ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.53 by jsr166, Wed Nov 23 05:33:25 2005 UTC vs.
Revision 1.125 by jsr166, Sun May 6 21:07:41 2018 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded priority {@linkplain Queue queue} based on a priority
33 < * heap.  The elements of the priority queue are ordered according to
34 < * their {@linkplain Comparable natural ordering}, or by a {@link
35 < * Comparator} provided at queue construction time, depending on which
36 < * constructor is used.  A priority queue does not permit
37 < * <tt>null</tt> elements.  A priority queue relying on natural
38 < * ordering also does not permit insertion of non-comparable objects
39 < * (doing so may result in <tt>ClassCastException</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40   *
41   * <p>The <em>head</em> of this queue is the <em>least</em> element
42   * with respect to the specified ordering.  If multiple elements are
43   * tied for least value, the head is one of those elements -- ties are
44 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
45 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46   * element at the head of the queue.
47   *
48   * <p>A priority queue is unbounded, but has an internal
# Line 35 | Line 55 | import java.util.*; // for javadoc (till
55   * <p>This class and its iterator implement all of the
56   * <em>optional</em> methods of the {@link Collection} and {@link
57   * Iterator} interfaces.  The Iterator provided in method {@link
58 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60   * the priority queue in any particular order. If you need ordered
61 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62   *
63 < * <p> <strong>Note that this implementation is not synchronized.</strong>
64 < * Multiple threads should not access a <tt>PriorityQueue</tt>
65 < * instance concurrently if any of the threads modifies the list
66 < * structurally. Instead, use the thread-safe {@link
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67   * java.util.concurrent.PriorityBlockingQueue} class.
68   *
69 < * <p>Implementation note: this implementation provides O(log(n)) time
70 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
71 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
72 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
73 < * constant time for the retrieval methods (<tt>peek</tt>,
74 < * <tt>element</tt>, and <tt>size</tt>).
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @version 1.8, 08/27/05
82 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83   */
84 + @SuppressWarnings("unchecked")
85   public class PriorityQueue<E> extends AbstractQueue<E>
86      implements java.io.Serializable {
87  
# Line 68 | Line 90 | public class PriorityQueue<E> extends Ab
90      private static final int DEFAULT_INITIAL_CAPACITY = 11;
91  
92      /**
93 <     * Priority queue represented as a balanced binary heap: the two children
94 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
95 <     * ordered by comparator, or by the elements' natural ordering, if
96 <     * comparator is null:  For each node n in the heap and each descendant d
97 <     * of n, n <= d.
98 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
93 >     * Priority queue represented as a balanced binary heap: the two
94 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
95 >     * priority queue is ordered by comparator, or by the elements'
96 >     * natural ordering, if comparator is null: For each node n in the
97 >     * heap and each descendant d of n, n <= d.  The element with the
98 >     * lowest value is in queue[0], assuming the queue is nonempty.
99       */
100 <    private transient Object[] queue;
100 >    transient Object[] queue; // non-private to simplify nested class access
101  
102      /**
103       * The number of elements in the priority queue.
104       */
105 <    private int size = 0;
105 >    int size;
106  
107      /**
108       * The comparator, or null if priority queue uses elements'
# Line 97 | Line 114 | public class PriorityQueue<E> extends Ab
114       * The number of times this priority queue has been
115       * <i>structurally modified</i>.  See AbstractList for gory details.
116       */
117 <    private transient int modCount = 0;
117 >    transient int modCount;     // non-private to simplify nested class access
118  
119      /**
120 <     * Creates a <tt>PriorityQueue</tt> with the default initial
120 >     * Creates a {@code PriorityQueue} with the default initial
121       * capacity (11) that orders its elements according to their
122       * {@linkplain Comparable natural ordering}.
123       */
# Line 109 | Line 126 | public class PriorityQueue<E> extends Ab
126      }
127  
128      /**
129 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
129 >     * Creates a {@code PriorityQueue} with the specified initial
130       * capacity that orders its elements according to their
131       * {@linkplain Comparable natural ordering}.
132       *
133       * @param initialCapacity the initial capacity for this priority queue
134 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
135 <     * than 1
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136       */
137      public PriorityQueue(int initialCapacity) {
138          this(initialCapacity, null);
139      }
140  
141      /**
142 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144 >     *
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149 >     */
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152 >    }
153 >
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156       * that orders its elements according to the specified comparator.
157       *
158       * @param  initialCapacity the initial capacity for this priority queue
159 <     * @param  comparator the comparator that will be used to order
160 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
161 <     *         ordering</i> of the elements will be used.
162 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163       *         less than 1
164       */
165      public PriorityQueue(int initialCapacity,
166                           Comparator<? super E> comparator) {
167 +        // Note: This restriction of at least one is not actually needed,
168 +        // but continues for 1.5 compatibility
169          if (initialCapacity < 1)
170              throw new IllegalArgumentException();
171 <        this.queue = new Object[initialCapacity + 1];
171 >        this.queue = new Object[initialCapacity];
172          this.comparator = comparator;
173      }
174  
175      /**
176 <     * Common code to initialize underlying queue array across
177 <     * constructors below.
178 <     */
179 <    private void initializeArray(Collection<? extends E> c) {
180 <        int sz = c.size();
181 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
186 <    /**
187 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
191 <     * instance of a {@link java.util.SortedSet} or is another
192 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 <     * according to the same ordering.  Otherwise, this priority queue
194 <     * will be ordered according to the natural ordering of its elements.
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182       *
183       * @param  c the collection whose elements are to be placed
184       *         into this priority queue
# Line 202 | Line 189 | public class PriorityQueue<E> extends Ab
189       *         of its elements are null
190       */
191      public PriorityQueue(Collection<? extends E> c) {
192 <        initializeArray(c);
193 <        if (c instanceof SortedSet) {
194 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
195 <            comparator = (Comparator<? super E>)s.comparator();
196 <            fillFromSorted(s);
197 <        } else if (c instanceof PriorityQueue) {
198 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
199 <            comparator = (Comparator<? super E>)s.comparator();
200 <            fillFromSorted(s);
201 <        } else {
202 <            comparator = null;
203 <            fillFromUnsorted(c);
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205          }
206      }
207  
208      /**
209 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
210 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211       * ordered according to the same ordering as the given priority
212       * queue.
213       *
214       * @param  c the priority queue whose elements are to be placed
215       *         into this priority queue
216 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
217 <     *         compared to one another according to <tt>c</tt>'s
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218       *         ordering
219       * @throws NullPointerException if the specified priority queue or any
220       *         of its elements are null
221       */
222      public PriorityQueue(PriorityQueue<? extends E> c) {
223 <        initializeArray(c);
224 <        comparator = (Comparator<? super E>)c.comparator();
239 <        fillFromSorted(c);
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226  
227      /**
228 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
229 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230       * according to the same ordering as the given sorted set.
231       *
232       * @param  c the sorted set whose elements are to be placed
233 <     *         into this priority queue.
233 >     *         into this priority queue
234       * @throws ClassCastException if elements of the specified sorted
235       *         set cannot be compared to one another according to the
236       *         sorted set's ordering
# Line 255 | Line 238 | public class PriorityQueue<E> extends Ab
238       *         of its elements are null
239       */
240      public PriorityQueue(SortedSet<? extends E> c) {
241 <        initializeArray(c);
242 <        comparator = (Comparator<? super E>)c.comparator();
243 <        fillFromSorted(c);
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
246 >    private static Object[] ensureNonEmpty(Object[] es) {
247 >        return (es.length > 0) ? es : new Object[1];
248 >    }
249 >
250 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 >        if (c.getClass() == PriorityQueue.class) {
252 >            this.queue = ensureNonEmpty(c.toArray());
253 >            this.size = c.size();
254 >        } else {
255 >            initFromCollection(c);
256 >        }
257 >    }
258 >
259 >    private void initElementsFromCollection(Collection<? extends E> c) {
260 >        Object[] es = c.toArray();
261 >        int len = es.length;
262 >        // If c.toArray incorrectly doesn't return Object[], copy it.
263 >        if (es.getClass() != Object[].class)
264 >            es = Arrays.copyOf(es, len, Object[].class);
265 >        if (len == 1 || this.comparator != null)
266 >            for (Object e : es)
267 >                if (e == null)
268 >                    throw new NullPointerException();
269 >        this.queue = ensureNonEmpty(es);
270 >        this.size = len;
271 >    }
272 >
273 >    /**
274 >     * Initializes queue array with elements from the given Collection.
275 >     *
276 >     * @param c the collection
277 >     */
278 >    private void initFromCollection(Collection<? extends E> c) {
279 >        initElementsFromCollection(c);
280 >        heapify();
281      }
282  
283      /**
284 <     * Resize array, if necessary, to be able to hold given index.
284 >     * The maximum size of array to allocate.
285 >     * Some VMs reserve some header words in an array.
286 >     * Attempts to allocate larger arrays may result in
287 >     * OutOfMemoryError: Requested array size exceeds VM limit
288 >     */
289 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290 >
291 >    /**
292 >     * Increases the capacity of the array.
293 >     *
294 >     * @param minCapacity the desired minimum capacity
295       */
296 <    private void grow(int index) {
297 <        int newlen = queue.length;
298 <        if (index < newlen) // don't need to grow
299 <            return;
300 <        if (index == Integer.MAX_VALUE)
296 >    private void grow(int minCapacity) {
297 >        int oldCapacity = queue.length;
298 >        // Double size if small; else grow by 50%
299 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 >                                         (oldCapacity + 2) :
301 >                                         (oldCapacity >> 1));
302 >        // overflow-conscious code
303 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
304 >            newCapacity = hugeCapacity(minCapacity);
305 >        queue = Arrays.copyOf(queue, newCapacity);
306 >    }
307 >
308 >    private static int hugeCapacity(int minCapacity) {
309 >        if (minCapacity < 0) // overflow
310              throw new OutOfMemoryError();
311 <        while (newlen <= index) {
312 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
313 <                newlen = Integer.MAX_VALUE;
275 <            else
276 <                newlen <<= 2;
277 <        }
278 <        queue = Arrays.copyOf(queue, newlen);
311 >        return (minCapacity > MAX_ARRAY_SIZE) ?
312 >            Integer.MAX_VALUE :
313 >            MAX_ARRAY_SIZE;
314      }
315  
316      /**
317       * Inserts the specified element into this priority queue.
318       *
319 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
319 >     * @return {@code true} (as specified by {@link Collection#add})
320       * @throws ClassCastException if the specified element cannot be
321       *         compared with elements currently in this priority queue
322       *         according to the priority queue's ordering
# Line 294 | Line 329 | public class PriorityQueue<E> extends Ab
329      /**
330       * Inserts the specified element into this priority queue.
331       *
332 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
332 >     * @return {@code true} (as specified by {@link Queue#offer})
333       * @throws ClassCastException if the specified element cannot be
334       *         compared with elements currently in this priority queue
335       *         according to the priority queue's ordering
# Line 304 | Line 339 | public class PriorityQueue<E> extends Ab
339          if (e == null)
340              throw new NullPointerException();
341          modCount++;
342 <        ++size;
343 <
344 <        // Grow backing store if necessary
345 <        if (size >= queue.length)
346 <            grow(size);
312 <
313 <        queue[size] = e;
314 <        fixUp(size);
342 >        int i = size;
343 >        if (i >= queue.length)
344 >            grow(i + 1);
345 >        siftUp(i, e);
346 >        size = i + 1;
347          return true;
348      }
349  
350      public E peek() {
351 <        if (size == 0)
320 <            return null;
321 <        return (E) queue[1];
351 >        return (E) queue[0];
352      }
353  
354      private int indexOf(Object o) {
355 <        if (o == null)
356 <            return -1;
357 <        for (int i = 1; i <= size; i++)
358 <            if (o.equals(queue[i]))
359 <                return i;
355 >        if (o != null) {
356 >            final Object[] es = queue;
357 >            for (int i = 0, n = size; i < n; i++)
358 >                if (o.equals(es[i]))
359 >                    return i;
360 >        }
361          return -1;
362      }
363  
364      /**
365       * Removes a single instance of the specified element from this queue,
366 <     * if it is present.  More formally, removes an element <tt>e</tt> such
367 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
368 <     * elements.  Returns true if this queue contained the specified element
369 <     * (or equivalently, if this queue changed as a result of the call).
366 >     * if it is present.  More formally, removes an element {@code e} such
367 >     * that {@code o.equals(e)}, if this queue contains one or more such
368 >     * elements.  Returns {@code true} if and only if this queue contained
369 >     * the specified element (or equivalently, if this queue changed as a
370 >     * result of the call).
371       *
372       * @param o element to be removed from this queue, if present
373 <     * @return <tt>true</tt> if this queue changed as a result of the call
373 >     * @return {@code true} if this queue changed as a result of the call
374       */
375      public boolean remove(Object o) {
376 <        int i = indexOf(o);
377 <        if (i == -1)
378 <            return false;
379 <        else {
380 <            removeAt(i);
381 <            return true;
382 <        }
376 >        int i = indexOf(o);
377 >        if (i == -1)
378 >            return false;
379 >        else {
380 >            removeAt(i);
381 >            return true;
382 >        }
383      }
384  
385      /**
386 <     * Returns <tt>true</tt> if this queue contains the specified element.
387 <     * More formally, returns <tt>true</tt> if and only if this queue contains
388 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
386 >     * Identity-based version for use in Itr.remove.
387 >     *
388 >     * @param o element to be removed from this queue, if present
389 >     */
390 >    void removeEq(Object o) {
391 >        final Object[] es = queue;
392 >        for (int i = 0, n = size; i < n; i++) {
393 >            if (o == es[i]) {
394 >                removeAt(i);
395 >                break;
396 >            }
397 >        }
398 >    }
399 >
400 >    /**
401 >     * Returns {@code true} if this queue contains the specified element.
402 >     * More formally, returns {@code true} if and only if this queue contains
403 >     * at least one element {@code e} such that {@code o.equals(e)}.
404       *
405       * @param o object to be checked for containment in this queue
406 <     * @return <tt>true</tt> if this queue contains the specified element
406 >     * @return {@code true} if this queue contains the specified element
407       */
408      public boolean contains(Object o) {
409 <        return indexOf(o) != -1;
409 >        return indexOf(o) >= 0;
410      }
411  
412      /**
413 <     * Returns an array containing all of the elements in this queue,
413 >     * Returns an array containing all of the elements in this queue.
414       * The elements are in no particular order.
415       *
416       * <p>The returned array will be "safe" in that no references to it are
417 <     * maintained by this list.  (In other words, this method must allocate
417 >     * maintained by this queue.  (In other words, this method must allocate
418       * a new array).  The caller is thus free to modify the returned array.
419       *
420 <     * @return an array containing all of the elements in this queue.
420 >     * <p>This method acts as bridge between array-based and collection-based
421 >     * APIs.
422 >     *
423 >     * @return an array containing all of the elements in this queue
424       */
425      public Object[] toArray() {
426 <        return Arrays.copyOfRange(queue, 1, size+1);
426 >        return Arrays.copyOf(queue, size);
427      }
428  
429      /**
430 <     * Returns an array containing all of the elements in this queue.
431 <     * The elements are in no particular order.  The runtime type of
432 <     * the returned array is that of the specified array.  If the queue
433 <     * fits in the specified array, it is returned therein.
434 <     * Otherwise, a new array is allocated with the runtime type of
435 <     * the specified array and the size of this queue.
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436       *
437       * <p>If the queue fits in the specified array with room to spare
438       * (i.e., the array has more elements than the queue), the element in
439       * the array immediately following the end of the collection is set to
440 <     * <tt>null</tt>.  (This is useful in determining the length of the
441 <     * queue <i>only</i> if the caller knows that the queue does not contain
442 <     * any null elements.)
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455       *
456       * @param a the array into which the elements of the queue are to
457       *          be stored, if it is big enough; otherwise, a new array of the
458       *          same runtime type is allocated for this purpose.
459 <     * @return an array containing the elements of the queue
459 >     * @return an array containing all of the elements in this queue
460       * @throws ArrayStoreException if the runtime type of the specified array
461       *         is not a supertype of the runtime type of every element in
462       *         this queue
463       * @throws NullPointerException if the specified array is null
464       */
465      public <T> T[] toArray(T[] a) {
466 +        final int size = this.size;
467          if (a.length < size)
468              // Make a new array of a's runtime type, but my contents:
469 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
470 <        System.arraycopy(queue, 1, a, 0, size);
469 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 >        System.arraycopy(queue, 0, a, 0, size);
471          if (a.length > size)
472              a[size] = null;
473          return a;
# Line 420 | Line 483 | public class PriorityQueue<E> extends Ab
483          return new Itr();
484      }
485  
486 <    private class Itr implements Iterator<E> {
424 <
486 >    private final class Itr implements Iterator<E> {
487          /**
488           * Index (into queue array) of element to be returned by
489           * subsequent call to next.
490           */
491 <        private int cursor = 1;
491 >        private int cursor;
492  
493          /**
494           * Index of element returned by most recent call to next,
495           * unless that element came from the forgetMeNot list.
496 <         * Reset to 0 if element is deleted by a call to remove.
496 >         * Set to -1 if element is deleted by a call to remove.
497           */
498 <        private int lastRet = 0;
498 >        private int lastRet = -1;
499  
500          /**
501 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
442 <         */
443 <        private int expectedModCount = modCount;
444 <
445 <        /**
446 <         * A list of elements that were moved from the unvisited portion of
501 >         * A queue of elements that were moved from the unvisited portion of
502           * the heap into the visited portion as a result of "unlucky" element
503           * removals during the iteration.  (Unlucky element removals are those
504 <         * that require a fixup instead of a fixdown.)  We must visit all of
504 >         * that require a siftup instead of a siftdown.)  We must visit all of
505           * the elements in this list to complete the iteration.  We do this
506           * after we've completed the "normal" iteration.
507           *
508           * We expect that most iterations, even those involving removals,
509 <         * will not use need to store elements in this field.
509 >         * will not need to store elements in this field.
510           */
511 <        private ArrayList<E> forgetMeNot = null;
511 >        private ArrayDeque<E> forgetMeNot;
512  
513          /**
514           * Element returned by the most recent call to next iff that
515           * element was drawn from the forgetMeNot list.
516           */
517 <        private Object lastRetElt = null;
517 >        private E lastRetElt;
518 >
519 >        /**
520 >         * The modCount value that the iterator believes that the backing
521 >         * Queue should have.  If this expectation is violated, the iterator
522 >         * has detected concurrent modification.
523 >         */
524 >        private int expectedModCount = modCount;
525 >
526 >        Itr() {}                        // prevent access constructor creation
527  
528          public boolean hasNext() {
529 <            return cursor <= size || forgetMeNot != null;
529 >            return cursor < size ||
530 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
531          }
532  
533          public E next() {
534 <            checkForComodification();
535 <            E result;
536 <            if (cursor <= size) {
537 <                result = (E) queue[cursor];
538 <                lastRet = cursor++;
539 <            }
540 <            else if (forgetMeNot == null)
541 <                throw new NoSuchElementException();
542 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543              }
544 <            return result;
544 >            throw new NoSuchElementException();
545          }
546  
547          public void remove() {
548 <            checkForComodification();
549 <
550 <            if (lastRet != 0) {
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551                  E moved = PriorityQueue.this.removeAt(lastRet);
552 <                lastRet = 0;
553 <                if (moved == null) {
552 >                lastRet = -1;
553 >                if (moved == null)
554                      cursor--;
555 <                } else {
555 >                else {
556                      if (forgetMeNot == null)
557 <                        forgetMeNot = new ArrayList<E>();
557 >                        forgetMeNot = new ArrayDeque<>();
558                      forgetMeNot.add(moved);
559                  }
560              } else if (lastRetElt != null) {
561 <                PriorityQueue.this.remove(lastRetElt);
561 >                PriorityQueue.this.removeEq(lastRetElt);
562                  lastRetElt = null;
563              } else {
564                  throw new IllegalStateException();
565              }
507
566              expectedModCount = modCount;
567          }
510
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
568      }
569  
570      public int size() {
# Line 524 | Line 577 | public class PriorityQueue<E> extends Ab
577       */
578      public void clear() {
579          modCount++;
580 <
581 <        // Null out element references to prevent memory leak
582 <        for (int i=1; i<=size; i++)
530 <            queue[i] = null;
531 <
580 >        final Object[] es = queue;
581 >        for (int i = 0, n = size; i < n; i++)
582 >            es[i] = null;
583          size = 0;
584      }
585  
586      public E poll() {
587 <        if (size == 0)
588 <            return null;
538 <        modCount++;
539 <
540 <        E result = (E) queue[1];
541 <        queue[1] = queue[size];
542 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
543 <        if (size > 1)
544 <            fixDown(1);
587 >        final Object[] es;
588 >        final E result;
589  
590 +        if ((result = (E) ((es = queue)[0])) != null) {
591 +            modCount++;
592 +            final int n;
593 +            final E x = (E) es[(n = --size)];
594 +            es[n] = null;
595 +            if (n > 0) {
596 +                final Comparator<? super E> cmp;
597 +                if ((cmp = comparator) == null)
598 +                    siftDownComparable(0, x, es, n);
599 +                else
600 +                    siftDownUsingComparator(0, x, es, n, cmp);
601 +            }
602 +        }
603          return result;
604      }
605  
606      /**
607 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
607 >     * Removes the ith element from queue.
608       *
609 <     * Normally this method leaves the elements at positions from 1 up to i-1,
610 <     * inclusive, untouched.  Under these circumstances, it returns null.
611 <     * Occasionally, in order to maintain the heap invariant, it must move
612 <     * the last element of the list to some index in the range [2, i-1],
613 <     * and move the element previously at position (i/2) to position i.
614 <     * Under these circumstances, this method returns the element that was
615 <     * previously at the end of the list and is now at some position between
616 <     * 2 and i-1 inclusive.
609 >     * Normally this method leaves the elements at up to i-1,
610 >     * inclusive, untouched.  Under these circumstances, it returns
611 >     * null.  Occasionally, in order to maintain the heap invariant,
612 >     * it must swap a later element of the list with one earlier than
613 >     * i.  Under these circumstances, this method returns the element
614 >     * that was previously at the end of the list and is now at some
615 >     * position before i. This fact is used by iterator.remove so as to
616 >     * avoid missing traversing elements.
617       */
618 <    private E removeAt(int i) {
619 <        assert i > 0 && i <= size;
618 >    E removeAt(int i) {
619 >        // assert i >= 0 && i < size;
620          modCount++;
621 <
622 <        E moved = (E) queue[size];
623 <        queue[i] = moved;
624 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
625 <        if (i <= size) {
626 <            fixDown(i);
621 >        int s = --size;
622 >        if (s == i) // removed last element
623 >            queue[i] = null;
624 >        else {
625 >            E moved = (E) queue[s];
626 >            queue[s] = null;
627 >            siftDown(i, moved);
628              if (queue[i] == moved) {
629 <                fixUp(i);
629 >                siftUp(i, moved);
630                  if (queue[i] != moved)
631                      return moved;
632              }
# Line 578 | Line 635 | public class PriorityQueue<E> extends Ab
635      }
636  
637      /**
638 <     * Establishes the heap invariant (described above) assuming the heap
639 <     * satisfies the invariant except possibly for the leaf-node indexed by k
640 <     * (which may have a nextExecutionTime less than its parent's).
641 <     *
642 <     * This method functions by "promoting" queue[k] up the hierarchy
643 <     * (by swapping it with its parent) repeatedly until queue[k]
644 <     * is greater than or equal to its parent.
645 <     */
646 <    private void fixUp(int k) {
647 <        if (comparator == null) {
648 <            while (k > 1) {
649 <                int j = k >> 1;
650 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
651 <                    break;
652 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
653 <                k = j;
654 <            }
655 <        } else {
656 <            while (k > 1) {
657 <                int j = k >>> 1;
658 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
659 <                    break;
660 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
661 <                k = j;
662 <            }
663 <        }
664 <    }
665 <
666 <    /**
667 <     * Establishes the heap invariant (described above) in the subtree
668 <     * rooted at k, which is assumed to satisfy the heap invariant except
669 <     * possibly for node k itself (which may be greater than its children).
670 <     *
671 <     * This method functions by "demoting" queue[k] down the hierarchy
672 <     * (by swapping it with its smaller child) repeatedly until queue[k]
673 <     * is less than or equal to its children.
674 <     */
675 <    private void fixDown(int k) {
676 <        int j;
677 <        if (comparator == null) {
678 <            while ((j = k << 1) <= size && (j > 0)) {
679 <                if (j<size &&
680 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
681 <                    j++; // j indexes smallest kid
682 <
683 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
684 <                    break;
685 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
686 <                k = j;
687 <            }
688 <        } else {
689 <            while ((j = k << 1) <= size && (j > 0)) {
690 <                if (j<size &&
691 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
692 <                    j++; // j indexes smallest kid
693 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
694 <                    break;
695 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
696 <                k = j;
697 <            }
638 >     * Inserts item x at position k, maintaining heap invariant by
639 >     * promoting x up the tree until it is greater than or equal to
640 >     * its parent, or is the root.
641 >     *
642 >     * To simplify and speed up coercions and comparisons, the
643 >     * Comparable and Comparator versions are separated into different
644 >     * methods that are otherwise identical. (Similarly for siftDown.)
645 >     *
646 >     * @param k the position to fill
647 >     * @param x the item to insert
648 >     */
649 >    private void siftUp(int k, E x) {
650 >        if (comparator != null)
651 >            siftUpUsingComparator(k, x, queue, comparator);
652 >        else
653 >            siftUpComparable(k, x, queue);
654 >    }
655 >
656 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
657 >        Comparable<? super T> key = (Comparable<? super T>) x;
658 >        while (k > 0) {
659 >            int parent = (k - 1) >>> 1;
660 >            Object e = es[parent];
661 >            if (key.compareTo((T) e) >= 0)
662 >                break;
663 >            es[k] = e;
664 >            k = parent;
665 >        }
666 >        es[k] = key;
667 >    }
668 >
669 >    private static <T> void siftUpUsingComparator(
670 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
671 >        while (k > 0) {
672 >            int parent = (k - 1) >>> 1;
673 >            Object e = es[parent];
674 >            if (cmp.compare(x, (T) e) >= 0)
675 >                break;
676 >            es[k] = e;
677 >            k = parent;
678 >        }
679 >        es[k] = x;
680 >    }
681 >
682 >    /**
683 >     * Inserts item x at position k, maintaining heap invariant by
684 >     * demoting x down the tree repeatedly until it is less than or
685 >     * equal to its children or is a leaf.
686 >     *
687 >     * @param k the position to fill
688 >     * @param x the item to insert
689 >     */
690 >    private void siftDown(int k, E x) {
691 >        if (comparator != null)
692 >            siftDownUsingComparator(k, x, queue, size, comparator);
693 >        else
694 >            siftDownComparable(k, x, queue, size);
695 >    }
696 >
697 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
698 >        // assert n > 0;
699 >        Comparable<? super T> key = (Comparable<? super T>)x;
700 >        int half = n >>> 1;           // loop while a non-leaf
701 >        while (k < half) {
702 >            int child = (k << 1) + 1; // assume left child is least
703 >            Object c = es[child];
704 >            int right = child + 1;
705 >            if (right < n &&
706 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
707 >                c = es[child = right];
708 >            if (key.compareTo((T) c) <= 0)
709 >                break;
710 >            es[k] = c;
711 >            k = child;
712 >        }
713 >        es[k] = key;
714 >    }
715 >
716 >    private static <T> void siftDownUsingComparator(
717 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
718 >        // assert n > 0;
719 >        int half = n >>> 1;
720 >        while (k < half) {
721 >            int child = (k << 1) + 1;
722 >            Object c = es[child];
723 >            int right = child + 1;
724 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
725 >                c = es[child = right];
726 >            if (cmp.compare(x, (T) c) <= 0)
727 >                break;
728 >            es[k] = c;
729 >            k = child;
730          }
731 +        es[k] = x;
732      }
733  
734      /**
735       * Establishes the heap invariant (described above) in the entire tree,
736       * assuming nothing about the order of the elements prior to the call.
737 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
738       */
739      private void heapify() {
740 <        for (int i = size/2; i >= 1; i--)
741 <            fixDown(i);
740 >        final Object[] es = queue;
741 >        int n = size, i = (n >>> 1) - 1;
742 >        final Comparator<? super E> cmp;
743 >        if ((cmp = comparator) == null)
744 >            for (; i >= 0; i--)
745 >                siftDownComparable(i, (E) es[i], es, n);
746 >        else
747 >            for (; i >= 0; i--)
748 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
749      }
750  
751      /**
752       * Returns the comparator used to order the elements in this
753 <     * queue, or <tt>null</tt> if this queue is sorted according to
753 >     * queue, or {@code null} if this queue is sorted according to
754       * the {@linkplain Comparable natural ordering} of its elements.
755       *
756       * @return the comparator used to order this queue, or
757 <     *         <tt>null</tt> if this queue is sorted according to the
758 <     *         natural ordering of its elements.
757 >     *         {@code null} if this queue is sorted according to the
758 >     *         natural ordering of its elements
759       */
760      public Comparator<? super E> comparator() {
761          return comparator;
762      }
763  
764      /**
765 <     * Save the state of the instance to a stream (that
668 <     * is, serialize it).
765 >     * Saves this queue to a stream (that is, serializes it).
766       *
670     * @serialData The length of the array backing the instance is
671     * emitted (int), followed by all of its elements (each an
672     * <tt>Object</tt>) in the proper order.
767       * @param s the stream
768 +     * @throws java.io.IOException if an I/O error occurs
769 +     * @serialData The length of the array backing the instance is
770 +     *             emitted (int), followed by all of its elements
771 +     *             (each an {@code Object}) in the proper order.
772       */
773      private void writeObject(java.io.ObjectOutputStream s)
774 <        throws java.io.IOException{
774 >        throws java.io.IOException {
775          // Write out element count, and any hidden stuff
776          s.defaultWriteObject();
777  
778 <        // Write out array length
779 <        s.writeInt(queue.length);
778 >        // Write out array length, for compatibility with 1.5 version
779 >        s.writeInt(Math.max(2, size + 1));
780  
781 <        // Write out all elements in the proper order.
782 <        for (int i=1; i<=size; i++)
783 <            s.writeObject(queue[i]);
781 >        // Write out all elements in the "proper order".
782 >        final Object[] es = queue;
783 >        for (int i = 0, n = size; i < n; i++)
784 >            s.writeObject(es[i]);
785      }
786  
787      /**
788 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
789 <     * (that is, deserialize it).
788 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
789 >     * (that is, deserializes it).
790 >     *
791       * @param s the stream
792 +     * @throws ClassNotFoundException if the class of a serialized object
793 +     *         could not be found
794 +     * @throws java.io.IOException if an I/O error occurs
795       */
796      private void readObject(java.io.ObjectInputStream s)
797          throws java.io.IOException, ClassNotFoundException {
798          // Read in size, and any hidden stuff
799          s.defaultReadObject();
800  
801 <        // Read in array length and allocate array
802 <        int arrayLength = s.readInt();
803 <        queue = new Object[arrayLength];
804 <
805 <        // Read in all elements in the proper order.
806 <        for (int i=1; i<=size; i++)
807 <            queue[i] = (E) s.readObject();
801 >        // Read in (and discard) array length
802 >        s.readInt();
803 >
804 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
805 >        final Object[] es = queue = new Object[Math.max(size, 1)];
806 >
807 >        // Read in all elements.
808 >        for (int i = 0, n = size; i < n; i++)
809 >            es[i] = s.readObject();
810 >
811 >        // Elements are guaranteed to be in "proper order", but the
812 >        // spec has never explained what that might be.
813 >        heapify();
814      }
815  
816 +    /**
817 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
818 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
819 +     * queue. The spliterator does not traverse elements in any particular order
820 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
821 +     *
822 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
823 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
824 +     * Overriding implementations should document the reporting of additional
825 +     * characteristic values.
826 +     *
827 +     * @return a {@code Spliterator} over the elements in this queue
828 +     * @since 1.8
829 +     */
830 +    public final Spliterator<E> spliterator() {
831 +        return new PriorityQueueSpliterator(0, -1, 0);
832 +    }
833 +
834 +    final class PriorityQueueSpliterator implements Spliterator<E> {
835 +        private int index;            // current index, modified on advance/split
836 +        private int fence;            // -1 until first use
837 +        private int expectedModCount; // initialized when fence set
838 +
839 +        /** Creates new spliterator covering the given range. */
840 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
841 +            this.index = origin;
842 +            this.fence = fence;
843 +            this.expectedModCount = expectedModCount;
844 +        }
845 +
846 +        private int getFence() { // initialize fence to size on first use
847 +            int hi;
848 +            if ((hi = fence) < 0) {
849 +                expectedModCount = modCount;
850 +                hi = fence = size;
851 +            }
852 +            return hi;
853 +        }
854 +
855 +        public PriorityQueueSpliterator trySplit() {
856 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
857 +            return (lo >= mid) ? null :
858 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
859 +        }
860 +
861 +        public void forEachRemaining(Consumer<? super E> action) {
862 +            if (action == null)
863 +                throw new NullPointerException();
864 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 +            final Object[] es = queue;
866 +            int i, hi; E e;
867 +            for (i = index, index = hi = fence; i < hi; i++) {
868 +                if ((e = (E) es[i]) == null)
869 +                    break;      // must be CME
870 +                action.accept(e);
871 +            }
872 +            if (modCount != expectedModCount)
873 +                throw new ConcurrentModificationException();
874 +        }
875 +
876 +        public boolean tryAdvance(Consumer<? super E> action) {
877 +            if (action == null)
878 +                throw new NullPointerException();
879 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
880 +            int i;
881 +            if ((i = index) < fence) {
882 +                index = i + 1;
883 +                E e;
884 +                if ((e = (E) queue[i]) == null
885 +                    || modCount != expectedModCount)
886 +                    throw new ConcurrentModificationException();
887 +                action.accept(e);
888 +                return true;
889 +            }
890 +            return false;
891 +        }
892 +
893 +        public long estimateSize() {
894 +            return getFence() - index;
895 +        }
896 +
897 +        public int characteristics() {
898 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
899 +        }
900 +    }
901 +
902 +    /**
903 +     * @throws NullPointerException {@inheritDoc}
904 +     */
905 +    public void forEach(Consumer<? super E> action) {
906 +        Objects.requireNonNull(action);
907 +        final int expectedModCount = modCount;
908 +        final Object[] es = queue;
909 +        for (int i = 0, n = size; i < n; i++)
910 +            action.accept((E) es[i]);
911 +        if (expectedModCount != modCount)
912 +            throw new ConcurrentModificationException();
913 +    }
914   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines