ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.53 by jsr166, Wed Nov 23 05:33:25 2005 UTC vs.
Revision 1.80 by jsr166, Wed Jan 16 01:59:47 2013 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
27  
28   /**
29 < * An unbounded priority {@linkplain Queue queue} based on a priority
30 < * heap.  The elements of the priority queue are ordered according to
31 < * their {@linkplain Comparable natural ordering}, or by a {@link
32 < * Comparator} provided at queue construction time, depending on which
33 < * constructor is used.  A priority queue does not permit
34 < * <tt>null</tt> elements.  A priority queue relying on natural
35 < * ordering also does not permit insertion of non-comparable objects
36 < * (doing so may result in <tt>ClassCastException</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37   *
38   * <p>The <em>head</em> of this queue is the <em>least</em> element
39   * with respect to the specified ordering.  If multiple elements are
40   * tied for least value, the head is one of those elements -- ties are
41 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
42 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43   * element at the head of the queue.
44   *
45   * <p>A priority queue is unbounded, but has an internal
# Line 37 | Line 54 | import java.util.*; // for javadoc (till
54   * Iterator} interfaces.  The Iterator provided in method {@link
55   * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56   * the priority queue in any particular order. If you need ordered
57 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58   *
59 < * <p> <strong>Note that this implementation is not synchronized.</strong>
60 < * Multiple threads should not access a <tt>PriorityQueue</tt>
61 < * instance concurrently if any of the threads modifies the list
62 < * structurally. Instead, use the thread-safe {@link
59 > * <p><strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63   * java.util.concurrent.PriorityBlockingQueue} class.
64   *
65 < * <p>Implementation note: this implementation provides O(log(n)) time
66 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
67 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
68 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
69 < * constant time for the retrieval methods (<tt>peek</tt>,
70 < * <tt>element</tt>, and <tt>size</tt>).
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueuing and dequeuing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @version 1.8, 08/27/05
60 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78   * @param <E> the type of elements held in this collection
79   */
80 + @SuppressWarnings("unchecked")
81   public class PriorityQueue<E> extends AbstractQueue<E>
82      implements java.io.Serializable {
83  
# Line 68 | Line 86 | public class PriorityQueue<E> extends Ab
86      private static final int DEFAULT_INITIAL_CAPACITY = 11;
87  
88      /**
89 <     * Priority queue represented as a balanced binary heap: the two children
90 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
91 <     * ordered by comparator, or by the elements' natural ordering, if
92 <     * comparator is null:  For each node n in the heap and each descendant d
93 <     * of n, n <= d.
94 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
89 >     * Priority queue represented as a balanced binary heap: the two
90 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
91 >     * priority queue is ordered by comparator, or by the elements'
92 >     * natural ordering, if comparator is null: For each node n in the
93 >     * heap and each descendant d of n, n <= d.  The element with the
94 >     * lowest value is in queue[0], assuming the queue is nonempty.
95       */
96      private transient Object[] queue;
97  
# Line 100 | Line 113 | public class PriorityQueue<E> extends Ab
113      private transient int modCount = 0;
114  
115      /**
116 <     * Creates a <tt>PriorityQueue</tt> with the default initial
116 >     * Creates a {@code PriorityQueue} with the default initial
117       * capacity (11) that orders its elements according to their
118       * {@linkplain Comparable natural ordering}.
119       */
# Line 109 | Line 122 | public class PriorityQueue<E> extends Ab
122      }
123  
124      /**
125 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
125 >     * Creates a {@code PriorityQueue} with the specified initial
126       * capacity that orders its elements according to their
127       * {@linkplain Comparable natural ordering}.
128       *
129       * @param initialCapacity the initial capacity for this priority queue
130 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131 <     * than 1
130 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
131 >     *         than 1
132       */
133      public PriorityQueue(int initialCapacity) {
134          this(initialCapacity, null);
135      }
136  
137      /**
138 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
138 >     * Creates a {@code PriorityQueue} with the specified initial capacity
139       * that orders its elements according to the specified comparator.
140       *
141       * @param  initialCapacity the initial capacity for this priority queue
142 <     * @param  comparator the comparator that will be used to order
143 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
144 <     *         ordering</i> of the elements will be used.
145 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @throws IllegalArgumentException if {@code initialCapacity} is
146       *         less than 1
147       */
148      public PriorityQueue(int initialCapacity,
149                           Comparator<? super E> comparator) {
150 +        // Note: This restriction of at least one is not actually needed,
151 +        // but continues for 1.5 compatibility
152          if (initialCapacity < 1)
153              throw new IllegalArgumentException();
154 <        this.queue = new Object[initialCapacity + 1];
154 >        this.queue = new Object[initialCapacity];
155          this.comparator = comparator;
156      }
157  
158      /**
159 <     * Common code to initialize underlying queue array across
160 <     * constructors below.
161 <     */
162 <    private void initializeArray(Collection<? extends E> c) {
163 <        int sz = c.size();
164 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
186 <    /**
187 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
191 <     * instance of a {@link java.util.SortedSet} or is another
192 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 <     * according to the same ordering.  Otherwise, this priority queue
194 <     * will be ordered according to the natural ordering of its elements.
159 >     * Creates a {@code PriorityQueue} containing the elements in the
160 >     * specified collection.  If the specified collection is an instance of
161 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 >     * priority queue will be ordered according to the same ordering.
163 >     * Otherwise, this priority queue will be ordered according to the
164 >     * {@linkplain Comparable natural ordering} of its elements.
165       *
166       * @param  c the collection whose elements are to be placed
167       *         into this priority queue
# Line 201 | Line 171 | public class PriorityQueue<E> extends Ab
171       * @throws NullPointerException if the specified collection or any
172       *         of its elements are null
173       */
174 +    @SuppressWarnings("unchecked")
175      public PriorityQueue(Collection<? extends E> c) {
176 <        initializeArray(c);
177 <        if (c instanceof SortedSet) {
178 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
179 <            comparator = (Comparator<? super E>)s.comparator();
180 <            fillFromSorted(s);
181 <        } else if (c instanceof PriorityQueue) {
182 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
183 <            comparator = (Comparator<? super E>)s.comparator();
184 <            fillFromSorted(s);
185 <        } else {
186 <            comparator = null;
187 <            fillFromUnsorted(c);
176 >        if (c instanceof SortedSet<?>) {
177 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
178 >            this.comparator = (Comparator<? super E>) ss.comparator();
179 >            initElementsFromCollection(ss);
180 >        }
181 >        else if (c instanceof PriorityQueue<?>) {
182 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
183 >            this.comparator = (Comparator<? super E>) pq.comparator();
184 >            initFromPriorityQueue(pq);
185 >        }
186 >        else {
187 >            this.comparator = null;
188 >            initFromCollection(c);
189          }
190      }
191  
192      /**
193 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
194 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
193 >     * Creates a {@code PriorityQueue} containing the elements in the
194 >     * specified priority queue.  This priority queue will be
195       * ordered according to the same ordering as the given priority
196       * queue.
197       *
198       * @param  c the priority queue whose elements are to be placed
199       *         into this priority queue
200 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
201 <     *         compared to one another according to <tt>c</tt>'s
200 >     * @throws ClassCastException if elements of {@code c} cannot be
201 >     *         compared to one another according to {@code c}'s
202       *         ordering
203       * @throws NullPointerException if the specified priority queue or any
204       *         of its elements are null
205       */
206 +    @SuppressWarnings("unchecked")
207      public PriorityQueue(PriorityQueue<? extends E> c) {
208 <        initializeArray(c);
209 <        comparator = (Comparator<? super E>)c.comparator();
239 <        fillFromSorted(c);
208 >        this.comparator = (Comparator<? super E>) c.comparator();
209 >        initFromPriorityQueue(c);
210      }
211  
212      /**
213 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
214 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214 >     * specified sorted set.   This priority queue will be ordered
215       * according to the same ordering as the given sorted set.
216       *
217       * @param  c the sorted set whose elements are to be placed
218 <     *         into this priority queue.
218 >     *         into this priority queue
219       * @throws ClassCastException if elements of the specified sorted
220       *         set cannot be compared to one another according to the
221       *         sorted set's ordering
222       * @throws NullPointerException if the specified sorted set or any
223       *         of its elements are null
224       */
225 +    @SuppressWarnings("unchecked")
226      public PriorityQueue(SortedSet<? extends E> c) {
227 <        initializeArray(c);
228 <        comparator = (Comparator<? super E>)c.comparator();
229 <        fillFromSorted(c);
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initElementsFromCollection(c);
229 >    }
230 >
231 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
232 >        if (c.getClass() == PriorityQueue.class) {
233 >            this.queue = c.toArray();
234 >            this.size = c.size();
235 >        } else {
236 >            initFromCollection(c);
237 >        }
238 >    }
239 >
240 >    private void initElementsFromCollection(Collection<? extends E> c) {
241 >        Object[] a = c.toArray();
242 >        // If c.toArray incorrectly doesn't return Object[], copy it.
243 >        if (a.getClass() != Object[].class)
244 >            a = Arrays.copyOf(a, a.length, Object[].class);
245 >        int len = a.length;
246 >        if (len == 1 || this.comparator != null)
247 >            for (int i = 0; i < len; i++)
248 >                if (a[i] == null)
249 >                    throw new NullPointerException();
250 >        this.queue = a;
251 >        this.size = a.length;
252 >    }
253 >
254 >    /**
255 >     * Initializes queue array with elements from the given Collection.
256 >     *
257 >     * @param c the collection
258 >     */
259 >    private void initFromCollection(Collection<? extends E> c) {
260 >        initElementsFromCollection(c);
261 >        heapify();
262      }
263  
264      /**
265 <     * Resize array, if necessary, to be able to hold given index.
265 >     * The maximum size of array to allocate.
266 >     * Some VMs reserve some header words in an array.
267 >     * Attempts to allocate larger arrays may result in
268 >     * OutOfMemoryError: Requested array size exceeds VM limit
269       */
270 <    private void grow(int index) {
271 <        int newlen = queue.length;
272 <        if (index < newlen) // don't need to grow
273 <            return;
274 <        if (index == Integer.MAX_VALUE)
270 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
271 >
272 >    /**
273 >     * Increases the capacity of the array.
274 >     *
275 >     * @param minCapacity the desired minimum capacity
276 >     */
277 >    private void grow(int minCapacity) {
278 >        int oldCapacity = queue.length;
279 >        // Double size if small; else grow by 50%
280 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
281 >                                         (oldCapacity + 2) :
282 >                                         (oldCapacity >> 1));
283 >        // overflow-conscious code
284 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
285 >            newCapacity = hugeCapacity(minCapacity);
286 >        queue = Arrays.copyOf(queue, newCapacity);
287 >    }
288 >
289 >    private static int hugeCapacity(int minCapacity) {
290 >        if (minCapacity < 0) // overflow
291              throw new OutOfMemoryError();
292 <        while (newlen <= index) {
293 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
294 <                newlen = Integer.MAX_VALUE;
275 <            else
276 <                newlen <<= 2;
277 <        }
278 <        queue = Arrays.copyOf(queue, newlen);
292 >        return (minCapacity > MAX_ARRAY_SIZE) ?
293 >            Integer.MAX_VALUE :
294 >            MAX_ARRAY_SIZE;
295      }
296  
297      /**
298       * Inserts the specified element into this priority queue.
299       *
300 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
300 >     * @return {@code true} (as specified by {@link Collection#add})
301       * @throws ClassCastException if the specified element cannot be
302       *         compared with elements currently in this priority queue
303       *         according to the priority queue's ordering
# Line 294 | Line 310 | public class PriorityQueue<E> extends Ab
310      /**
311       * Inserts the specified element into this priority queue.
312       *
313 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
313 >     * @return {@code true} (as specified by {@link Queue#offer})
314       * @throws ClassCastException if the specified element cannot be
315       *         compared with elements currently in this priority queue
316       *         according to the priority queue's ordering
# Line 304 | Line 320 | public class PriorityQueue<E> extends Ab
320          if (e == null)
321              throw new NullPointerException();
322          modCount++;
323 <        ++size;
324 <
325 <        // Grow backing store if necessary
326 <        if (size >= queue.length)
327 <            grow(size);
328 <
329 <        queue[size] = e;
330 <        fixUp(size);
323 >        int i = size;
324 >        if (i >= queue.length)
325 >            grow(i + 1);
326 >        size = i + 1;
327 >        if (i == 0)
328 >            queue[0] = e;
329 >        else
330 >            siftUp(i, e);
331          return true;
332      }
333  
334      public E peek() {
335 <        if (size == 0)
320 <            return null;
321 <        return (E) queue[1];
335 >        return (size == 0) ? null : (E) queue[0];
336      }
337  
338      private int indexOf(Object o) {
339 <        if (o == null)
340 <            return -1;
341 <        for (int i = 1; i <= size; i++)
342 <            if (o.equals(queue[i]))
343 <                return i;
339 >        if (o != null) {
340 >            for (int i = 0; i < size; i++)
341 >                if (o.equals(queue[i]))
342 >                    return i;
343 >        }
344          return -1;
345      }
346  
347      /**
348       * Removes a single instance of the specified element from this queue,
349 <     * if it is present.  More formally, removes an element <tt>e</tt> such
350 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
351 <     * elements.  Returns true if this queue contained the specified element
352 <     * (or equivalently, if this queue changed as a result of the call).
349 >     * if it is present.  More formally, removes an element {@code e} such
350 >     * that {@code o.equals(e)}, if this queue contains one or more such
351 >     * elements.  Returns {@code true} if and only if this queue contained
352 >     * the specified element (or equivalently, if this queue changed as a
353 >     * result of the call).
354       *
355       * @param o element to be removed from this queue, if present
356 <     * @return <tt>true</tt> if this queue changed as a result of the call
356 >     * @return {@code true} if this queue changed as a result of the call
357       */
358      public boolean remove(Object o) {
359 <        int i = indexOf(o);
360 <        if (i == -1)
361 <            return false;
362 <        else {
363 <            removeAt(i);
364 <            return true;
365 <        }
359 >        int i = indexOf(o);
360 >        if (i == -1)
361 >            return false;
362 >        else {
363 >            removeAt(i);
364 >            return true;
365 >        }
366 >    }
367 >
368 >    /**
369 >     * Version of remove using reference equality, not equals.
370 >     * Needed by iterator.remove.
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     * @return {@code true} if removed
374 >     */
375 >    boolean removeEq(Object o) {
376 >        for (int i = 0; i < size; i++) {
377 >            if (o == queue[i]) {
378 >                removeAt(i);
379 >                return true;
380 >            }
381 >        }
382 >        return false;
383      }
384  
385      /**
386 <     * Returns <tt>true</tt> if this queue contains the specified element.
387 <     * More formally, returns <tt>true</tt> if and only if this queue contains
388 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
386 >     * Returns {@code true} if this queue contains the specified element.
387 >     * More formally, returns {@code true} if and only if this queue contains
388 >     * at least one element {@code e} such that {@code o.equals(e)}.
389       *
390       * @param o object to be checked for containment in this queue
391 <     * @return <tt>true</tt> if this queue contains the specified element
391 >     * @return {@code true} if this queue contains the specified element
392       */
393      public boolean contains(Object o) {
394 <        return indexOf(o) != -1;
394 >        return indexOf(o) != -1;
395      }
396  
397      /**
398 <     * Returns an array containing all of the elements in this queue,
398 >     * Returns an array containing all of the elements in this queue.
399       * The elements are in no particular order.
400       *
401       * <p>The returned array will be "safe" in that no references to it are
402 <     * maintained by this list.  (In other words, this method must allocate
402 >     * maintained by this queue.  (In other words, this method must allocate
403       * a new array).  The caller is thus free to modify the returned array.
404       *
405 <     * @return an array containing all of the elements in this queue.
405 >     * <p>This method acts as bridge between array-based and collection-based
406 >     * APIs.
407 >     *
408 >     * @return an array containing all of the elements in this queue
409       */
410      public Object[] toArray() {
411 <        return Arrays.copyOfRange(queue, 1, size+1);
411 >        return Arrays.copyOf(queue, size);
412      }
413  
414      /**
415 <     * Returns an array containing all of the elements in this queue.
416 <     * The elements are in no particular order.  The runtime type of
417 <     * the returned array is that of the specified array.  If the queue
418 <     * fits in the specified array, it is returned therein.
419 <     * Otherwise, a new array is allocated with the runtime type of
420 <     * the specified array and the size of this queue.
415 >     * Returns an array containing all of the elements in this queue; the
416 >     * runtime type of the returned array is that of the specified array.
417 >     * The returned array elements are in no particular order.
418 >     * If the queue fits in the specified array, it is returned therein.
419 >     * Otherwise, a new array is allocated with the runtime type of the
420 >     * specified array and the size of this queue.
421       *
422       * <p>If the queue fits in the specified array with room to spare
423       * (i.e., the array has more elements than the queue), the element in
424       * the array immediately following the end of the collection is set to
425 <     * <tt>null</tt>.  (This is useful in determining the length of the
426 <     * queue <i>only</i> if the caller knows that the queue does not contain
427 <     * any null elements.)
425 >     * {@code null}.
426 >     *
427 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
428 >     * array-based and collection-based APIs.  Further, this method allows
429 >     * precise control over the runtime type of the output array, and may,
430 >     * under certain circumstances, be used to save allocation costs.
431 >     *
432 >     * <p>Suppose {@code x} is a queue known to contain only strings.
433 >     * The following code can be used to dump the queue into a newly
434 >     * allocated array of {@code String}:
435 >     *
436 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 >     *
438 >     * Note that {@code toArray(new Object[0])} is identical in function to
439 >     * {@code toArray()}.
440       *
441       * @param a the array into which the elements of the queue are to
442       *          be stored, if it is big enough; otherwise, a new array of the
443       *          same runtime type is allocated for this purpose.
444 <     * @return an array containing the elements of the queue
444 >     * @return an array containing all of the elements in this queue
445       * @throws ArrayStoreException if the runtime type of the specified array
446       *         is not a supertype of the runtime type of every element in
447       *         this queue
# Line 403 | Line 450 | public class PriorityQueue<E> extends Ab
450      public <T> T[] toArray(T[] a) {
451          if (a.length < size)
452              // Make a new array of a's runtime type, but my contents:
453 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
454 <        System.arraycopy(queue, 1, a, 0, size);
453 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 >        System.arraycopy(queue, 0, a, 0, size);
455          if (a.length > size)
456              a[size] = null;
457          return a;
# Line 420 | Line 467 | public class PriorityQueue<E> extends Ab
467          return new Itr();
468      }
469  
470 <    private class Itr implements Iterator<E> {
424 <
470 >    private final class Itr implements Iterator<E> {
471          /**
472           * Index (into queue array) of element to be returned by
473           * subsequent call to next.
474           */
475 <        private int cursor = 1;
475 >        private int cursor = 0;
476  
477          /**
478           * Index of element returned by most recent call to next,
479           * unless that element came from the forgetMeNot list.
480 <         * Reset to 0 if element is deleted by a call to remove.
480 >         * Set to -1 if element is deleted by a call to remove.
481           */
482 <        private int lastRet = 0;
482 >        private int lastRet = -1;
483  
484          /**
485 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
442 <         */
443 <        private int expectedModCount = modCount;
444 <
445 <        /**
446 <         * A list of elements that were moved from the unvisited portion of
485 >         * A queue of elements that were moved from the unvisited portion of
486           * the heap into the visited portion as a result of "unlucky" element
487           * removals during the iteration.  (Unlucky element removals are those
488 <         * that require a fixup instead of a fixdown.)  We must visit all of
488 >         * that require a siftup instead of a siftdown.)  We must visit all of
489           * the elements in this list to complete the iteration.  We do this
490           * after we've completed the "normal" iteration.
491           *
492           * We expect that most iterations, even those involving removals,
493 <         * will not use need to store elements in this field.
493 >         * will not need to store elements in this field.
494           */
495 <        private ArrayList<E> forgetMeNot = null;
495 >        private ArrayDeque<E> forgetMeNot = null;
496  
497          /**
498           * Element returned by the most recent call to next iff that
499           * element was drawn from the forgetMeNot list.
500           */
501 <        private Object lastRetElt = null;
501 >        private E lastRetElt = null;
502 >
503 >        /**
504 >         * The modCount value that the iterator believes that the backing
505 >         * Queue should have.  If this expectation is violated, the iterator
506 >         * has detected concurrent modification.
507 >         */
508 >        private int expectedModCount = modCount;
509  
510          public boolean hasNext() {
511 <            return cursor <= size || forgetMeNot != null;
511 >            return cursor < size ||
512 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
513          }
514  
515          public E next() {
516 <            checkForComodification();
517 <            E result;
518 <            if (cursor <= size) {
519 <                result = (E) queue[cursor];
520 <                lastRet = cursor++;
521 <            }
522 <            else if (forgetMeNot == null)
523 <                throw new NoSuchElementException();
524 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
516 >            if (expectedModCount != modCount)
517 >                throw new ConcurrentModificationException();
518 >            if (cursor < size)
519 >                return (E) queue[lastRet = cursor++];
520 >            if (forgetMeNot != null) {
521 >                lastRet = -1;
522 >                lastRetElt = forgetMeNot.poll();
523 >                if (lastRetElt != null)
524 >                    return lastRetElt;
525              }
526 <            return result;
526 >            throw new NoSuchElementException();
527          }
528  
529          public void remove() {
530 <            checkForComodification();
531 <
532 <            if (lastRet != 0) {
530 >            if (expectedModCount != modCount)
531 >                throw new ConcurrentModificationException();
532 >            if (lastRet != -1) {
533                  E moved = PriorityQueue.this.removeAt(lastRet);
534 <                lastRet = 0;
535 <                if (moved == null) {
534 >                lastRet = -1;
535 >                if (moved == null)
536                      cursor--;
537 <                } else {
537 >                else {
538                      if (forgetMeNot == null)
539 <                        forgetMeNot = new ArrayList<E>();
539 >                        forgetMeNot = new ArrayDeque<E>();
540                      forgetMeNot.add(moved);
541                  }
542              } else if (lastRetElt != null) {
543 <                PriorityQueue.this.remove(lastRetElt);
543 >                PriorityQueue.this.removeEq(lastRetElt);
544                  lastRetElt = null;
545              } else {
546                  throw new IllegalStateException();
547              }
507
548              expectedModCount = modCount;
549          }
510
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
550      }
551  
552      public int size() {
# Line 524 | Line 559 | public class PriorityQueue<E> extends Ab
559       */
560      public void clear() {
561          modCount++;
562 <
528 <        // Null out element references to prevent memory leak
529 <        for (int i=1; i<=size; i++)
562 >        for (int i = 0; i < size; i++)
563              queue[i] = null;
531
564          size = 0;
565      }
566  
567      public E poll() {
568          if (size == 0)
569              return null;
570 +        int s = --size;
571          modCount++;
572 <
573 <        E result = (E) queue[1];
574 <        queue[1] = queue[size];
575 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
576 <        if (size > 1)
544 <            fixDown(1);
545 <
572 >        E result = (E) queue[0];
573 >        E x = (E) queue[s];
574 >        queue[s] = null;
575 >        if (s != 0)
576 >            siftDown(0, x);
577          return result;
578      }
579  
580      /**
581 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
581 >     * Removes the ith element from queue.
582       *
583 <     * Normally this method leaves the elements at positions from 1 up to i-1,
584 <     * inclusive, untouched.  Under these circumstances, it returns null.
585 <     * Occasionally, in order to maintain the heap invariant, it must move
586 <     * the last element of the list to some index in the range [2, i-1],
587 <     * and move the element previously at position (i/2) to position i.
588 <     * Under these circumstances, this method returns the element that was
589 <     * previously at the end of the list and is now at some position between
590 <     * 2 and i-1 inclusive.
583 >     * Normally this method leaves the elements at up to i-1,
584 >     * inclusive, untouched.  Under these circumstances, it returns
585 >     * null.  Occasionally, in order to maintain the heap invariant,
586 >     * it must swap a later element of the list with one earlier than
587 >     * i.  Under these circumstances, this method returns the element
588 >     * that was previously at the end of the list and is now at some
589 >     * position before i. This fact is used by iterator.remove so as to
590 >     * avoid missing traversing elements.
591       */
592      private E removeAt(int i) {
593 <        assert i > 0 && i <= size;
593 >        // assert i >= 0 && i < size;
594          modCount++;
595 <
596 <        E moved = (E) queue[size];
597 <        queue[i] = moved;
598 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
599 <        if (i <= size) {
600 <            fixDown(i);
595 >        int s = --size;
596 >        if (s == i) // removed last element
597 >            queue[i] = null;
598 >        else {
599 >            E moved = (E) queue[s];
600 >            queue[s] = null;
601 >            siftDown(i, moved);
602              if (queue[i] == moved) {
603 <                fixUp(i);
603 >                siftUp(i, moved);
604                  if (queue[i] != moved)
605                      return moved;
606              }
# Line 578 | Line 609 | public class PriorityQueue<E> extends Ab
609      }
610  
611      /**
612 <     * Establishes the heap invariant (described above) assuming the heap
613 <     * satisfies the invariant except possibly for the leaf-node indexed by k
614 <     * (which may have a nextExecutionTime less than its parent's).
615 <     *
616 <     * This method functions by "promoting" queue[k] up the hierarchy
617 <     * (by swapping it with its parent) repeatedly until queue[k]
618 <     * is greater than or equal to its parent.
619 <     */
620 <    private void fixUp(int k) {
621 <        if (comparator == null) {
622 <            while (k > 1) {
623 <                int j = k >> 1;
624 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
625 <                    break;
626 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
627 <                k = j;
628 <            }
629 <        } else {
630 <            while (k > 1) {
631 <                int j = k >>> 1;
632 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
633 <                    break;
634 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
635 <                k = j;
636 <            }
637 <        }
638 <    }
639 <
640 <    /**
641 <     * Establishes the heap invariant (described above) in the subtree
642 <     * rooted at k, which is assumed to satisfy the heap invariant except
643 <     * possibly for node k itself (which may be greater than its children).
644 <     *
645 <     * This method functions by "demoting" queue[k] down the hierarchy
646 <     * (by swapping it with its smaller child) repeatedly until queue[k]
647 <     * is less than or equal to its children.
648 <     */
649 <    private void fixDown(int k) {
650 <        int j;
651 <        if (comparator == null) {
652 <            while ((j = k << 1) <= size && (j > 0)) {
653 <                if (j<size &&
654 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
655 <                    j++; // j indexes smallest kid
656 <
657 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
658 <                    break;
659 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
660 <                k = j;
661 <            }
662 <        } else {
663 <            while ((j = k << 1) <= size && (j > 0)) {
664 <                if (j<size &&
665 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
666 <                    j++; // j indexes smallest kid
667 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
668 <                    break;
669 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
670 <                k = j;
671 <            }
612 >     * Inserts item x at position k, maintaining heap invariant by
613 >     * promoting x up the tree until it is greater than or equal to
614 >     * its parent, or is the root.
615 >     *
616 >     * To simplify and speed up coercions and comparisons. the
617 >     * Comparable and Comparator versions are separated into different
618 >     * methods that are otherwise identical. (Similarly for siftDown.)
619 >     *
620 >     * @param k the position to fill
621 >     * @param x the item to insert
622 >     */
623 >    private void siftUp(int k, E x) {
624 >        if (comparator != null)
625 >            siftUpUsingComparator(k, x);
626 >        else
627 >            siftUpComparable(k, x);
628 >    }
629 >
630 >    private void siftUpComparable(int k, E x) {
631 >        Comparable<? super E> key = (Comparable<? super E>) x;
632 >        while (k > 0) {
633 >            int parent = (k - 1) >>> 1;
634 >            Object e = queue[parent];
635 >            if (key.compareTo((E) e) >= 0)
636 >                break;
637 >            queue[k] = e;
638 >            k = parent;
639 >        }
640 >        queue[k] = key;
641 >    }
642 >
643 >    private void siftUpUsingComparator(int k, E x) {
644 >        while (k > 0) {
645 >            int parent = (k - 1) >>> 1;
646 >            Object e = queue[parent];
647 >            if (comparator.compare(x, (E) e) >= 0)
648 >                break;
649 >            queue[k] = e;
650 >            k = parent;
651 >        }
652 >        queue[k] = x;
653 >    }
654 >
655 >    /**
656 >     * Inserts item x at position k, maintaining heap invariant by
657 >     * demoting x down the tree repeatedly until it is less than or
658 >     * equal to its children or is a leaf.
659 >     *
660 >     * @param k the position to fill
661 >     * @param x the item to insert
662 >     */
663 >    private void siftDown(int k, E x) {
664 >        if (comparator != null)
665 >            siftDownUsingComparator(k, x);
666 >        else
667 >            siftDownComparable(k, x);
668 >    }
669 >
670 >    private void siftDownComparable(int k, E x) {
671 >        Comparable<? super E> key = (Comparable<? super E>)x;
672 >        int half = size >>> 1;        // loop while a non-leaf
673 >        while (k < half) {
674 >            int child = (k << 1) + 1; // assume left child is least
675 >            Object c = queue[child];
676 >            int right = child + 1;
677 >            if (right < size &&
678 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
679 >                c = queue[child = right];
680 >            if (key.compareTo((E) c) <= 0)
681 >                break;
682 >            queue[k] = c;
683 >            k = child;
684 >        }
685 >        queue[k] = key;
686 >    }
687 >
688 >    private void siftDownUsingComparator(int k, E x) {
689 >        int half = size >>> 1;
690 >        while (k < half) {
691 >            int child = (k << 1) + 1;
692 >            Object c = queue[child];
693 >            int right = child + 1;
694 >            if (right < size &&
695 >                comparator.compare((E) c, (E) queue[right]) > 0)
696 >                c = queue[child = right];
697 >            if (comparator.compare(x, (E) c) <= 0)
698 >                break;
699 >            queue[k] = c;
700 >            k = child;
701          }
702 +        queue[k] = x;
703      }
704  
705      /**
# Line 646 | Line 707 | public class PriorityQueue<E> extends Ab
707       * assuming nothing about the order of the elements prior to the call.
708       */
709      private void heapify() {
710 <        for (int i = size/2; i >= 1; i--)
711 <            fixDown(i);
710 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
711 >            siftDown(i, (E) queue[i]);
712      }
713  
714      /**
715       * Returns the comparator used to order the elements in this
716 <     * queue, or <tt>null</tt> if this queue is sorted according to
716 >     * queue, or {@code null} if this queue is sorted according to
717       * the {@linkplain Comparable natural ordering} of its elements.
718       *
719       * @return the comparator used to order this queue, or
720 <     *         <tt>null</tt> if this queue is sorted according to the
721 <     *         natural ordering of its elements.
720 >     *         {@code null} if this queue is sorted according to the
721 >     *         natural ordering of its elements
722       */
723      public Comparator<? super E> comparator() {
724          return comparator;
725      }
726  
727      /**
728 <     * Save the state of the instance to a stream (that
668 <     * is, serialize it).
728 >     * Saves this queue to a stream (that is, serializes it).
729       *
730       * @serialData The length of the array backing the instance is
731 <     * emitted (int), followed by all of its elements (each an
732 <     * <tt>Object</tt>) in the proper order.
673 <     * @param s the stream
731 >     *             emitted (int), followed by all of its elements
732 >     *             (each an {@code Object}) in the proper order.
733       */
734      private void writeObject(java.io.ObjectOutputStream s)
735 <        throws java.io.IOException{
735 >        throws java.io.IOException {
736          // Write out element count, and any hidden stuff
737          s.defaultWriteObject();
738  
739 <        // Write out array length
740 <        s.writeInt(queue.length);
739 >        // Write out array length, for compatibility with 1.5 version
740 >        s.writeInt(Math.max(2, size + 1));
741  
742 <        // Write out all elements in the proper order.
743 <        for (int i=1; i<=size; i++)
742 >        // Write out all elements in the "proper order".
743 >        for (int i = 0; i < size; i++)
744              s.writeObject(queue[i]);
745      }
746  
747      /**
748 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
690 <     * (that is, deserialize it).
691 <     * @param s the stream
748 >     * Reconstitutes this queue from a stream (that is, deserializes it).
749       */
750      private void readObject(java.io.ObjectInputStream s)
751          throws java.io.IOException, ClassNotFoundException {
752          // Read in size, and any hidden stuff
753          s.defaultReadObject();
754  
755 <        // Read in array length and allocate array
756 <        int arrayLength = s.readInt();
757 <        queue = new Object[arrayLength];
758 <
702 <        // Read in all elements in the proper order.
703 <        for (int i=1; i<=size; i++)
704 <            queue[i] = (E) s.readObject();
705 <    }
755 >        // Read in (and discard) array length
756 >        s.readInt();
757 >
758 >        queue = new Object[size];
759  
760 +        // Read in all elements.
761 +        for (int i = 0; i < size; i++)
762 +            queue[i] = s.readObject();
763 +
764 +        // Elements are guaranteed to be in "proper order", but the
765 +        // spec has never explained what that might be.
766 +        heapify();
767 +    }
768   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines