ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.54 by jsr166, Thu Nov 24 03:44:57 2005 UTC vs.
Revision 1.130 by jsr166, Sun Nov 11 16:27:28 2018 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31  
32   /**
33 < * An unbounded priority {@linkplain Queue queue} based on a priority
34 < * heap.  The elements of the priority queue are ordered according to
35 < * their {@linkplain Comparable natural ordering}, or by a {@link
36 < * Comparator} provided at queue construction time, depending on which
37 < * constructor is used.  A priority queue does not permit
38 < * <tt>null</tt> elements.  A priority queue relying on natural
39 < * ordering also does not permit insertion of non-comparable objects
40 < * (doing so may result in <tt>ClassCastException</tt>).
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41   *
42   * <p>The <em>head</em> of this queue is the <em>least</em> element
43   * with respect to the specified ordering.  If multiple elements are
44   * tied for least value, the head is one of those elements -- ties are
45 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
46 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47   * element at the head of the queue.
48   *
49   * <p>A priority queue is unbounded, but has an internal
# Line 35 | Line 56 | import java.util.*; // for javadoc (till
56   * <p>This class and its iterator implement all of the
57   * <em>optional</em> methods of the {@link Collection} and {@link
58   * Iterator} interfaces.  The Iterator provided in method {@link
59 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
59 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
60 > * are <em>not</em> guaranteed to traverse the elements of
61   * the priority queue in any particular order. If you need ordered
62 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
62 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
63   *
64 < * <p> <strong>Note that this implementation is not synchronized.</strong>
65 < * Multiple threads should not access a <tt>PriorityQueue</tt>
66 < * instance concurrently if any of the threads modifies the list
67 < * structurally. Instead, use the thread-safe {@link
64 > * <p><strong>Note that this implementation is not synchronized.</strong>
65 > * Multiple threads should not access a {@code PriorityQueue}
66 > * instance concurrently if any of the threads modifies the queue.
67 > * Instead, use the thread-safe {@link
68   * java.util.concurrent.PriorityBlockingQueue} class.
69   *
70 < * <p>Implementation note: this implementation provides O(log(n)) time
71 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
72 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
73 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
74 < * constant time for the retrieval methods (<tt>peek</tt>,
75 < * <tt>element</tt>, and <tt>size</tt>).
70 > * <p>Implementation note: this implementation provides
71 > * O(log(n)) time for the enqueuing and dequeuing methods
72 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
73 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
74 > * methods; and constant time for the retrieval methods
75 > * ({@code peek}, {@code element}, and {@code size}).
76   *
77   * <p>This class is a member of the
78 < * <a href="{@docRoot}/../guide/collections/index.html">
78 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
79   * Java Collections Framework</a>.
80 + *
81   * @since 1.5
82 < * @version 1.8, 08/27/05
83 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
82 > * @author Josh Bloch, Doug Lea
83 > * @param <E> the type of elements held in this queue
84   */
85 + @SuppressWarnings("unchecked")
86   public class PriorityQueue<E> extends AbstractQueue<E>
87      implements java.io.Serializable {
88  
# Line 68 | Line 91 | public class PriorityQueue<E> extends Ab
91      private static final int DEFAULT_INITIAL_CAPACITY = 11;
92  
93      /**
94 <     * Priority queue represented as a balanced binary heap: the two children
95 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
96 <     * ordered by comparator, or by the elements' natural ordering, if
97 <     * comparator is null:  For each node n in the heap and each descendant d
98 <     * of n, n <= d.
99 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
94 >     * Priority queue represented as a balanced binary heap: the two
95 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
96 >     * priority queue is ordered by comparator, or by the elements'
97 >     * natural ordering, if comparator is null: For each node n in the
98 >     * heap and each descendant d of n, n <= d.  The element with the
99 >     * lowest value is in queue[0], assuming the queue is nonempty.
100       */
101 <    private transient Object[] queue;
101 >    transient Object[] queue; // non-private to simplify nested class access
102  
103      /**
104       * The number of elements in the priority queue.
105       */
106 <    private int size = 0;
106 >    int size;
107  
108      /**
109       * The comparator, or null if priority queue uses elements'
# Line 97 | Line 115 | public class PriorityQueue<E> extends Ab
115       * The number of times this priority queue has been
116       * <i>structurally modified</i>.  See AbstractList for gory details.
117       */
118 <    private transient int modCount = 0;
118 >    transient int modCount;     // non-private to simplify nested class access
119  
120      /**
121 <     * Creates a <tt>PriorityQueue</tt> with the default initial
121 >     * Creates a {@code PriorityQueue} with the default initial
122       * capacity (11) that orders its elements according to their
123       * {@linkplain Comparable natural ordering}.
124       */
# Line 109 | Line 127 | public class PriorityQueue<E> extends Ab
127      }
128  
129      /**
130 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
130 >     * Creates a {@code PriorityQueue} with the specified initial
131       * capacity that orders its elements according to their
132       * {@linkplain Comparable natural ordering}.
133       *
134       * @param initialCapacity the initial capacity for this priority queue
135 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
136 <     * than 1
135 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
136 >     *         than 1
137       */
138      public PriorityQueue(int initialCapacity) {
139          this(initialCapacity, null);
140      }
141  
142      /**
143 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
143 >     * Creates a {@code PriorityQueue} with the default initial capacity and
144 >     * whose elements are ordered according to the specified comparator.
145 >     *
146 >     * @param  comparator the comparator that will be used to order this
147 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
148 >     *         natural ordering} of the elements will be used.
149 >     * @since 1.8
150 >     */
151 >    public PriorityQueue(Comparator<? super E> comparator) {
152 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
153 >    }
154 >
155 >    /**
156 >     * Creates a {@code PriorityQueue} with the specified initial capacity
157       * that orders its elements according to the specified comparator.
158       *
159       * @param  initialCapacity the initial capacity for this priority queue
160 <     * @param  comparator the comparator that will be used to order
161 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
162 <     *         ordering</i> of the elements will be used.
163 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
160 >     * @param  comparator the comparator that will be used to order this
161 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
162 >     *         natural ordering} of the elements will be used.
163 >     * @throws IllegalArgumentException if {@code initialCapacity} is
164       *         less than 1
165       */
166      public PriorityQueue(int initialCapacity,
167                           Comparator<? super E> comparator) {
168 +        // Note: This restriction of at least one is not actually needed,
169 +        // but continues for 1.5 compatibility
170          if (initialCapacity < 1)
171              throw new IllegalArgumentException();
172 <        this.queue = new Object[initialCapacity + 1];
172 >        this.queue = new Object[initialCapacity];
173          this.comparator = comparator;
174      }
175  
176      /**
177 <     * Common code to initialize underlying queue array across
178 <     * constructors below.
179 <     */
180 <    private void initializeArray(Collection<? extends E> c) {
181 <        int sz = c.size();
182 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
186 <    /**
187 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
191 <     * instance of a {@link java.util.SortedSet} or is another
192 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 <     * according to the same ordering.  Otherwise, this priority queue
194 <     * will be ordered according to the natural ordering of its elements.
177 >     * Creates a {@code PriorityQueue} containing the elements in the
178 >     * specified collection.  If the specified collection is an instance of
179 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
180 >     * priority queue will be ordered according to the same ordering.
181 >     * Otherwise, this priority queue will be ordered according to the
182 >     * {@linkplain Comparable natural ordering} of its elements.
183       *
184       * @param  c the collection whose elements are to be placed
185       *         into this priority queue
# Line 202 | Line 190 | public class PriorityQueue<E> extends Ab
190       *         of its elements are null
191       */
192      public PriorityQueue(Collection<? extends E> c) {
193 <        initializeArray(c);
194 <        if (c instanceof SortedSet) {
195 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
196 <            comparator = (Comparator<? super E>)s.comparator();
197 <            fillFromSorted(s);
198 <        } else if (c instanceof PriorityQueue) {
199 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
200 <            comparator = (Comparator<? super E>)s.comparator();
201 <            fillFromSorted(s);
202 <        } else {
203 <            comparator = null;
204 <            fillFromUnsorted(c);
193 >        if (c instanceof SortedSet<?>) {
194 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
195 >            this.comparator = (Comparator<? super E>) ss.comparator();
196 >            initElementsFromCollection(ss);
197 >        }
198 >        else if (c instanceof PriorityQueue<?>) {
199 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
200 >            this.comparator = (Comparator<? super E>) pq.comparator();
201 >            initFromPriorityQueue(pq);
202 >        }
203 >        else {
204 >            this.comparator = null;
205 >            initFromCollection(c);
206          }
207      }
208  
209      /**
210 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
211 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
210 >     * Creates a {@code PriorityQueue} containing the elements in the
211 >     * specified priority queue.  This priority queue will be
212       * ordered according to the same ordering as the given priority
213       * queue.
214       *
215       * @param  c the priority queue whose elements are to be placed
216       *         into this priority queue
217 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
218 <     *         compared to one another according to <tt>c</tt>'s
217 >     * @throws ClassCastException if elements of {@code c} cannot be
218 >     *         compared to one another according to {@code c}'s
219       *         ordering
220       * @throws NullPointerException if the specified priority queue or any
221       *         of its elements are null
222       */
223      public PriorityQueue(PriorityQueue<? extends E> c) {
224 <        initializeArray(c);
225 <        comparator = (Comparator<? super E>)c.comparator();
239 <        fillFromSorted(c);
224 >        this.comparator = (Comparator<? super E>) c.comparator();
225 >        initFromPriorityQueue(c);
226      }
227  
228      /**
229 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
230 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
229 >     * Creates a {@code PriorityQueue} containing the elements in the
230 >     * specified sorted set.   This priority queue will be ordered
231       * according to the same ordering as the given sorted set.
232       *
233       * @param  c the sorted set whose elements are to be placed
234 <     *         into this priority queue.
234 >     *         into this priority queue
235       * @throws ClassCastException if elements of the specified sorted
236       *         set cannot be compared to one another according to the
237       *         sorted set's ordering
# Line 255 | Line 239 | public class PriorityQueue<E> extends Ab
239       *         of its elements are null
240       */
241      public PriorityQueue(SortedSet<? extends E> c) {
242 <        initializeArray(c);
243 <        comparator = (Comparator<? super E>)c.comparator();
244 <        fillFromSorted(c);
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244 >    }
245 >
246 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
247 >    private static Object[] ensureNonEmpty(Object[] es) {
248 >        return (es.length > 0) ? es : new Object[1];
249 >    }
250 >
251 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
252 >        if (c.getClass() == PriorityQueue.class) {
253 >            this.queue = ensureNonEmpty(c.toArray());
254 >            this.size = c.size();
255 >        } else {
256 >            initFromCollection(c);
257 >        }
258 >    }
259 >
260 >    private void initElementsFromCollection(Collection<? extends E> c) {
261 >        Object[] es = c.toArray();
262 >        int len = es.length;
263 >        // If c.toArray incorrectly doesn't return Object[], copy it.
264 >        if (es.getClass() != Object[].class)
265 >            es = Arrays.copyOf(es, len, Object[].class);
266 >        if (len == 1 || this.comparator != null)
267 >            for (Object e : es)
268 >                if (e == null)
269 >                    throw new NullPointerException();
270 >        this.queue = ensureNonEmpty(es);
271 >        this.size = len;
272 >    }
273 >
274 >    /**
275 >     * Initializes queue array with elements from the given Collection.
276 >     *
277 >     * @param c the collection
278 >     */
279 >    private void initFromCollection(Collection<? extends E> c) {
280 >        initElementsFromCollection(c);
281 >        heapify();
282      }
283  
284      /**
285 <     * Resize array, if necessary, to be able to hold given index.
285 >     * The maximum size of array to allocate.
286 >     * Some VMs reserve some header words in an array.
287 >     * Attempts to allocate larger arrays may result in
288 >     * OutOfMemoryError: Requested array size exceeds VM limit
289       */
290 <    private void grow(int index) {
291 <        int newlen = queue.length;
292 <        if (index < newlen) // don't need to grow
293 <            return;
294 <        if (index == Integer.MAX_VALUE)
290 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
291 >
292 >    /**
293 >     * Increases the capacity of the array.
294 >     *
295 >     * @param minCapacity the desired minimum capacity
296 >     */
297 >    private void grow(int minCapacity) {
298 >        int oldCapacity = queue.length;
299 >        // Double size if small; else grow by 50%
300 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
301 >                                         (oldCapacity + 2) :
302 >                                         (oldCapacity >> 1));
303 >        // overflow-conscious code
304 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
305 >            newCapacity = hugeCapacity(minCapacity);
306 >        queue = Arrays.copyOf(queue, newCapacity);
307 >    }
308 >
309 >    private static int hugeCapacity(int minCapacity) {
310 >        if (minCapacity < 0) // overflow
311              throw new OutOfMemoryError();
312 <        while (newlen <= index) {
313 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
314 <                newlen = Integer.MAX_VALUE;
275 <            else
276 <                newlen <<= 1;
277 <        }
278 <        queue = Arrays.copyOf(queue, newlen);
312 >        return (minCapacity > MAX_ARRAY_SIZE) ?
313 >            Integer.MAX_VALUE :
314 >            MAX_ARRAY_SIZE;
315      }
316  
317      /**
318       * Inserts the specified element into this priority queue.
319       *
320 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
320 >     * @return {@code true} (as specified by {@link Collection#add})
321       * @throws ClassCastException if the specified element cannot be
322       *         compared with elements currently in this priority queue
323       *         according to the priority queue's ordering
# Line 294 | Line 330 | public class PriorityQueue<E> extends Ab
330      /**
331       * Inserts the specified element into this priority queue.
332       *
333 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
333 >     * @return {@code true} (as specified by {@link Queue#offer})
334       * @throws ClassCastException if the specified element cannot be
335       *         compared with elements currently in this priority queue
336       *         according to the priority queue's ordering
# Line 304 | Line 340 | public class PriorityQueue<E> extends Ab
340          if (e == null)
341              throw new NullPointerException();
342          modCount++;
343 <        ++size;
344 <
345 <        // Grow backing store if necessary
346 <        if (size >= queue.length)
347 <            grow(size);
312 <
313 <        queue[size] = e;
314 <        fixUp(size);
343 >        int i = size;
344 >        if (i >= queue.length)
345 >            grow(i + 1);
346 >        siftUp(i, e);
347 >        size = i + 1;
348          return true;
349      }
350  
351      public E peek() {
352 <        if (size == 0)
320 <            return null;
321 <        return (E) queue[1];
352 >        return (E) queue[0];
353      }
354  
355      private int indexOf(Object o) {
356 <        if (o == null)
357 <            return -1;
358 <        for (int i = 1; i <= size; i++)
359 <            if (o.equals(queue[i]))
360 <                return i;
356 >        if (o != null) {
357 >            final Object[] es = queue;
358 >            for (int i = 0, n = size; i < n; i++)
359 >                if (o.equals(es[i]))
360 >                    return i;
361 >        }
362          return -1;
363      }
364  
365      /**
366       * Removes a single instance of the specified element from this queue,
367 <     * if it is present.  More formally, removes an element <tt>e</tt> such
368 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
369 <     * elements.  Returns true if this queue contained the specified element
370 <     * (or equivalently, if this queue changed as a result of the call).
367 >     * if it is present.  More formally, removes an element {@code e} such
368 >     * that {@code o.equals(e)}, if this queue contains one or more such
369 >     * elements.  Returns {@code true} if and only if this queue contained
370 >     * the specified element (or equivalently, if this queue changed as a
371 >     * result of the call).
372       *
373       * @param o element to be removed from this queue, if present
374 <     * @return <tt>true</tt> if this queue changed as a result of the call
374 >     * @return {@code true} if this queue changed as a result of the call
375       */
376      public boolean remove(Object o) {
377 <        int i = indexOf(o);
378 <        if (i == -1)
379 <            return false;
380 <        else {
381 <            removeAt(i);
382 <            return true;
383 <        }
377 >        int i = indexOf(o);
378 >        if (i == -1)
379 >            return false;
380 >        else {
381 >            removeAt(i);
382 >            return true;
383 >        }
384      }
385  
386      /**
387 <     * Returns <tt>true</tt> if this queue contains the specified element.
388 <     * More formally, returns <tt>true</tt> if and only if this queue contains
389 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
387 >     * Identity-based version for use in Itr.remove.
388 >     *
389 >     * @param o element to be removed from this queue, if present
390 >     */
391 >    void removeEq(Object o) {
392 >        final Object[] es = queue;
393 >        for (int i = 0, n = size; i < n; i++) {
394 >            if (o == es[i]) {
395 >                removeAt(i);
396 >                break;
397 >            }
398 >        }
399 >    }
400 >
401 >    /**
402 >     * Returns {@code true} if this queue contains the specified element.
403 >     * More formally, returns {@code true} if and only if this queue contains
404 >     * at least one element {@code e} such that {@code o.equals(e)}.
405       *
406       * @param o object to be checked for containment in this queue
407 <     * @return <tt>true</tt> if this queue contains the specified element
407 >     * @return {@code true} if this queue contains the specified element
408       */
409      public boolean contains(Object o) {
410 <        return indexOf(o) != -1;
410 >        return indexOf(o) >= 0;
411      }
412  
413      /**
414 <     * Returns an array containing all of the elements in this queue,
414 >     * Returns an array containing all of the elements in this queue.
415       * The elements are in no particular order.
416       *
417       * <p>The returned array will be "safe" in that no references to it are
418 <     * maintained by this list.  (In other words, this method must allocate
418 >     * maintained by this queue.  (In other words, this method must allocate
419       * a new array).  The caller is thus free to modify the returned array.
420       *
421 <     * @return an array containing all of the elements in this queue.
421 >     * <p>This method acts as bridge between array-based and collection-based
422 >     * APIs.
423 >     *
424 >     * @return an array containing all of the elements in this queue
425       */
426      public Object[] toArray() {
427 <        return Arrays.copyOfRange(queue, 1, size+1);
427 >        return Arrays.copyOf(queue, size);
428      }
429  
430      /**
431 <     * Returns an array containing all of the elements in this queue.
432 <     * The elements are in no particular order.  The runtime type of
433 <     * the returned array is that of the specified array.  If the queue
434 <     * fits in the specified array, it is returned therein.
435 <     * Otherwise, a new array is allocated with the runtime type of
436 <     * the specified array and the size of this queue.
431 >     * Returns an array containing all of the elements in this queue; the
432 >     * runtime type of the returned array is that of the specified array.
433 >     * The returned array elements are in no particular order.
434 >     * If the queue fits in the specified array, it is returned therein.
435 >     * Otherwise, a new array is allocated with the runtime type of the
436 >     * specified array and the size of this queue.
437       *
438       * <p>If the queue fits in the specified array with room to spare
439       * (i.e., the array has more elements than the queue), the element in
440       * the array immediately following the end of the collection is set to
441 <     * <tt>null</tt>.  (This is useful in determining the length of the
442 <     * queue <i>only</i> if the caller knows that the queue does not contain
443 <     * any null elements.)
441 >     * {@code null}.
442 >     *
443 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
444 >     * array-based and collection-based APIs.  Further, this method allows
445 >     * precise control over the runtime type of the output array, and may,
446 >     * under certain circumstances, be used to save allocation costs.
447 >     *
448 >     * <p>Suppose {@code x} is a queue known to contain only strings.
449 >     * The following code can be used to dump the queue into a newly
450 >     * allocated array of {@code String}:
451 >     *
452 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
453 >     *
454 >     * Note that {@code toArray(new Object[0])} is identical in function to
455 >     * {@code toArray()}.
456       *
457       * @param a the array into which the elements of the queue are to
458       *          be stored, if it is big enough; otherwise, a new array of the
459       *          same runtime type is allocated for this purpose.
460 <     * @return an array containing the elements of the queue
460 >     * @return an array containing all of the elements in this queue
461       * @throws ArrayStoreException if the runtime type of the specified array
462       *         is not a supertype of the runtime type of every element in
463       *         this queue
464       * @throws NullPointerException if the specified array is null
465       */
466      public <T> T[] toArray(T[] a) {
467 +        final int size = this.size;
468          if (a.length < size)
469              // Make a new array of a's runtime type, but my contents:
470 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
471 <        System.arraycopy(queue, 1, a, 0, size);
470 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
471 >        System.arraycopy(queue, 0, a, 0, size);
472          if (a.length > size)
473              a[size] = null;
474          return a;
# Line 420 | Line 484 | public class PriorityQueue<E> extends Ab
484          return new Itr();
485      }
486  
487 <    private class Itr implements Iterator<E> {
424 <
487 >    private final class Itr implements Iterator<E> {
488          /**
489           * Index (into queue array) of element to be returned by
490           * subsequent call to next.
491           */
492 <        private int cursor = 1;
492 >        private int cursor;
493  
494          /**
495           * Index of element returned by most recent call to next,
496           * unless that element came from the forgetMeNot list.
497 <         * Reset to 0 if element is deleted by a call to remove.
435 <         */
436 <        private int lastRet = 0;
437 <
438 <        /**
439 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
497 >         * Set to -1 if element is deleted by a call to remove.
498           */
499 <        private int expectedModCount = modCount;
499 >        private int lastRet = -1;
500  
501          /**
502 <         * A list of elements that were moved from the unvisited portion of
502 >         * A queue of elements that were moved from the unvisited portion of
503           * the heap into the visited portion as a result of "unlucky" element
504           * removals during the iteration.  (Unlucky element removals are those
505 <         * that require a fixup instead of a fixdown.)  We must visit all of
505 >         * that require a siftup instead of a siftdown.)  We must visit all of
506           * the elements in this list to complete the iteration.  We do this
507           * after we've completed the "normal" iteration.
508           *
509           * We expect that most iterations, even those involving removals,
510 <         * will not use need to store elements in this field.
510 >         * will not need to store elements in this field.
511           */
512 <        private ArrayList<E> forgetMeNot = null;
512 >        private ArrayDeque<E> forgetMeNot;
513  
514          /**
515           * Element returned by the most recent call to next iff that
516           * element was drawn from the forgetMeNot list.
517           */
518 <        private Object lastRetElt = null;
518 >        private E lastRetElt;
519 >
520 >        /**
521 >         * The modCount value that the iterator believes that the backing
522 >         * Queue should have.  If this expectation is violated, the iterator
523 >         * has detected concurrent modification.
524 >         */
525 >        private int expectedModCount = modCount;
526 >
527 >        Itr() {}                        // prevent access constructor creation
528  
529          public boolean hasNext() {
530 <            return cursor <= size || forgetMeNot != null;
530 >            return cursor < size ||
531 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
532          }
533  
534          public E next() {
535 <            checkForComodification();
536 <            E result;
537 <            if (cursor <= size) {
538 <                result = (E) queue[cursor];
539 <                lastRet = cursor++;
540 <            }
541 <            else if (forgetMeNot == null)
542 <                throw new NoSuchElementException();
543 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
535 >            if (expectedModCount != modCount)
536 >                throw new ConcurrentModificationException();
537 >            if (cursor < size)
538 >                return (E) queue[lastRet = cursor++];
539 >            if (forgetMeNot != null) {
540 >                lastRet = -1;
541 >                lastRetElt = forgetMeNot.poll();
542 >                if (lastRetElt != null)
543 >                    return lastRetElt;
544              }
545 <            return result;
545 >            throw new NoSuchElementException();
546          }
547  
548          public void remove() {
549 <            checkForComodification();
550 <
551 <            if (lastRet != 0) {
549 >            if (expectedModCount != modCount)
550 >                throw new ConcurrentModificationException();
551 >            if (lastRet != -1) {
552                  E moved = PriorityQueue.this.removeAt(lastRet);
553 <                lastRet = 0;
554 <                if (moved == null) {
553 >                lastRet = -1;
554 >                if (moved == null)
555                      cursor--;
556 <                } else {
556 >                else {
557                      if (forgetMeNot == null)
558 <                        forgetMeNot = new ArrayList<E>();
558 >                        forgetMeNot = new ArrayDeque<>();
559                      forgetMeNot.add(moved);
560                  }
561              } else if (lastRetElt != null) {
562 <                PriorityQueue.this.remove(lastRetElt);
562 >                PriorityQueue.this.removeEq(lastRetElt);
563                  lastRetElt = null;
564              } else {
565                  throw new IllegalStateException();
566              }
507
567              expectedModCount = modCount;
568          }
510
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
569      }
570  
571      public int size() {
# Line 524 | Line 578 | public class PriorityQueue<E> extends Ab
578       */
579      public void clear() {
580          modCount++;
581 <
582 <        // Null out element references to prevent memory leak
583 <        for (int i=1; i<=size; i++)
530 <            queue[i] = null;
531 <
581 >        final Object[] es = queue;
582 >        for (int i = 0, n = size; i < n; i++)
583 >            es[i] = null;
584          size = 0;
585      }
586  
587      public E poll() {
588 <        if (size == 0)
589 <            return null;
538 <        modCount++;
539 <
540 <        E result = (E) queue[1];
541 <        queue[1] = queue[size];
542 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
543 <        if (size > 1)
544 <            fixDown(1);
588 >        final Object[] es;
589 >        final E result;
590  
591 +        if ((result = (E) ((es = queue)[0])) != null) {
592 +            modCount++;
593 +            final int n;
594 +            final E x = (E) es[(n = --size)];
595 +            es[n] = null;
596 +            if (n > 0) {
597 +                final Comparator<? super E> cmp;
598 +                if ((cmp = comparator) == null)
599 +                    siftDownComparable(0, x, es, n);
600 +                else
601 +                    siftDownUsingComparator(0, x, es, n, cmp);
602 +            }
603 +        }
604          return result;
605      }
606  
607      /**
608 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
608 >     * Removes the ith element from queue.
609       *
610 <     * Normally this method leaves the elements at positions from 1 up to i-1,
611 <     * inclusive, untouched.  Under these circumstances, it returns null.
612 <     * Occasionally, in order to maintain the heap invariant, it must move
613 <     * the last element of the list to some index in the range [2, i-1],
614 <     * and move the element previously at position (i/2) to position i.
615 <     * Under these circumstances, this method returns the element that was
616 <     * previously at the end of the list and is now at some position between
617 <     * 2 and i-1 inclusive.
618 <     */
619 <    private E removeAt(int i) {
620 <        assert i > 0 && i <= size;
610 >     * Normally this method leaves the elements at up to i-1,
611 >     * inclusive, untouched.  Under these circumstances, it returns
612 >     * null.  Occasionally, in order to maintain the heap invariant,
613 >     * it must swap a later element of the list with one earlier than
614 >     * i.  Under these circumstances, this method returns the element
615 >     * that was previously at the end of the list and is now at some
616 >     * position before i. This fact is used by iterator.remove so as to
617 >     * avoid missing traversing elements.
618 >     */
619 >    E removeAt(int i) {
620 >        // assert i >= 0 && i < size;
621 >        final Object[] es = queue;
622          modCount++;
623 <
624 <        E moved = (E) queue[size];
625 <        queue[i] = moved;
626 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
627 <        if (i <= size) {
628 <            fixDown(i);
629 <            if (queue[i] == moved) {
630 <                fixUp(i);
631 <                if (queue[i] != moved)
623 >        int s = --size;
624 >        if (s == i) // removed last element
625 >            es[i] = null;
626 >        else {
627 >            E moved = (E) es[s];
628 >            es[s] = null;
629 >            siftDown(i, moved);
630 >            if (es[i] == moved) {
631 >                siftUp(i, moved);
632 >                if (es[i] != moved)
633                      return moved;
634              }
635          }
# Line 578 | Line 637 | public class PriorityQueue<E> extends Ab
637      }
638  
639      /**
640 <     * Establishes the heap invariant (described above) assuming the heap
641 <     * satisfies the invariant except possibly for the leaf-node indexed by k
642 <     * (which may have a nextExecutionTime less than its parent's).
643 <     *
644 <     * This method functions by "promoting" queue[k] up the hierarchy
645 <     * (by swapping it with its parent) repeatedly until queue[k]
646 <     * is greater than or equal to its parent.
647 <     */
648 <    private void fixUp(int k) {
649 <        if (comparator == null) {
650 <            while (k > 1) {
651 <                int j = k >> 1;
652 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
653 <                    break;
654 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
655 <                k = j;
656 <            }
657 <        } else {
658 <            while (k > 1) {
659 <                int j = k >>> 1;
660 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
661 <                    break;
662 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
663 <                k = j;
664 <            }
665 <        }
666 <    }
667 <
668 <    /**
669 <     * Establishes the heap invariant (described above) in the subtree
670 <     * rooted at k, which is assumed to satisfy the heap invariant except
671 <     * possibly for node k itself (which may be greater than its children).
672 <     *
673 <     * This method functions by "demoting" queue[k] down the hierarchy
674 <     * (by swapping it with its smaller child) repeatedly until queue[k]
675 <     * is less than or equal to its children.
676 <     */
677 <    private void fixDown(int k) {
678 <        int j;
679 <        if (comparator == null) {
680 <            while ((j = k << 1) <= size && (j > 0)) {
681 <                if (j<size &&
682 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
683 <                    j++; // j indexes smallest kid
684 <
685 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
686 <                    break;
687 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
688 <                k = j;
689 <            }
690 <        } else {
691 <            while ((j = k << 1) <= size && (j > 0)) {
692 <                if (j<size &&
693 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
694 <                    j++; // j indexes smallest kid
695 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
696 <                    break;
697 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
698 <                k = j;
699 <            }
640 >     * Inserts item x at position k, maintaining heap invariant by
641 >     * promoting x up the tree until it is greater than or equal to
642 >     * its parent, or is the root.
643 >     *
644 >     * To simplify and speed up coercions and comparisons, the
645 >     * Comparable and Comparator versions are separated into different
646 >     * methods that are otherwise identical. (Similarly for siftDown.)
647 >     *
648 >     * @param k the position to fill
649 >     * @param x the item to insert
650 >     */
651 >    private void siftUp(int k, E x) {
652 >        if (comparator != null)
653 >            siftUpUsingComparator(k, x, queue, comparator);
654 >        else
655 >            siftUpComparable(k, x, queue);
656 >    }
657 >
658 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
659 >        Comparable<? super T> key = (Comparable<? super T>) x;
660 >        while (k > 0) {
661 >            int parent = (k - 1) >>> 1;
662 >            Object e = es[parent];
663 >            if (key.compareTo((T) e) >= 0)
664 >                break;
665 >            es[k] = e;
666 >            k = parent;
667 >        }
668 >        es[k] = key;
669 >    }
670 >
671 >    private static <T> void siftUpUsingComparator(
672 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
673 >        while (k > 0) {
674 >            int parent = (k - 1) >>> 1;
675 >            Object e = es[parent];
676 >            if (cmp.compare(x, (T) e) >= 0)
677 >                break;
678 >            es[k] = e;
679 >            k = parent;
680 >        }
681 >        es[k] = x;
682 >    }
683 >
684 >    /**
685 >     * Inserts item x at position k, maintaining heap invariant by
686 >     * demoting x down the tree repeatedly until it is less than or
687 >     * equal to its children or is a leaf.
688 >     *
689 >     * @param k the position to fill
690 >     * @param x the item to insert
691 >     */
692 >    private void siftDown(int k, E x) {
693 >        if (comparator != null)
694 >            siftDownUsingComparator(k, x, queue, size, comparator);
695 >        else
696 >            siftDownComparable(k, x, queue, size);
697 >    }
698 >
699 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
700 >        // assert n > 0;
701 >        Comparable<? super T> key = (Comparable<? super T>)x;
702 >        int half = n >>> 1;           // loop while a non-leaf
703 >        while (k < half) {
704 >            int child = (k << 1) + 1; // assume left child is least
705 >            Object c = es[child];
706 >            int right = child + 1;
707 >            if (right < n &&
708 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
709 >                c = es[child = right];
710 >            if (key.compareTo((T) c) <= 0)
711 >                break;
712 >            es[k] = c;
713 >            k = child;
714 >        }
715 >        es[k] = key;
716 >    }
717 >
718 >    private static <T> void siftDownUsingComparator(
719 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
720 >        // assert n > 0;
721 >        int half = n >>> 1;
722 >        while (k < half) {
723 >            int child = (k << 1) + 1;
724 >            Object c = es[child];
725 >            int right = child + 1;
726 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
727 >                c = es[child = right];
728 >            if (cmp.compare(x, (T) c) <= 0)
729 >                break;
730 >            es[k] = c;
731 >            k = child;
732          }
733 +        es[k] = x;
734      }
735  
736      /**
737       * Establishes the heap invariant (described above) in the entire tree,
738       * assuming nothing about the order of the elements prior to the call.
739 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
740       */
741      private void heapify() {
742 <        for (int i = size/2; i >= 1; i--)
743 <            fixDown(i);
742 >        final Object[] es = queue;
743 >        int n = size, i = (n >>> 1) - 1;
744 >        final Comparator<? super E> cmp;
745 >        if ((cmp = comparator) == null)
746 >            for (; i >= 0; i--)
747 >                siftDownComparable(i, (E) es[i], es, n);
748 >        else
749 >            for (; i >= 0; i--)
750 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
751      }
752  
753      /**
754       * Returns the comparator used to order the elements in this
755 <     * queue, or <tt>null</tt> if this queue is sorted according to
755 >     * queue, or {@code null} if this queue is sorted according to
756       * the {@linkplain Comparable natural ordering} of its elements.
757       *
758       * @return the comparator used to order this queue, or
759 <     *         <tt>null</tt> if this queue is sorted according to the
760 <     *         natural ordering of its elements.
759 >     *         {@code null} if this queue is sorted according to the
760 >     *         natural ordering of its elements
761       */
762      public Comparator<? super E> comparator() {
763          return comparator;
764      }
765  
766      /**
767 <     * Save the state of the instance to a stream (that
668 <     * is, serialize it).
767 >     * Saves this queue to a stream (that is, serializes it).
768       *
670     * @serialData The length of the array backing the instance is
671     * emitted (int), followed by all of its elements (each an
672     * <tt>Object</tt>) in the proper order.
769       * @param s the stream
770 +     * @throws java.io.IOException if an I/O error occurs
771 +     * @serialData The length of the array backing the instance is
772 +     *             emitted (int), followed by all of its elements
773 +     *             (each an {@code Object}) in the proper order.
774       */
775      private void writeObject(java.io.ObjectOutputStream s)
776 <        throws java.io.IOException{
776 >        throws java.io.IOException {
777          // Write out element count, and any hidden stuff
778          s.defaultWriteObject();
779  
780 <        // Write out array length
781 <        s.writeInt(queue.length);
780 >        // Write out array length, for compatibility with 1.5 version
781 >        s.writeInt(Math.max(2, size + 1));
782  
783 <        // Write out all elements in the proper order.
784 <        for (int i=1; i<=size; i++)
785 <            s.writeObject(queue[i]);
783 >        // Write out all elements in the "proper order".
784 >        final Object[] es = queue;
785 >        for (int i = 0, n = size; i < n; i++)
786 >            s.writeObject(es[i]);
787      }
788  
789      /**
790 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
791 <     * (that is, deserialize it).
790 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
791 >     * (that is, deserializes it).
792 >     *
793       * @param s the stream
794 +     * @throws ClassNotFoundException if the class of a serialized object
795 +     *         could not be found
796 +     * @throws java.io.IOException if an I/O error occurs
797       */
798      private void readObject(java.io.ObjectInputStream s)
799          throws java.io.IOException, ClassNotFoundException {
800          // Read in size, and any hidden stuff
801          s.defaultReadObject();
802  
803 <        // Read in array length and allocate array
804 <        int arrayLength = s.readInt();
805 <        queue = new Object[arrayLength];
806 <
807 <        // Read in all elements in the proper order.
808 <        for (int i=1; i<=size; i++)
809 <            queue[i] = (E) s.readObject();
803 >        // Read in (and discard) array length
804 >        s.readInt();
805 >
806 >        jsr166.Platform.checkArray(s, Object[].class, size);
807 >        final Object[] es = queue = new Object[Math.max(size, 1)];
808 >
809 >        // Read in all elements.
810 >        for (int i = 0, n = size; i < n; i++)
811 >            es[i] = s.readObject();
812 >
813 >        // Elements are guaranteed to be in "proper order", but the
814 >        // spec has never explained what that might be.
815 >        heapify();
816 >    }
817 >
818 >    /**
819 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
820 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
821 >     * queue. The spliterator does not traverse elements in any particular order
822 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
823 >     *
824 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
825 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
826 >     * Overriding implementations should document the reporting of additional
827 >     * characteristic values.
828 >     *
829 >     * @return a {@code Spliterator} over the elements in this queue
830 >     * @since 1.8
831 >     */
832 >    public final Spliterator<E> spliterator() {
833 >        return new PriorityQueueSpliterator(0, -1, 0);
834 >    }
835 >
836 >    final class PriorityQueueSpliterator implements Spliterator<E> {
837 >        private int index;            // current index, modified on advance/split
838 >        private int fence;            // -1 until first use
839 >        private int expectedModCount; // initialized when fence set
840 >
841 >        /** Creates new spliterator covering the given range. */
842 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
843 >            this.index = origin;
844 >            this.fence = fence;
845 >            this.expectedModCount = expectedModCount;
846 >        }
847 >
848 >        private int getFence() { // initialize fence to size on first use
849 >            int hi;
850 >            if ((hi = fence) < 0) {
851 >                expectedModCount = modCount;
852 >                hi = fence = size;
853 >            }
854 >            return hi;
855 >        }
856 >
857 >        public PriorityQueueSpliterator trySplit() {
858 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
859 >            return (lo >= mid) ? null :
860 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
861 >        }
862 >
863 >        public void forEachRemaining(Consumer<? super E> action) {
864 >            if (action == null)
865 >                throw new NullPointerException();
866 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
867 >            final Object[] es = queue;
868 >            int i, hi; E e;
869 >            for (i = index, index = hi = fence; i < hi; i++) {
870 >                if ((e = (E) es[i]) == null)
871 >                    break;      // must be CME
872 >                action.accept(e);
873 >            }
874 >            if (modCount != expectedModCount)
875 >                throw new ConcurrentModificationException();
876 >        }
877 >
878 >        public boolean tryAdvance(Consumer<? super E> action) {
879 >            if (action == null)
880 >                throw new NullPointerException();
881 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
882 >            int i;
883 >            if ((i = index) < fence) {
884 >                index = i + 1;
885 >                E e;
886 >                if ((e = (E) queue[i]) == null
887 >                    || modCount != expectedModCount)
888 >                    throw new ConcurrentModificationException();
889 >                action.accept(e);
890 >                return true;
891 >            }
892 >            return false;
893 >        }
894 >
895 >        public long estimateSize() {
896 >            return getFence() - index;
897 >        }
898 >
899 >        public int characteristics() {
900 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
901 >        }
902 >    }
903 >
904 >    /**
905 >     * @throws NullPointerException {@inheritDoc}
906 >     */
907 >    public boolean removeIf(Predicate<? super E> filter) {
908 >        Objects.requireNonNull(filter);
909 >        return bulkRemove(filter);
910      }
911  
912 +    /**
913 +     * @throws NullPointerException {@inheritDoc}
914 +     */
915 +    public boolean removeAll(Collection<?> c) {
916 +        Objects.requireNonNull(c);
917 +        return bulkRemove(e -> c.contains(e));
918 +    }
919 +
920 +    /**
921 +     * @throws NullPointerException {@inheritDoc}
922 +     */
923 +    public boolean retainAll(Collection<?> c) {
924 +        Objects.requireNonNull(c);
925 +        return bulkRemove(e -> !c.contains(e));
926 +    }
927 +
928 +    // A tiny bit set implementation
929 +
930 +    private static long[] nBits(int n) {
931 +        return new long[((n - 1) >> 6) + 1];
932 +    }
933 +    private static void setBit(long[] bits, int i) {
934 +        bits[i >> 6] |= 1L << i;
935 +    }
936 +    private static boolean isClear(long[] bits, int i) {
937 +        return (bits[i >> 6] & (1L << i)) == 0;
938 +    }
939 +
940 +    /** Implementation of bulk remove methods. */
941 +    private boolean bulkRemove(Predicate<? super E> filter) {
942 +        final int expectedModCount = ++modCount;
943 +        final Object[] es = queue;
944 +        final int end = size;
945 +        int i;
946 +        // Optimize for initial run of survivors
947 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
948 +            ;
949 +        if (i >= end) {
950 +            if (modCount != expectedModCount)
951 +                throw new ConcurrentModificationException();
952 +            return false;
953 +        }
954 +        // Tolerate predicates that reentrantly access the collection for
955 +        // read (but writers still get CME), so traverse once to find
956 +        // elements to delete, a second pass to physically expunge.
957 +        final int beg = i;
958 +        final long[] deathRow = nBits(end - beg);
959 +        deathRow[0] = 1L;   // set bit 0
960 +        for (i = beg + 1; i < end; i++)
961 +            if (filter.test((E) es[i]))
962 +                setBit(deathRow, i - beg);
963 +        if (modCount != expectedModCount)
964 +            throw new ConcurrentModificationException();
965 +        int w = beg;
966 +        for (i = beg; i < end; i++)
967 +            if (isClear(deathRow, i - beg))
968 +                es[w++] = es[i];
969 +        for (i = size = w; i < end; i++)
970 +            es[i] = null;
971 +        heapify();
972 +        return true;
973 +    }
974 +
975 +    /**
976 +     * @throws NullPointerException {@inheritDoc}
977 +     */
978 +    public void forEach(Consumer<? super E> action) {
979 +        Objects.requireNonNull(action);
980 +        final int expectedModCount = modCount;
981 +        final Object[] es = queue;
982 +        for (int i = 0, n = size; i < n; i++)
983 +            action.accept((E) es[i]);
984 +        if (expectedModCount != modCount)
985 +            throw new ConcurrentModificationException();
986 +    }
987   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines