If the specified collection is an instance of
163 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
164 >     * priority queue will be ordered according to the same ordering.
165 >     * Otherwise, this priority queue will be ordered according to the
166 >     * {@linkplain Comparable natural ordering} of its elements.
167       *
168       * @param  c the collection whose elements are to be placed
169       *         into this priority queue
# Line 201 | Line 173 | public class PriorityQueue<E> extends Ab
173       * @throws NullPointerException if the specified collection or any
174       *         of its elements are null
175       */
176 +    @SuppressWarnings("unchecked")
177      public PriorityQueue(Collection<? extends E> c) {
178 <        initializeArray(c);
179 <        if (c instanceof SortedSet) {
180 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
181 <            comparator = (Comparator<? super E>)s.comparator();
182 <            fillFromSorted(s);
183 <        } else if (c instanceof PriorityQueue) {
184 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
185 <            comparator = (Comparator<? super E>)s.comparator();
186 <            fillFromSorted(s);
187 <        } else {
188 <            comparator = null;
189 <            fillFromUnsorted(c);
178 >        if (c instanceof SortedSet<?>) {
179 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
180 >            this.comparator = (Comparator<? super E>) ss.comparator();
181 >            initElementsFromCollection(ss);
182 >        }
183 >        else if (c instanceof PriorityQueue<?>) {
184 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
185 >            this.comparator = (Comparator<? super E>) pq.comparator();
186 >            initFromPriorityQueue(pq);
187 >        }
188 >        else {
189 >            this.comparator = null;
190 >            initFromCollection(c);
191          }
192      }
193  
194      /**
195 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
196 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
195 >     * Creates a {@code PriorityQueue} containing the elements in the
196 >     * specified priority queue.  This priority queue will be
197       * ordered according to the same ordering as the given priority
198       * queue.
199       *
200       * @param  c the priority queue whose elements are to be placed
201       *         into this priority queue
202 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
203 <     *         compared to one another according to <tt>c</tt>'s
202 >     * @throws ClassCastException if elements of {@code c} cannot be
203 >     *         compared to one another according to {@code c}'s
204       *         ordering
205       * @throws NullPointerException if the specified priority queue or any
206       *         of its elements are null
207       */
208 +    @SuppressWarnings("unchecked")
209      public PriorityQueue(PriorityQueue<? extends E> c) {
210 <        initializeArray(c);
211 <        comparator = (Comparator<? super E>)c.comparator();
239 <        fillFromSorted(c);
210 >        this.comparator = (Comparator<? super E>) c.comparator();
211 >        initFromPriorityQueue(c);
212      }
213  
214      /**
215 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
216 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
215 >     * Creates a {@code PriorityQueue} containing the elements in the
216 >     * specified sorted set.   This priority queue will be ordered
217       * according to the same ordering as the given sorted set.
218       *
219       * @param  c the sorted set whose elements are to be placed
220 <     *         into this priority queue.
220 >     *         into this priority queue
221       * @throws ClassCastException if elements of the specified sorted
222       *         set cannot be compared to one another according to the
223       *         sorted set's ordering
224       * @throws NullPointerException if the specified sorted set or any
225       *         of its elements are null
226       */
227 +    @SuppressWarnings("unchecked")
228      public PriorityQueue(SortedSet<? extends E> c) {
229 <        initializeArray(c);
230 <        comparator = (Comparator<? super E>)c.comparator();
231 <        fillFromSorted(c);
229 >        this.comparator = (Comparator<? super E>) c.comparator();
230 >        initElementsFromCollection(c);
231 >    }
232 >
233 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
234 >        if (c.getClass() == PriorityQueue.class) {
235 >            this.queue = c.toArray();
236 >            this.size = c.size();
237 >        } else {
238 >            initFromCollection(c);
239 >        }
240 >    }
241 >
242 >    private void initElementsFromCollection(Collection<? extends E> c) {
243 >        Object[] a = c.toArray();
244 >        // If c.toArray incorrectly doesn't return Object[], copy it.
245 >        if (a.getClass() != Object[].class)
246 >            a = Arrays.copyOf(a, a.length, Object[].class);
247 >        int len = a.length;
248 >        if (len == 1 || this.comparator != null)
249 >            for (int i = 0; i < len; i++)
250 >                if (a[i] == null)
251 >                    throw new NullPointerException();
252 >        this.queue = a;
253 >        this.size = a.length;
254 >    }
255 >
256 >    /**
257 >     * Initializes queue array with elements from the given Collection.
258 >     *
259 >     * @param c the collection
260 >     */
261 >    private void initFromCollection(Collection<? extends E> c) {
262 >        initElementsFromCollection(c);
263 >        heapify();
264      }
265  
266      /**
267 <     * Resize array, if necessary, to be able to hold given index.
267 >     * The maximum size of array to allocate.
268 >     * Some VMs reserve some header words in an array.
269 >     * Attempts to allocate larger arrays may result in
270 >     * OutOfMemoryError: Requested array size exceeds VM limit
271 >     */
272 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
273 >
274 >    /**
275 >     * Increases the capacity of the array.
276 >     *
277 >     * @param minCapacity the desired minimum capacity
278       */
279 <    private void grow(int index) {
280 <        int newlen = queue.length;
281 <        if (index < newlen) // don't need to grow
282 <            return;
283 <        if (index == Integer.MAX_VALUE)
279 >    private void grow(int minCapacity) {
280 >        int oldCapacity = queue.length;
281 >        // Double size if small; else grow by 50%
282 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
283 >                                         (oldCapacity + 2) :
284 >                                         (oldCapacity >> 1));
285 >        // overflow-conscious code
286 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
287 >            newCapacity = hugeCapacity(minCapacity);
288 >        queue = Arrays.copyOf(queue, newCapacity);
289 >    }
290 >
291 >    private static int hugeCapacity(int minCapacity) {
292 >        if (minCapacity < 0) // overflow
293              throw new OutOfMemoryError();
294 <        while (newlen <= index) {
295 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
296 <                newlen = Integer.MAX_VALUE;
275 <            else
276 <                newlen <<= 2;
277 <        }
278 <        queue = Arrays.copyOf(queue, newlen);
294 >        return (minCapacity > MAX_ARRAY_SIZE) ?
295 >            Integer.MAX_VALUE :
296 >            MAX_ARRAY_SIZE;
297      }
298  
299      /**
300       * Inserts the specified element into this priority queue.
301       *
302 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
302 >     * @return {@code true} (as specified by {@link Collection#add})
303       * @throws ClassCastException if the specified element cannot be
304       *         compared with elements currently in this priority queue
305       *         according to the priority queue's ordering
# Line 294 | Line 312 | public class PriorityQueue<E> extends Ab
312      /**
313       * Inserts the specified element into this priority queue.
314       *
315 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
315 >     * @return {@code true} (as specified by {@link Queue#offer})
316       * @throws ClassCastException if the specified element cannot be
317       *         compared with elements currently in this priority queue
318       *         according to the priority queue's ordering
# Line 304 | Line 322 | public class PriorityQueue<E> extends Ab
322          if (e == null)
323              throw new NullPointerException();
324          modCount++;
325 <        ++size;
326 <
327 <        // Grow backing store if necessary
328 <        if (size >= queue.length)
329 <            grow(size);
330 <
331 <        queue[size] = e;
332 <        fixUp(size);
325 >        int i = size;
326 >        if (i >= queue.length)
327 >            grow(i + 1);
328 >        size = i + 1;
329 >        if (i == 0)
330 >            queue[0] = e;
331 >        else
332 >            siftUp(i, e);
333          return true;
334      }
335  
336 +    @SuppressWarnings("unchecked")
337      public E peek() {
338 <        if (size == 0)
320 <            return null;
321 <        return (E) queue[1];
338 >        return (size == 0) ? null : (E) queue[0];
339      }
340  
341      private int indexOf(Object o) {
342 <        if (o == null)
343 <            return -1;
344 <        for (int i = 1; i <= size; i++)
345 <            if (o.equals(queue[i]))
346 <                return i;
342 >        if (o != null) {
343 >            for (int i = 0; i < size; i++)
344 >                if (o.equals(queue[i]))
345 >                    return i;
346 >        }
347          return -1;
348      }
349  
350      /**
351       * Removes a single instance of the specified element from this queue,
352 <     * if it is present.  More formally, removes an element <tt>e</tt> such
353 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
354 <     * elements.  Returns true if this queue contained the specified element
355 <     * (or equivalently, if this queue changed as a result of the call).
352 >     * if it is present.  More formally, removes an element {@code e} such
353 >     * that {@code o.equals(e)}, if this queue contains one or more such
354 >     * elements.  Returns {@code true} if and only if this queue contained
355 >     * the specified element (or equivalently, if this queue changed as a
356 >     * result of the call).
357       *
358       * @param o element to be removed from this queue, if present
359 <     * @return <tt>true</tt> if this queue changed as a result of the call
359 >     * @return {@code true} if this queue changed as a result of the call
360       */
361      public boolean remove(Object o) {
362 <        int i = indexOf(o);
363 <        if (i == -1)
364 <            return false;
365 <        else {
366 <            removeAt(i);
367 <            return true;
368 <        }
362 >        int i = indexOf(o);
363 >        if (i == -1)
364 >            return false;
365 >        else {
366 >            removeAt(i);
367 >            return true;
368 >        }
369 >    }
370 >
371 >    /**
372 >     * Version of remove using reference equality, not equals.
373 >     * Needed by iterator.remove.
374 >     *
375 >     * @param o element to be removed from this queue, if present
376 >     * @return {@code true} if removed
377 >     */
378 >    boolean removeEq(Object o) {
379 >        for (int i = 0; i < size; i++) {
380 >            if (o == queue[i]) {
381 >                removeAt(i);
382 >                return true;
383 >            }
384 >        }
385 >        return false;
386      }
387  
388      /**
389 <     * Returns <tt>true</tt> if this queue contains the specified element.
390 <     * More formally, returns <tt>true</tt> if and only if this queue contains
391 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
389 >     * Returns {@code true} if this queue contains the specified element.
390 >     * More formally, returns {@code true} if and only if this queue contains
391 >     * at least one element {@code e} such that {@code o.equals(e)}.
392       *
393       * @param o object to be checked for containment in this queue
394 <     * @return <tt>true</tt> if this queue contains the specified element
394 >     * @return {@code true} if this queue contains the specified element
395       */
396      public boolean contains(Object o) {
397 <        return indexOf(o) != -1;
397 >        return indexOf(o) >= 0;
398      }
399  
400      /**
401 <     * Returns an array containing all of the elements in this queue,
401 >     * Returns an array containing all of the elements in this queue.
402       * The elements are in no particular order.
403       *
404       * <p>The returned array will be "safe" in that no references to it are
405 <     * maintained by this list.  (In other words, this method must allocate
405 >     * maintained by this queue.  (In other words, this method must allocate
406       * a new array).  The caller is thus free to modify the returned array.
407       *
408 <     * @return an array containing all of the elements in this queue.
408 >     * <p>This method acts as bridge between array-based and collection-based
409 >     * APIs.
410 >     *
411 >     * @return an array containing all of the elements in this queue
412       */
413      public Object[] toArray() {
414 <        return Arrays.copyOfRange(queue, 1, size+1);
414 >        return Arrays.copyOf(queue, size);
415      }
416  
417      /**
418 <     * Returns an array containing all of the elements in this queue.
419 <     * The elements are in no particular order.  The runtime type of
420 <     * the returned array is that of the specified array.  If the queue
421 <     * fits in the specified array, it is returned therein.
422 <     * Otherwise, a new array is allocated with the runtime type of
423 <     * the specified array and the size of this queue.
418 >     * Returns an array containing all of the elements in this queue; the
419 >     * runtime type of the returned array is that of the specified array.
420 >     * The returned array elements are in no particular order.
421 >     * If the queue fits in the specified array, it is returned therein.
422 >     * Otherwise, a new array is allocated with the runtime type of the
423 >     * specified array and the size of this queue.
424       *
425       * <p>If the queue fits in the specified array with room to spare
426       * (i.e., the array has more elements than the queue), the element in
427       * the array immediately following the end of the collection is set to
428 <     * <tt>null</tt>.  (This is useful in determining the length of the
429 <     * queue <i>only</i> if the caller knows that the queue does not contain
430 <     * any null elements.)
428 >     * {@code null}.
429 >     *
430 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
431 >     * array-based and collection-based APIs.  Further, this method allows
432 >     * precise control over the runtime type of the output array, and may,
433 >     * under certain circumstances, be used to save allocation costs.
434 >     *
435 >     * <p>Suppose {@code x} is a queue known to contain only strings.
436 >     * The following code can be used to dump the queue into a newly
437 >     * allocated array of {@code String}:
438 >     *
439 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
440 >     *
441 >     * Note that {@code toArray(new Object[0])} is identical in function to
442 >     * {@code toArray()}.
443       *
444       * @param a the array into which the elements of the queue are to
445       *          be stored, if it is big enough; otherwise, a new array of the
446       *          same runtime type is allocated for this purpose.
447 <     * @return an array containing the elements of the queue
447 >     * @return an array containing all of the elements in this queue
448       * @throws ArrayStoreException if the runtime type of the specified array
449       *         is not a supertype of the runtime type of every element in
450       *         this queue
451       * @throws NullPointerException if the specified array is null
452       */
453 +    @SuppressWarnings("unchecked")
454      public <T> T[] toArray(T[] a) {
455 +        final int size = this.size;
456          if (a.length < size)
457              // Make a new array of a's runtime type, but my contents:
458 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
459 <        System.arraycopy(queue, 1, a, 0, size);
458 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
459 >        System.arraycopy(queue, 0, a, 0, size);
460          if (a.length > size)
461              a[size] = null;
462          return a;
# Line 420 | Line 472 | public class PriorityQueue<E> extends Ab
472          return new Itr();
473      }
474  
475 <    private class Itr implements Iterator<E> {
424 <
475 >    private final class Itr implements Iterator<E> {
476          /**
477           * Index (into queue array) of element to be returned by
478           * subsequent call to next.
479           */
480 <        private int cursor = 1;
480 >        private int cursor;
481  
482          /**
483           * Index of element returned by most recent call to next,
484           * unless that element came from the forgetMeNot list.
485 <         * Reset to 0 if element is deleted by a call to remove.
435 <         */
436 <        private int lastRet = 0;
437 <
438 <        /**
439 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
485 >         * Set to -1 if element is deleted by a call to remove.
486           */
487 <        private int expectedModCount = modCount;
487 >        private int lastRet = -1;
488  
489          /**
490 <         * A list of elements that were moved from the unvisited portion of
490 >         * A queue of elements that were moved from the unvisited portion of
491           * the heap into the visited portion as a result of "unlucky" element
492           * removals during the iteration.  (Unlucky element removals are those
493 <         * that require a fixup instead of a fixdown.)  We must visit all of
493 >         * that require a siftup instead of a siftdown.)  We must visit all of
494           * the elements in this list to complete the iteration.  We do this
495           * after we've completed the "normal" iteration.
496           *
497           * We expect that most iterations, even those involving removals,
498 <         * will not use need to store elements in this field.
498 >         * will not need to store elements in this field.
499           */
500 <        private ArrayList<E> forgetMeNot = null;
500 >        private ArrayDeque<E> forgetMeNot;
501  
502          /**
503           * Element returned by the most recent call to next iff that
504           * element was drawn from the forgetMeNot list.
505           */
506 <        private Object lastRetElt = null;
506 >        private E lastRetElt;
507 >
508 >        /**
509 >         * The modCount value that the iterator believes that the backing
510 >         * Queue should have.  If this expectation is violated, the iterator
511 >         * has detected concurrent modification.
512 >         */
513 >        private int expectedModCount = modCount;
514  
515          public boolean hasNext() {
516 <            return cursor <= size || forgetMeNot != null;
516 >            return cursor < size ||
517 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
518          }
519  
520 +        @SuppressWarnings("unchecked")
521          public E next() {
522 <            checkForComodification();
523 <            E result;
524 <            if (cursor <= size) {
525 <                result = (E) queue[cursor];
526 <                lastRet = cursor++;
527 <            }
528 <            else if (forgetMeNot == null)
529 <                throw new NoSuchElementException();
530 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
522 >            if (expectedModCount != modCount)
523 >                throw new ConcurrentModificationException();
524 >            if (cursor < size)
525 >                return (E) queue[lastRet = cursor++];
526 >            if (forgetMeNot != null) {
527 >                lastRet = -1;
528 >                lastRetElt = forgetMeNot.poll();
529 >                if (lastRetElt != null)
530 >                    return lastRetElt;
531              }
532 <            return result;
532 >            throw new NoSuchElementException();
533          }
534  
535          public void remove() {
536 <            checkForComodification();
537 <
538 <            if (lastRet != 0) {
536 >            if (expectedModCount != modCount)
537 >                throw new ConcurrentModificationException();
538 >            if (lastRet != -1) {
539                  E moved = PriorityQueue.this.removeAt(lastRet);
540 <                lastRet = 0;
541 <                if (moved == null) {
540 >                lastRet = -1;
541 >                if (moved == null)
542                      cursor--;
543 <                } else {
543 >                else {
544                      if (forgetMeNot == null)
545 <                        forgetMeNot = new ArrayList<E>();
545 >                        forgetMeNot = new ArrayDeque<>();
546                      forgetMeNot.add(moved);
547                  }
548              } else if (lastRetElt != null) {
549 <                PriorityQueue.this.remove(lastRetElt);
549 >                PriorityQueue.this.removeEq(lastRetElt);
550                  lastRetElt = null;
551              } else {
552                  throw new IllegalStateException();
553              }
507
554              expectedModCount = modCount;
555          }
510
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
556      }
557  
558      public int size() {
# Line 524 | Line 565 | public class PriorityQueue<E> extends Ab
565       */
566      public void clear() {
567          modCount++;
568 <
528 <        // Null out element references to prevent memory leak
529 <        for (int i=1; i<=size; i++)
568 >        for (int i = 0; i < size; i++)
569              queue[i] = null;
531
570          size = 0;
571      }
572  
573 +    @SuppressWarnings("unchecked")
574      public E poll() {
575          if (size == 0)
576              return null;
577 +        int s = --size;
578          modCount++;
579 <
580 <        E result = (E) queue[1];
581 <        queue[1] = queue[size];
582 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
583 <        if (size > 1)
544 <            fixDown(1);
545 <
579 >        E result = (E) queue[0];
580 >        E x = (E) queue[s];
581 >        queue[s] = null;
582 >        if (s != 0)
583 >            siftDown(0, x);
584          return result;
585      }
586  
587      /**
588 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
588 >     * Removes the ith element from queue.
589       *
590 <     * Normally this method leaves the elements at positions from 1 up to i-1,
591 <     * inclusive, untouched.  Under these circumstances, it returns null.
592 <     * Occasionally, in order to maintain the heap invariant, it must move
593 <     * the last element of the list to some index in the range [2, i-1],
594 <     * and move the element previously at position (i/2) to position i.
595 <     * Under these circumstances, this method returns the element that was
596 <     * previously at the end of the list and is now at some position between
597 <     * 2 and i-1 inclusive.
590 >     * Normally this method leaves the elements at up to i-1,
591 >     * inclusive, untouched.  Under these circumstances, it returns
592 >     * null.  Occasionally, in order to maintain the heap invariant,
593 >     * it must swap a later element of the list with one earlier than
594 >     * i.  Under these circumstances, this method returns the element
595 >     * that was previously at the end of the list and is now at some
596 >     * position before i. This fact is used by iterator.remove so as to
597 >     * avoid missing traversing elements.
598       */
599 +    @SuppressWarnings("unchecked")
600      private E removeAt(int i) {
601 <        assert i > 0 && i <= size;
601 >        // assert i >= 0 && i < size;
602          modCount++;
603 <
604 <        E moved = (E) queue[size];
605 <        queue[i] = moved;
606 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
607 <        if (i <= size) {
608 <            fixDown(i);
603 >        int s = --size;
604 >        if (s == i) // removed last element
605 >            queue[i] = null;
606 >        else {
607 >            E moved = (E) queue[s];
608 >            queue[s] = null;
609 >            siftDown(i, moved);
610              if (queue[i] == moved) {
611 <                fixUp(i);
611 >                siftUp(i, moved);
612                  if (queue[i] != moved)
613                      return moved;
614              }
# Line 578 | Line 617 | public class PriorityQueue<E> extends Ab
617      }
618  
619      /**
620 <     * Establishes the heap invariant (described above) assuming the heap
621 <     * satisfies the invariant except possibly for the leaf-node indexed by k
622 <     * (which may have a nextExecutionTime less than its parent's).
623 <     *
624 <     * This method functions by "promoting" queue[k] up the hierarchy
625 <     * (by swapping it with its parent) repeatedly until queue[k]
626 <     * is greater than or equal to its parent.
627 <     */
628 <    private void fixUp(int k) {
629 <        if (comparator == null) {
630 <            while (k > 1) {
631 <                int j = k >> 1;
632 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
633 <                    break;
634 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
635 <                k = j;
636 <            }
637 <        } else {
638 <            while (k > 1) {
639 <                int j = k >>> 1;
640 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
641 <                    break;
642 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
643 <                k = j;
644 <            }
645 <        }
646 <    }
647 <
648 <    /**
649 <     * Establishes the heap invariant (described above) in the subtree
650 <     * rooted at k, which is assumed to satisfy the heap invariant except
651 <     * possibly for node k itself (which may be greater than its children).
652 <     *
653 <     * This method functions by "demoting" queue[k] down the hierarchy
654 <     * (by swapping it with its smaller child) repeatedly until queue[k]
655 <     * is less than or equal to its children.
656 <     */
657 <    private void fixDown(int k) {
658 <        int j;
659 <        if (comparator == null) {
660 <            while ((j = k << 1) <= size && (j > 0)) {
661 <                if (j<size &&
662 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
663 <                    j++; // j indexes smallest kid
664 <
665 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
666 <                    break;
667 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
668 <                k = j;
669 <            }
670 <        } else {
671 <            while ((j = k << 1) <= size && (j > 0)) {
672 <                if (j<size &&
673 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
674 <                    j++; // j indexes smallest kid
675 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
676 <                    break;
677 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
678 <                k = j;
679 <            }
620 >     * Inserts item x at position k, maintaining heap invariant by
621 >     * promoting x up the tree until it is greater than or equal to
622 >     * its parent, or is the root.
623 >     *
624 >     * To simplify and speed up coercions and comparisons. the
625 >     * Comparable and Comparator versions are separated into different
626 >     * methods that are otherwise identical. (Similarly for siftDown.)
627 >     *
628 >     * @param k the position to fill
629 >     * @param x the item to insert
630 >     */
631 >    private void siftUp(int k, E x) {
632 >        if (comparator != null)
633 >            siftUpUsingComparator(k, x);
634 >        else
635 >            siftUpComparable(k, x);
636 >    }
637 >
638 >    @SuppressWarnings("unchecked")
639 >    private void siftUpComparable(int k, E x) {
640 >        Comparable<? super E> key = (Comparable<? super E>) x;
641 >        while (k > 0) {
642 >            int parent = (k - 1) >>> 1;
643 >            Object e = queue[parent];
644 >            if (key.compareTo((E) e) >= 0)
645 >                break;
646 >            queue[k] = e;
647 >            k = parent;
648 >        }
649 >        queue[k] = key;
650 >    }
651 >
652 >    @SuppressWarnings("unchecked")
653 >    private void siftUpUsingComparator(int k, E x) {
654 >        while (k > 0) {
655 >            int parent = (k - 1) >>> 1;
656 >            Object e = queue[parent];
657 >            if (comparator.compare(x, (E) e) >= 0)
658 >                break;
659 >            queue[k] = e;
660 >            k = parent;
661 >        }
662 >        queue[k] = x;
663 >    }
664 >
665 >    /**
666 >     * Inserts item x at position k, maintaining heap invariant by
667 >     * demoting x down the tree repeatedly until it is less than or
668 >     * equal to its children or is a leaf.
669 >     *
670 >     * @param k the position to fill
671 >     * @param x the item to insert
672 >     */
673 >    private void siftDown(int k, E x) {
674 >        if (comparator != null)
675 >            siftDownUsingComparator(k, x);
676 >        else
677 >            siftDownComparable(k, x);
678 >    }
679 >
680 >    @SuppressWarnings("unchecked")
681 >    private void siftDownComparable(int k, E x) {
682 >        Comparable<? super E> key = (Comparable<? super E>)x;
683 >        int half = size >>> 1;        // loop while a non-leaf
684 >        while (k < half) {
685 >            int child = (k << 1) + 1; // assume left child is least
686 >            Object c = queue[child];
687 >            int right = child + 1;
688 >            if (right < size &&
689 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
690 >                c = queue[child = right];
691 >            if (key.compareTo((E) c) <= 0)
692 >                break;
693 >            queue[k] = c;
694 >            k = child;
695 >        }
696 >        queue[k] = key;
697 >    }
698 >
699 >    @SuppressWarnings("unchecked")
700 >    private void siftDownUsingComparator(int k, E x) {
701 >        int half = size >>> 1;
702 >        while (k < half) {
703 >            int child = (k << 1) + 1;
704 >            Object c = queue[child];
705 >            int right = child + 1;
706 >            if (right < size &&
707 >                comparator.compare((E) c, (E) queue[right]) > 0)
708 >                c = queue[child = right];
709 >            if (comparator.compare(x, (E) c) <= 0)
710 >                break;
711 >            queue[k] = c;
712 >            k = child;
713          }
714 +        queue[k] = x;
715      }
716  
717      /**
718       * Establishes the heap invariant (described above) in the entire tree,
719       * assuming nothing about the order of the elements prior to the call.
720       */
721 +    @SuppressWarnings("unchecked")
722      private void heapify() {
723 <        for (int i = size/2; i >= 1; i--)
724 <            fixDown(i);
723 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
724 >            siftDown(i, (E) queue[i]);
725      }
726  
727      /**
728       * Returns the comparator used to order the elements in this
729 <     * queue, or <tt>null</tt> if this queue is sorted according to
729 >     * queue, or {@code null} if this queue is sorted according to
730       * the {@linkplain Comparable natural ordering} of its elements.
731       *
732       * @return the comparator used to order this queue, or
733 <     *         <tt>null</tt> if this queue is sorted according to the
734 <     *         natural ordering of its elements.
733 >     *         {@code null} if this queue is sorted according to the
734 >     *         natural ordering of its elements
735       */
736      public Comparator<? super E> comparator() {
737          return comparator;
738      }
739  
740      /**
741 <     * Save the state of the instance to a stream (that
668 <     * is, serialize it).
741 >     * Saves this queue to a stream (that is, serializes it).
742       *
743       * @serialData The length of the array backing the instance is
744 <     * emitted (int), followed by all of its elements (each an
745 <     * <tt>Object</tt>) in the proper order.
744 >     *             emitted (int), followed by all of its elements
745 >     *             (each an {@code Object}) in the proper order.
746       * @param s the stream
747 +     * @throws java.io.IOException if an I/O error occurs
748       */
749      private void writeObject(java.io.ObjectOutputStream s)
750 <        throws java.io.IOException{
750 >        throws java.io.IOException {
751          // Write out element count, and any hidden stuff
752          s.defaultWriteObject();
753  
754 <        // Write out array length
755 <        s.writeInt(queue.length);
754 >        // Write out array length, for compatibility with 1.5 version
755 >        s.writeInt(Math.max(2, size + 1));
756  
757 <        // Write out all elements in the proper order.
758 <        for (int i=1; i<=size; i++)
757 >        // Write out all elements in the "proper order".
758 >        for (int i = 0; i < size; i++)
759              s.writeObject(queue[i]);
760      }
761  
762      /**
763 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
764 <     * (that is, deserialize it).
763 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
764 >     * (that is, deserializes it).
765 >     *
766       * @param s the stream
767 +     * @throws ClassNotFoundException if the class of a serialized object
768 +     *         could not be found
769 +     * @throws java.io.IOException if an I/O error occurs
770       */
771      private void readObject(java.io.ObjectInputStream s)
772          throws java.io.IOException, ClassNotFoundException {
773          // Read in size, and any hidden stuff
774          s.defaultReadObject();
775  
776 <        // Read in array length and allocate array
777 <        int arrayLength = s.readInt();
778 <        queue = new Object[arrayLength];
779 <
780 <        // Read in all elements in the proper order.
781 <        for (int i=1; i<=size; i++)
782 <            queue[i] = (E) s.readObject();
776 >        // Read in (and discard) array length
777 >        s.readInt();
778 >
779 >        queue = new Object[size];
780 >
781 >        // Read in all elements.
782 >        for (int i = 0; i < size; i++)
783 >            queue[i] = s.readObject();
784 >
785 >        // Elements are guaranteed to be in "proper order", but the
786 >        // spec has never explained what that might be.
787 >        heapify();
788 >    }
789 >
790 >    public Spliterator<E> spliterator() {
791 >        return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
792      }
793  
794 +    /**
795 +     * This is very similar to ArrayList Spliterator, except for extra
796 +     * null checks.
797 +     */
798 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
799 +        private final PriorityQueue<E> pq;
800 +        private int index;            // current index, modified on advance/split
801 +        private int fence;            // -1 until first use
802 +        private int expectedModCount; // initialized when fence set
803 +
804 +        /** Creates new spliterator covering the given range */
805 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
806 +                             int expectedModCount) {
807 +            this.pq = pq;
808 +            this.index = origin;
809 +            this.fence = fence;
810 +            this.expectedModCount = expectedModCount;
811 +        }
812 +
813 +        private int getFence() { // initialize fence to size on first use
814 +            int hi;
815 +            if ((hi = fence) < 0) {
816 +                expectedModCount = pq.modCount;
817 +                hi = fence = pq.size;
818 +            }
819 +            return hi;
820 +        }
821 +
822 +        public Spliterator<E> trySplit() {
823 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
824 +            return (lo >= mid) ? null :
825 +                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
826 +                                                expectedModCount);
827 +        }
828 +
829 +        @SuppressWarnings("unchecked")
830 +        public void forEachRemaining(Consumer<? super E> action) {
831 +            int i, hi, mc; // hoist accesses and checks from loop
832 +            PriorityQueue<E> q; Object[] a;
833 +            if (action == null)
834 +                throw new NullPointerException();
835 +            if ((q = pq) != null && (a = q.queue) != null) {
836 +                if ((hi = fence) < 0) {
837 +                    mc = q.modCount;
838 +                    hi = q.size;
839 +                }
840 +                else
841 +                    mc = expectedModCount;
842 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
843 +                    for (E e;; ++i) {
844 +                        if (i < hi) {
845 +                            if ((e = (E) a[i]) == null) // must be CME
846 +                                break;
847 +                            action.accept(e);
848 +                        }
849 +                        else if (q.modCount != mc)
850 +                            break;
851 +                        else
852 +                            return;
853 +                    }
854 +                }
855 +            }
856 +            throw new ConcurrentModificationException();
857 +        }
858 +
859 +        public boolean tryAdvance(Consumer<? super E> action) {
860 +            int hi = getFence(), lo = index;
861 +            if (lo >= 0 && lo < hi) {
862 +                index = lo + 1;
863 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
864 +                if (e == null)
865 +                    throw new ConcurrentModificationException();
866 +                action.accept(e);
867 +                if (pq.modCount != expectedModCount)
868 +                    throw new ConcurrentModificationException();
869 +                return true;
870 +            }
871 +            return false;
872 +        }
873 +
874 +        public long estimateSize() {
875 +            return (long) (getFence() - index);
876 +        }
877 +
878 +        public int characteristics() {
879 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
880 +        }
881 +    }
882   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines