ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.37 by dl, Sat Aug 30 11:44:53 2003 UTC vs.
Revision 1.56 by jsr166, Mon Nov 28 02:35:46 2005 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * @(#)PriorityQueue.java       1.8 05/08/27
3 > *
4 > * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9 > import java.util.*; // for javadoc (till 6280605 is fixed)
10  
11   /**
12 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.
13 < * This queue orders elements according to an order specified at construction
14 < * time, which is specified in the same manner as {@link java.util.TreeSet}
15 < * and {@link java.util.TreeMap}: elements are ordered either according to
16 < * their <i>natural order</i> (see {@link Comparable}), or according to a
17 < * {@link java.util.Comparator}, depending on which constructor is used.
18 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
19 < * respect to the specified ordering.  If multiple elements are tied for least
12 < * value, the head is one of those elements. A priority queue does not permit
13 < * <tt>null</tt> elements.
14 < *
15 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
16 < * return the head of the queue.
12 > * An unbounded priority {@linkplain Queue queue} based on a priority
13 > * heap.  The elements of the priority queue are ordered according to
14 > * their {@linkplain Comparable natural ordering}, or by a {@link
15 > * Comparator} provided at queue construction time, depending on which
16 > * constructor is used.  A priority queue does not permit
17 > * <tt>null</tt> elements.  A priority queue relying on natural
18 > * ordering also does not permit insertion of non-comparable objects
19 > * (doing so may result in <tt>ClassCastException</tt>).
20   *
21 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 < * not delete, the head of the queue.
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27   *
28 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
29 < * size of the array used internally to store the elements on the
30 < * queue.
31 < * It is always at least as large as the queue size.  As
32 < * elements are added to a priority queue, its capacity grows
33 < * automatically.  The details of the growth policy are not specified.
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34   *
35 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
36 < * guaranteed to traverse the elements of the PriorityQueue in any
37 < * particular order. If you need ordered traversal, consider using
38 < * <tt>Arrays.sort(pq.toArray())</tt>.
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.  The Iterator provided in method {@link
38 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 > * the priority queue in any particular order. If you need ordered
40 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41   *
42   * <p> <strong>Note that this implementation is not synchronized.</strong>
43   * Multiple threads should not access a <tt>PriorityQueue</tt>
# Line 36 | Line 45
45   * structurally. Instead, use the thread-safe {@link
46   * java.util.concurrent.PriorityBlockingQueue} class.
47   *
39 *
48   * <p>Implementation note: this implementation provides O(log(n)) time
49   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50   * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
# Line 48 | Line 56
56   * <a href="{@docRoot}/../guide/collections/index.html">
57   * Java Collections Framework</a>.
58   * @since 1.5
59 + * @version 1.8, 08/27/05
60   * @author Josh Bloch
61 + * @param <E> the type of elements held in this collection
62   */
63   public class PriorityQueue<E> extends AbstractQueue<E>
64 <    implements Queue<E>, java.io.Serializable {
64 >    implements java.io.Serializable {
65  
66      private static final long serialVersionUID = -7720805057305804111L;
67  
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
67 <     * The element with the lowest value is in queue[1], assuming the queue is
68 <     * nonempty.  (A one-based array is used in preference to the traditional
69 <     * zero-based array to simplify parent and child calculations.)
70 <     *
71 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 90 | Line 95 | public class PriorityQueue<E> extends Ab
95      private transient int modCount = 0;
96  
97      /**
98 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
99 <     * (11) that orders its elements according to their natural
100 <     * ordering (using <tt>Comparable</tt>).
98 >     * Creates a <tt>PriorityQueue</tt> with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101       */
102      public PriorityQueue() {
103          this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105  
106      /**
107 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
108 <     * that orders its elements according to their natural ordering
109 <     * (using <tt>Comparable</tt>).
107 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110       *
111 <     * @param initialCapacity the initial capacity for this priority queue.
111 >     * @param initialCapacity the initial capacity for this priority queue
112       * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113       * than 1
114       */
# Line 115 | Line 120 | public class PriorityQueue<E> extends Ab
120       * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121       * that orders its elements according to the specified comparator.
122       *
123 <     * @param initialCapacity the initial capacity for this priority queue.
124 <     * @param comparator the comparator used to order this priority queue.
125 <     * If <tt>null</tt> then the order depends on the elements' natural
126 <     * ordering.
127 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
128 <     * than 1
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order
125 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
126 >     *         ordering</i> of the elements will be used.
127 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128 >     *         less than 1
129       */
130 <    public PriorityQueue(int initialCapacity,
130 >    public PriorityQueue(int initialCapacity,
131                           Comparator<? super E> comparator) {
132 +        // Note: This restriction of at least one is not actually needed,
133 +        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
134     * Common code to initialize underlying queue array across
135     * constructors below.
136     */
137    private void initializeArray(Collection<? extends E> c) {
138        int sz = c.size();
139        int initialCapacity = (int)Math.min((sz * 110L) / 100,
140                                            Integer.MAX_VALUE - 1);
141        if (initialCapacity < 1)
142            initialCapacity = 1;
143
144        this.queue = new Object[initialCapacity + 1];
145    }
146
147    /**
148     * Initially fill elements of the queue array under the
149     * knowledge that it is sorted or is another PQ, in which
150     * case we can just place the elements in the order presented.
151     */
152    private void fillFromSorted(Collection<? extends E> c) {
153        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154            queue[++size] = i.next();
155    }
156
157    /**
158     * Initially fill elements of the queue array that is not to our knowledge
159     * sorted, so we must rearrange the elements to guarantee the heap
160     * invariant.
161     */
162    private void fillFromUnsorted(Collection<? extends E> c) {
163        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
164            queue[++size] = i.next();
165        heapify();
166    }
167
168    /**
141       * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 <     * specified collection.  The priority queue has an initial
171 <     * capacity of 110% of the size of the specified collection or 1
172 <     * if the collection is empty.  If the specified collection is an
142 >     * specified collection.   If the specified collection is an
143       * instance of a {@link java.util.SortedSet} or is another
144 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
145 <     * according to the same comparator, or according to its elements'
146 <     * natural order if the collection is sorted according to its
177 <     * elements' natural order.  Otherwise, the priority queue is
178 <     * ordered according to its elements' natural order.
144 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
145 >     * according to the same ordering.  Otherwise, this priority queue
146 >     * will be ordered according to the natural ordering of its elements.
147       *
148 <     * @param c the collection whose elements are to be placed
149 <     *        into this priority queue.
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150       * @throws ClassCastException if elements of the specified collection
151       *         cannot be compared to one another according to the priority
152 <     *         queue's ordering.
153 <     * @throws NullPointerException if <tt>c</tt> or any element within it
154 <     * is <tt>null</tt>
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        initializeArray(c);
158 <        if (c instanceof SortedSet) {
159 <            // @fixme double-cast workaround for compiler
160 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
161 <            comparator = (Comparator<? super E>)s.comparator();
162 <            fillFromSorted(s);
163 <        } else if (c instanceof PriorityQueue) {
164 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197 <            comparator = (Comparator<? super E>)s.comparator();
198 <            fillFromSorted(s);
199 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            fillFromUnsorted(c);
166 >            heapify();
167          }
168      }
169  
170      /**
171       * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 <     * specified collection.  The priority queue has an initial
173 <     * capacity of 110% of the size of the specified collection or 1
174 <     * if the collection is empty.  This priority queue will be sorted
175 <     * according to the same comparator as the given collection, or
176 <     * according to its elements' natural order if the collection is
177 <     * sorted according to its elements' natural order.
178 <     *
179 <     * @param c the collection whose elements are to be placed
180 <     *        into this priority queue.
181 <     * @throws ClassCastException if elements of the specified collection
182 <     *         cannot be compared to one another according to the priority
218 <     *         queue's ordering.
219 <     * @throws NullPointerException if <tt>c</tt> or any element within it
220 <     * is <tt>null</tt>
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 >     *         compared to one another according to <tt>c</tt>'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183       */
184      public PriorityQueue(PriorityQueue<? extends E> c) {
223        initializeArray(c);
185          comparator = (Comparator<? super E>)c.comparator();
186 <        fillFromSorted(c);
186 >        initFromCollection(c);
187      }
188  
189      /**
190       * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 <     * specified collection.  The priority queue has an initial
192 <     * capacity of 110% of the size of the specified collection or 1
232 <     * if the collection is empty.  This priority queue will be sorted
233 <     * according to the same comparator as the given collection, or
234 <     * according to its elements' natural order if the collection is
235 <     * sorted according to its elements' natural order.
191 >     * specified sorted set.  This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193       *
194 <     * @param c the collection whose elements are to be placed
195 <     *        into this priority queue.
196 <     * @throws ClassCastException if elements of the specified collection
197 <     *         cannot be compared to one another according to the priority
198 <     *         queue's ordering.
199 <     * @throws NullPointerException if <tt>c</tt> or any element within it
200 <     * is <tt>null</tt>
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue.
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201       */
202      public PriorityQueue(SortedSet<? extends E> c) {
246        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205 >    }
206 >
207 >    /**
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210 >     */
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218      }
219  
220      /**
221 <     * Resize array, if necessary, to be able to hold given index
221 >     * Increases the capacity of the array.
222 >     *
223 >     * @param minCapacity the desired minimum capacity
224       */
225 <    private void grow(int index) {
226 <        int newlen = queue.length;
256 <        if (index < newlen) // don't need to grow
257 <            return;
258 <        if (index == Integer.MAX_VALUE)
225 >    private void grow(int minCapacity) {
226 >        if (minCapacity < 0) // overflow
227              throw new OutOfMemoryError();
228 <        while (newlen <= index) {
229 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
230 <                newlen = Integer.MAX_VALUE;
231 <            else
232 <                newlen <<= 2;
233 <        }
234 <        Object[] newQueue = new Object[newlen];
235 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
268 <        queue = newQueue;
228 >        int oldCapacity = queue.length;
229 >        // Double size if small; else grow by 50%
230 >        int newCapacity = ((oldCapacity < 64)?
231 >                           ((oldCapacity + 1) * 2):
232 >                           ((oldCapacity * 3) / 2));
233 >        if (newCapacity < minCapacity)
234 >            newCapacity = minCapacity;
235 >        queue = Arrays.copyOf(queue, newCapacity);
236      }
270            
237  
238 <    // Queue Methods
238 >    /**
239 >     * Inserts the specified element into this priority queue.
240 >     *
241 >     * @return <tt>true</tt> (as specified by {@link Collection#add})
242 >     * @throws ClassCastException if the specified element cannot be
243 >     *         compared with elements currently in this priority queue
244 >     *         according to the priority queue's ordering
245 >     * @throws NullPointerException if the specified element is null
246 >     */
247 >    public boolean add(E e) {
248 >        return offer(e);
249 >    }
250  
251      /**
252 <     * Add the specified element to this priority queue.
252 >     * Inserts the specified element into this priority queue.
253       *
254 <     * @return <tt>true</tt>
255 <     * @throws ClassCastException if the specified element cannot be compared
256 <     * with elements currently in the priority queue according
257 <     * to the priority queue's ordering.
258 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
254 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
255 >     * @throws ClassCastException if the specified element cannot be
256 >     *         compared with elements currently in this priority queue
257 >     *         according to the priority queue's ordering
258 >     * @throws NullPointerException if the specified element is null
259       */
260 <    public boolean offer(E o) {
261 <        if (o == null)
260 >    public boolean offer(E e) {
261 >        if (e == null)
262              throw new NullPointerException();
263          modCount++;
264 <        ++size;
265 <
266 <        // Grow backing store if necessary
267 <        if (size >= queue.length)
268 <            grow(size);
269 <
270 <        queue[size] = o;
271 <        fixUp(size);
264 >        int i = size;
265 >        if (i >= queue.length)
266 >            grow(i + 1);
267 >        size = i + 1;
268 >        if (i == 0)
269 >            queue[0] = e;
270 >        else
271 >            siftUp(i, e);
272          return true;
273      }
274  
275 <    public E poll() {
275 >    public E peek() {
276          if (size == 0)
277              return null;
278 <        return remove();
278 >        return (E) queue[0];
279      }
280  
281 <    public E peek() {
282 <        return (E) queue[1];
281 >    private int indexOf(Object o) {
282 >        if (o != null) {
283 >            for (int i = 0; i < size; i++)
284 >                if (o.equals(queue[i]))
285 >                    return i;
286 >        }
287 >        return -1;
288      }
289  
308    // Collection Methods - the first two override to update docs
309
290      /**
291 <     * Adds the specified element to this queue.
292 <     * @return <tt>true</tt> (as per the general contract of
293 <     * <tt>Collection.add</tt>).
291 >     * Removes a single instance of the specified element from this queue,
292 >     * if it is present.  More formally, removes an element <tt>e</tt> such
293 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
294 >     * elements.  Returns true if this queue contained the specified element
295 >     * (or equivalently, if this queue changed as a result of the call).
296       *
297 <     * @throws NullPointerException {@inheritDoc}
298 <     * @throws ClassCastException if the specified element cannot be compared
317 <     * with elements currently in the priority queue according
318 <     * to the priority queue's ordering.
297 >     * @param o element to be removed from this queue, if present
298 >     * @return <tt>true</tt> if this queue changed as a result of the call
299       */
300 <    public boolean add(E o) {
301 <        return super.add(o);
300 >    public boolean remove(Object o) {
301 >        int i = indexOf(o);
302 >        if (i == -1)
303 >            return false;
304 >        else {
305 >            removeAt(i);
306 >            return true;
307 >        }
308      }
309  
324  
310      /**
311 <     * Adds all of the elements in the specified collection to this queue.
312 <     * The behavior of this operation is undefined if
313 <     * the specified collection is modified while the operation is in
314 <     * progress.  (This implies that the behavior of this call is undefined if
315 <     * the specified collection is this queue, and this queue is nonempty.)
316 <     * <p>
317 <     * This implementation iterates over the specified collection, and adds
318 <     * each object returned by the iterator to this collection, in turn.
319 <     * @throws NullPointerException {@inheritDoc}
320 <     * @throws ClassCastException if any element cannot be compared
321 <     * with elements currently in the priority queue according
322 <     * to the priority queue's ordering.
323 <     */
324 <    public boolean addAll(Collection<? extends E> c) {
340 <        return super.addAll(c);
311 >     * Version of remove using reference equality, not equals.
312 >     * Needed by iterator.remove
313 >     *
314 >     * @param o element to be removed from this queue, if present
315 >     * @return <tt>true</tt> if removed.
316 >     */
317 >    boolean removeEq(Object o) {
318 >        for (int i = 0; i < size; i++) {
319 >            if (o == queue[i]) {
320 >                removeAt(i);
321 >                return true;
322 >            }
323 >        }
324 >        return false;
325      }
326  
327 +    /**
328 +     * Returns <tt>true</tt> if this queue contains the specified element.
329 +     * More formally, returns <tt>true</tt> if and only if this queue contains
330 +     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
331 +     *
332 +     * @param o object to be checked for containment in this queue
333 +     * @return <tt>true</tt> if this queue contains the specified element
334 +     */
335 +    public boolean contains(Object o) {
336 +        return indexOf(o) != -1;
337 +    }
338  
339      /**
340 <     * Removes a single instance of the specified element from this
341 <     * queue, if it is present.  More formally,
342 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
343 <     * o.equals(e))</tt>, if the queue contains one or more such
344 <     * elements.  Returns <tt>true</tt> if the queue contained the
345 <     * specified element (or equivalently, if the queue changed as a
346 <     * result of the call).
347 <     *
348 <     * <p>This implementation iterates over the queue looking for the
349 <     * specified element.  If it finds the element, it removes the element
350 <     * from the queue using the iterator's remove method.<p>
351 <     *
357 <     */
358 <    public boolean remove(Object o) {
359 <        if (o == null)
360 <            return false;
340 >     * Returns an array containing all of the elements in this queue,
341 >     * The elements are in no particular order.
342 >     *
343 >     * <p>The returned array will be "safe" in that no references to it are
344 >     * maintained by this list.  (In other words, this method must allocate
345 >     * a new array).  The caller is thus free to modify the returned array.
346 >     *
347 >     * @return an array containing all of the elements in this queue.
348 >     */
349 >    public Object[] toArray() {
350 >        return Arrays.copyOf(queue, size);
351 >    }
352  
353 <        if (comparator == null) {
354 <            for (int i = 1; i <= size; i++) {
355 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
356 <                    removeAt(i);
357 <                    return true;
358 <                }
359 <            }
360 <        } else {
361 <            for (int i = 1; i <= size; i++) {
362 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
363 <                    removeAt(i);
364 <                    return true;
365 <                }
366 <            }
367 <        }
368 <        return false;
353 >    /**
354 >     * Returns an array containing all of the elements in this queue.
355 >     * The elements are in no particular order.  The runtime type of
356 >     * the returned array is that of the specified array.  If the queue
357 >     * fits in the specified array, it is returned therein.
358 >     * Otherwise, a new array is allocated with the runtime type of
359 >     * the specified array and the size of this queue.
360 >     *
361 >     * <p>If the queue fits in the specified array with room to spare
362 >     * (i.e., the array has more elements than the queue), the element in
363 >     * the array immediately following the end of the collection is set to
364 >     * <tt>null</tt>.  (This is useful in determining the length of the
365 >     * queue <i>only</i> if the caller knows that the queue does not contain
366 >     * any null elements.)
367 >     *
368 >     * @param a the array into which the elements of the queue are to
369 >     *          be stored, if it is big enough; otherwise, a new array of the
370 >     *          same runtime type is allocated for this purpose.
371 >     * @return an array containing the elements of the queue
372 >     * @throws ArrayStoreException if the runtime type of the specified array
373 >     *         is not a supertype of the runtime type of every element in
374 >     *         this queue
375 >     * @throws NullPointerException if the specified array is null
376 >     */
377 >    public <T> T[] toArray(T[] a) {
378 >        if (a.length < size)
379 >            // Make a new array of a's runtime type, but my contents:
380 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
381 >        System.arraycopy(queue, 0, a, 0, size);
382 >        if (a.length > size)
383 >            a[size] = null;
384 >        return a;
385      }
386  
387      /**
388       * Returns an iterator over the elements in this queue. The iterator
389       * does not return the elements in any particular order.
390       *
391 <     * @return an iterator over the elements in this queue.
391 >     * @return an iterator over the elements in this queue
392       */
393      public Iterator<E> iterator() {
394          return new Itr();
395      }
396  
397 <    private class Itr implements Iterator<E> {
391 <
397 >    private final class Itr implements Iterator<E> {
398          /**
399           * Index (into queue array) of element to be returned by
400           * subsequent call to next.
401           */
402 <        private int cursor = 1;
402 >        private int cursor = 0;
403  
404          /**
405           * Index of element returned by most recent call to next,
406           * unless that element came from the forgetMeNot list.
407 <         * Reset to 0 if element is deleted by a call to remove.
402 <         */
403 <        private int lastRet = 0;
404 <
405 <        /**
406 <         * The modCount value that the iterator believes that the backing
407 <         * List should have.  If this expectation is violated, the iterator
408 <         * has detected concurrent modification.
407 >         * Set to -1 if element is deleted by a call to remove.
408           */
409 <        private int expectedModCount = modCount;
409 >        private int lastRet = -1;
410  
411          /**
412 <         * A list of elements that were moved from the unvisited portion of
412 >         * A queue of elements that were moved from the unvisited portion of
413           * the heap into the visited portion as a result of "unlucky" element
414           * removals during the iteration.  (Unlucky element removals are those
415 <         * that require a fixup instead of a fixdown.)  We must visit all of
415 >         * that require a siftup instead of a siftdown.)  We must visit all of
416           * the elements in this list to complete the iteration.  We do this
417           * after we've completed the "normal" iteration.
418           *
419           * We expect that most iterations, even those involving removals,
420           * will not use need to store elements in this field.
421           */
422 <        private ArrayList<E> forgetMeNot = null;
422 >        private ArrayDeque<E> forgetMeNot = null;
423  
424          /**
425           * Element returned by the most recent call to next iff that
426           * element was drawn from the forgetMeNot list.
427           */
428 <        private Object lastRetElt = null;
428 >        private E lastRetElt = null;
429 >
430 >        /**
431 >         * The modCount value that the iterator believes that the backing
432 >         * List should have.  If this expectation is violated, the iterator
433 >         * has detected concurrent modification.
434 >         */
435 >        private int expectedModCount = modCount;
436  
437          public boolean hasNext() {
438 <            return cursor <= size || forgetMeNot != null;
438 >            return cursor < size ||
439 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
440          }
441  
442          public E next() {
443 <            checkForComodification();
444 <            E result;
445 <            if (cursor <= size) {
446 <                result = (E) queue[cursor];
447 <                lastRet = cursor++;
448 <            }
449 <            else if (forgetMeNot == null)
450 <                throw new NoSuchElementException();
451 <            else {
445 <                int remaining = forgetMeNot.size();
446 <                result = forgetMeNot.remove(remaining - 1);
447 <                if (remaining == 1)
448 <                    forgetMeNot = null;
449 <                lastRet = 0;
450 <                lastRetElt = result;
443 >            if (expectedModCount != modCount)
444 >                throw new ConcurrentModificationException();
445 >            if (cursor < size)
446 >                return (E) queue[lastRet = cursor++];
447 >            if (forgetMeNot != null) {
448 >                lastRet = -1;
449 >                lastRetElt = forgetMeNot.poll();
450 >                if (lastRetElt != null)
451 >                    return lastRetElt;
452              }
453 <            return result;
453 >            throw new NoSuchElementException();
454          }
455  
456          public void remove() {
457 <            checkForComodification();
458 <
459 <            if (lastRet != 0) {
457 >            if (expectedModCount != modCount)
458 >                throw new ConcurrentModificationException();
459 >            if (lastRet == -1 && lastRetElt == null)
460 >                throw new IllegalStateException();
461 >            if (lastRet != -1) {
462                  E moved = PriorityQueue.this.removeAt(lastRet);
463 <                lastRet = 0;
464 <                if (moved == null) {
463 >                lastRet = -1;
464 >                if (moved == null)
465                      cursor--;
466 <                } else {
466 >                else {
467                      if (forgetMeNot == null)
468 <                        forgetMeNot = new ArrayList<E>();
468 >                        forgetMeNot = new ArrayDeque<E>();
469                      forgetMeNot.add(moved);
470                  }
468            } else if (lastRetElt != null) {
469                PriorityQueue.this.remove(lastRetElt);
470                lastRetElt = null;
471              } else {
472 <                throw new IllegalStateException();
472 >                PriorityQueue.this.removeEq(lastRetElt);
473 >                lastRetElt = null;
474              }
474
475              expectedModCount = modCount;
476          }
477  
478        final void checkForComodification() {
479            if (modCount != expectedModCount)
480                throw new ConcurrentModificationException();
481        }
478      }
479  
480      public int size() {
# Line 486 | Line 482 | public class PriorityQueue<E> extends Ab
482      }
483  
484      /**
485 <     * Remove all elements from the priority queue.
485 >     * Removes all of the elements from this priority queue.
486 >     * The queue will be empty after this call returns.
487       */
488      public void clear() {
489          modCount++;
490 <
494 <        // Null out element references to prevent memory leak
495 <        for (int i=1; i<=size; i++)
490 >        for (int i = 0; i < size; i++)
491              queue[i] = null;
497
492          size = 0;
493      }
494  
495 <    /**
502 <     * Removes and returns the first element from queue.
503 <     */
504 <    public E remove() {
495 >    public E poll() {
496          if (size == 0)
497 <            throw new NoSuchElementException();
497 >            return null;
498 >        int s = --size;
499          modCount++;
500 <
501 <        E result = (E) queue[1];
502 <        queue[1] = queue[size];
503 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
504 <        if (size > 1)
513 <            fixDown(1);
514 <
500 >        E result = (E)queue[0];
501 >        E x = (E)queue[s];
502 >        queue[s] = null;
503 >        if (s != 0)
504 >            siftDown(0, x);
505          return result;
506      }
507  
508      /**
509 <     * Removes and returns the ith element from queue.  (Recall that queue
520 <     * is one-based, so 1 <= i <= size.)
509 >     * Removes the ith element from queue.
510       *
511 <     * Normally this method leaves the elements at positions from 1 up to i-1,
512 <     * inclusive, untouched.  Under these circumstances, it returns null.
513 <     * Occasionally, in order to maintain the heap invariant, it must move
514 <     * the last element of the list to some index in the range [2, i-1],
515 <     * and move the element previously at position (i/2) to position i.
516 <     * Under these circumstances, this method returns the element that was
517 <     * previously at the end of the list and is now at some position between
518 <     * 2 and i-1 inclusive.
511 >     * Normally this method leaves the elements at up to i-1,
512 >     * inclusive, untouched.  Under these circumstances, it returns
513 >     * null.  Occasionally, in order to maintain the heap invariant,
514 >     * it must swap a later element of the list with one earlier than
515 >     * i.  Under these circumstances, this method returns the element
516 >     * that was previously at the end of the list and is now at some
517 >     * position before i. This fact is used by iterator.remove so as to
518 >     * avoid missing traverseing elements.
519       */
520 <    private E removeAt(int i) {
521 <        assert i > 0 && i <= size;
520 >    private E removeAt(int i) {
521 >        assert i >= 0 && i < size;
522          modCount++;
523 <
524 <        E moved = (E) queue[size];
525 <        queue[i] = moved;
526 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
527 <        if (i <= size) {
528 <            fixDown(i);
523 >        int s = --size;
524 >        if (s == i) // removed last element
525 >            queue[i] = null;
526 >        else {
527 >            E moved = (E) queue[s];
528 >            queue[s] = null;
529 >            siftDown(i, moved);
530              if (queue[i] == moved) {
531 <                fixUp(i);
531 >                siftUp(i, moved);
532                  if (queue[i] != moved)
533                      return moved;
534              }
# Line 547 | Line 537 | public class PriorityQueue<E> extends Ab
537      }
538  
539      /**
540 <     * Establishes the heap invariant (described above) assuming the heap
541 <     * satisfies the invariant except possibly for the leaf-node indexed by k
542 <     * (which may have a nextExecutionTime less than its parent's).
543 <     *
544 <     * This method functions by "promoting" queue[k] up the hierarchy
545 <     * (by swapping it with its parent) repeatedly until queue[k]
546 <     * is greater than or equal to its parent.
547 <     */
548 <    private void fixUp(int k) {
549 <        if (comparator == null) {
550 <            while (k > 1) {
551 <                int j = k >> 1;
552 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
553 <                    break;
554 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
555 <                k = j;
556 <            }
557 <        } else {
558 <            while (k > 1) {
559 <                int j = k >>> 1;
560 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
561 <                    break;
562 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
563 <                k = j;
564 <            }
540 >     * Inserts item x at position k, maintaining heap invariant by
541 >     * promoting x up the tree until it is greater than or equal to
542 >     * its parent, or is the root.
543 >     *
544 >     * To simplify and speed up coercions and comparisons. the
545 >     * Comparable and Comparator versions are separated into different
546 >     * methods that are otherwise identical. (Similarly for siftDown.)
547 >     *
548 >     * @param k the position to fill
549 >     * @param x the item to insert
550 >     */
551 >    private void siftUp(int k, E x) {
552 >        if (comparator != null)
553 >            siftUpUsingComparator(k, x);
554 >        else
555 >            siftUpComparable(k, x);
556 >    }
557 >
558 >    private void siftUpComparable(int k, E x) {
559 >        Comparable<? super E> key = (Comparable<? super E>) x;
560 >        while (k > 0) {
561 >            int parent = (k - 1) >>> 1;
562 >            Object e = queue[parent];
563 >            if (key.compareTo((E)e) >= 0)
564 >                break;
565 >            queue[k] = e;
566 >            k = parent;
567          }
568 +        queue[k] = key;
569 +    }
570 +
571 +    private void siftUpUsingComparator(int k, E x) {
572 +        while (k > 0) {
573 +            int parent = (k - 1) >>> 1;
574 +            Object e = queue[parent];
575 +            if (comparator.compare(x, (E)e) >= 0)
576 +                break;
577 +            queue[k] = e;
578 +            k = parent;
579 +        }
580 +        queue[k] = x;
581      }
582  
583      /**
584 <     * Establishes the heap invariant (described above) in the subtree
585 <     * rooted at k, which is assumed to satisfy the heap invariant except
586 <     * possibly for node k itself (which may be greater than its children).
587 <     *
588 <     * This method functions by "demoting" queue[k] down the hierarchy
589 <     * (by swapping it with its smaller child) repeatedly until queue[k]
590 <     * is less than or equal to its children.
591 <     */
592 <    private void fixDown(int k) {
593 <        int j;
594 <        if (comparator == null) {
595 <            while ((j = k << 1) <= size && (j > 0)) {
596 <                if (j<size &&
597 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
598 <                    j++; // j indexes smallest kid
599 <
600 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
601 <                    break;
602 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
603 <                k = j;
604 <            }
605 <        } else {
606 <            while ((j = k << 1) <= size && (j > 0)) {
607 <                if (j<size &&
608 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
609 <                    j++; // j indexes smallest kid
610 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
611 <                    break;
612 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
613 <                k = j;
614 <            }
584 >     * Inserts item x at position k, maintaining heap invariant by
585 >     * demoting x down the tree repeatedly until it is less than or
586 >     * equal to its children or is a leaf.
587 >     *
588 >     * @param k the position to fill
589 >     * @param x the item to insert
590 >     */
591 >    private void siftDown(int k, E x) {
592 >        if (comparator != null)
593 >            siftDownUsingComparator(k, x);
594 >        else
595 >            siftDownComparable(k, x);
596 >    }
597 >
598 >    private void siftDownComparable(int k, E x) {
599 >        Comparable<? super E> key = (Comparable<? super E>)x;
600 >        int half = size >>> 1;        // loop while a non-leaf
601 >        while (k < half) {
602 >            int child = (k << 1) + 1; // assume left child is least
603 >            Object c = queue[child];
604 >            int right = child + 1;
605 >            if (right < size &&
606 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
607 >                c = queue[child = right];
608 >            if (key.compareTo((E)c) <= 0)
609 >                break;
610 >            queue[k] = c;
611 >            k = child;
612 >        }
613 >        queue[k] = key;
614 >    }
615 >
616 >    private void siftDownUsingComparator(int k, E x) {
617 >        int half = size >>> 1;
618 >        while (k < half) {
619 >            int child = (k << 1) + 1;
620 >            Object c = queue[child];
621 >            int right = child + 1;
622 >            if (right < size &&
623 >                comparator.compare((E)c, (E)queue[right]) > 0)
624 >                c = queue[child = right];
625 >            if (comparator.compare(x, (E)c) <= 0)
626 >                break;
627 >            queue[k] = c;
628 >            k = child;
629          }
630 +        queue[k] = x;
631      }
632  
633      /**
# Line 615 | Line 635 | public class PriorityQueue<E> extends Ab
635       * assuming nothing about the order of the elements prior to the call.
636       */
637      private void heapify() {
638 <        for (int i = size/2; i >= 1; i--)
639 <            fixDown(i);
638 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
639 >            siftDown(i, (E)queue[i]);
640      }
641  
642      /**
643 <     * Returns the comparator used to order this collection, or <tt>null</tt>
644 <     * if this collection is sorted according to its elements natural ordering
645 <     * (using <tt>Comparable</tt>).
643 >     * Returns the comparator used to order the elements in this
644 >     * queue, or <tt>null</tt> if this queue is sorted according to
645 >     * the {@linkplain Comparable natural ordering} of its elements.
646       *
647 <     * @return the comparator used to order this collection, or <tt>null</tt>
648 <     * if this collection is sorted according to its elements natural ordering.
647 >     * @return the comparator used to order this queue, or
648 >     *         <tt>null</tt> if this queue is sorted according to the
649 >     *         natural ordering of its elements.
650       */
651      public Comparator<? super E> comparator() {
652          return comparator;
# Line 646 | Line 667 | public class PriorityQueue<E> extends Ab
667          s.defaultWriteObject();
668  
669          // Write out array length
670 <        s.writeInt(queue.length);
670 >        // For compatibility with 1.5 version, must be at least 2.
671 >        s.writeInt(Math.max(2, queue.length));
672  
673          // Write out all elements in the proper order.
674          for (int i=0; i<size; i++)
# Line 654 | Line 676 | public class PriorityQueue<E> extends Ab
676      }
677  
678      /**
679 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
680 <     * deserialize it).
679 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
680 >     * (that is, deserialize it).
681       * @param s the stream
682       */
683      private void readObject(java.io.ObjectInputStream s)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines