ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.41 by dl, Sat Sep 13 18:51:06 2003 UTC vs.
Revision 1.59 by jsr166, Tue Nov 29 08:52:26 2005 UTC

# Line 1 | Line 1
1   /*
2   * %W% %E%
3   *
4 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
8   package java.util;
9 + import java.util.*; // for javadoc (till 6280605 is fixed)
10  
11   /**
12   * An unbounded priority {@linkplain Queue queue} based on a priority
13 < * heap.  This queue orders elements according to an order specified
14 < * at construction time, which is specified either according to their
15 < * <i>natural order</i> (see {@link Comparable}), or according to a
16 < * {@link java.util.Comparator}, depending on which constructor is
17 < * used. A priority queue does not permit <tt>null</tt> elements.
13 > * heap.  The elements of the priority queue are ordered according to
14 > * their {@linkplain Comparable natural ordering}, or by a {@link
15 > * Comparator} provided at queue construction time, depending on which
16 > * constructor is used.  A priority queue does not permit
17 > * <tt>null</tt> elements.  A priority queue relying on natural
18 > * ordering also does not permit insertion of non-comparable objects
19 > * (doing so may result in <tt>ClassCastException</tt>).
20   *
21   * <p>The <em>head</em> of this queue is the <em>least</em> element
22   * with respect to the specified ordering.  If multiple elements are
23   * tied for least value, the head is one of those elements -- ties are
24 < * broken arbitrarily.  The {@link #remove()} and {@link #poll()}
25 < * methods remove and return the head of the queue, and the {@link
26 < * #element()} and {@link #peek()} methods return, but do not delete,
24 < * the head of the queue.
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27   *
28   * <p>A priority queue is unbounded, but has an internal
29   * <i>capacity</i> governing the size of an array used to store the
# Line 30 | Line 32 | package java.util;
32   * grows automatically.  The details of the growth policy are not
33   * specified.
34   *
35 < * <p>This class implements all of the <em>optional</em> methods of
36 < * the {@link Collection} and {@link Iterator} interfaces.  The
37 < * Iterator provided in method {@link #iterator()} is <em>not</em>
38 < * guaranteed to traverse the elements of the PriorityQueue in any
39 < * particular order. If you need ordered traversal, consider using
40 < * <tt>Arrays.sort(pq.toArray())</tt>.
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.  The Iterator provided in method {@link
38 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 > * the priority queue in any particular order. If you need ordered
40 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41   *
42   * <p> <strong>Note that this implementation is not synchronized.</strong>
43   * Multiple threads should not access a <tt>PriorityQueue</tt>
# Line 43 | Line 45 | package java.util;
45   * structurally. Instead, use the thread-safe {@link
46   * java.util.concurrent.PriorityBlockingQueue} class.
47   *
46 *
48   * <p>Implementation note: this implementation provides O(log(n)) time
49   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50   * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
# Line 55 | Line 56 | package java.util;
56   * <a href="{@docRoot}/../guide/collections/index.html">
57   * Java Collections Framework</a>.
58   * @since 1.5
59 < * @version %I%, %G%
59 > * @version 1.8, 08/27/05
60   * @author Josh Bloch
61 + * @param <E> the type of elements held in this collection
62   */
63   public class PriorityQueue<E> extends AbstractQueue<E>
64 <    implements Queue<E>, java.io.Serializable {
64 >    implements java.io.Serializable {
65  
66      private static final long serialVersionUID = -7720805057305804111L;
67  
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
75 <     * The element with the lowest value is in queue[1], assuming the queue is
76 <     * nonempty.  (A one-based array is used in preference to the traditional
77 <     * zero-based array to simplify parent and child calculations.)
78 <     *
79 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 98 | Line 95 | public class PriorityQueue<E> extends Ab
95      private transient int modCount = 0;
96  
97      /**
98 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
99 <     * (11) that orders its elements according to their natural
100 <     * ordering (using <tt>Comparable</tt>).
98 >     * Creates a <tt>PriorityQueue</tt> with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101       */
102      public PriorityQueue() {
103          this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105  
106      /**
107 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
108 <     * that orders its elements according to their natural ordering
109 <     * (using <tt>Comparable</tt>).
107 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110       *
111 <     * @param initialCapacity the initial capacity for this priority queue.
111 >     * @param initialCapacity the initial capacity for this priority queue
112       * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113       * than 1
114       */
# Line 123 | Line 120 | public class PriorityQueue<E> extends Ab
120       * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121       * that orders its elements according to the specified comparator.
122       *
123 <     * @param initialCapacity the initial capacity for this priority queue.
124 <     * @param comparator the comparator used to order this priority queue.
125 <     * If <tt>null</tt> then the order depends on the elements' natural
126 <     * ordering.
127 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
128 <     * than 1
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order
125 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
126 >     *         ordering</i> of the elements will be used.
127 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128 >     *         less than 1
129       */
130 <    public PriorityQueue(int initialCapacity,
130 >    public PriorityQueue(int initialCapacity,
131                           Comparator<? super E> comparator) {
132 +        // Note: This restriction of at least one is not actually needed,
133 +        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
142     * Common code to initialize underlying queue array across
143     * constructors below.
144     */
145    private void initializeArray(Collection<? extends E> c) {
146        int sz = c.size();
147        int initialCapacity = (int)Math.min((sz * 110L) / 100,
148                                            Integer.MAX_VALUE - 1);
149        if (initialCapacity < 1)
150            initialCapacity = 1;
151
152        this.queue = new Object[initialCapacity + 1];
153    }
154
155    /**
156     * Initially fill elements of the queue array under the
157     * knowledge that it is sorted or is another PQ, in which
158     * case we can just place the elements in the order presented.
159     */
160    private void fillFromSorted(Collection<? extends E> c) {
161        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
162            queue[++size] = i.next();
163    }
164
165    /**
166     * Initially fill elements of the queue array that is not to our knowledge
167     * sorted, so we must rearrange the elements to guarantee the heap
168     * invariant.
169     */
170    private void fillFromUnsorted(Collection<? extends E> c) {
171        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
172            queue[++size] = i.next();
173        heapify();
174    }
175
176    /**
141       * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 <     * specified collection.  The priority queue has an initial
179 <     * capacity of 110% of the size of the specified collection or 1
180 <     * if the collection is empty.  If the specified collection is an
142 >     * specified collection.   If the specified collection is an
143       * instance of a {@link java.util.SortedSet} or is another
144 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
145 <     * according to the same comparator, or according to its elements'
146 <     * natural order if the collection is sorted according to its
185 <     * elements' natural order.  Otherwise, the priority queue is
186 <     * ordered according to its elements' natural order.
144 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
145 >     * according to the same ordering.  Otherwise, this priority queue
146 >     * will be ordered according to the natural ordering of its elements.
147       *
148 <     * @param c the collection whose elements are to be placed
149 <     *        into this priority queue.
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150       * @throws ClassCastException if elements of the specified collection
151       *         cannot be compared to one another according to the priority
152 <     *         queue's ordering.
153 <     * @throws NullPointerException if <tt>c</tt> or any element within it
154 <     * is <tt>null</tt>
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        initializeArray(c);
158 <        if (c instanceof SortedSet) {
159 <            // @fixme double-cast workaround for compiler
160 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
161 <            comparator = (Comparator<? super E>)s.comparator();
162 <            fillFromSorted(s);
163 <        } else if (c instanceof PriorityQueue) {
164 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 <            comparator = (Comparator<? super E>)s.comparator();
206 <            fillFromSorted(s);
207 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            fillFromUnsorted(c);
166 >            heapify();
167          }
168      }
169  
170      /**
171       * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 <     * specified collection.  The priority queue has an initial
173 <     * capacity of 110% of the size of the specified collection or 1
174 <     * if the collection is empty.  This priority queue will be sorted
175 <     * according to the same comparator as the given collection, or
176 <     * according to its elements' natural order if the collection is
177 <     * sorted according to its elements' natural order.
178 <     *
179 <     * @param c the collection whose elements are to be placed
180 <     *        into this priority queue.
181 <     * @throws ClassCastException if elements of the specified collection
182 <     *         cannot be compared to one another according to the priority
226 <     *         queue's ordering.
227 <     * @throws NullPointerException if <tt>c</tt> or any element within it
228 <     * is <tt>null</tt>
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 >     *         compared to one another according to <tt>c</tt>'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183       */
184      public PriorityQueue(PriorityQueue<? extends E> c) {
231        initializeArray(c);
185          comparator = (Comparator<? super E>)c.comparator();
186 <        fillFromSorted(c);
186 >        initFromCollection(c);
187      }
188  
189      /**
190       * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 <     * specified collection.  The priority queue has an initial
192 <     * capacity of 110% of the size of the specified collection or 1
240 <     * if the collection is empty.  This priority queue will be sorted
241 <     * according to the same comparator as the given collection, or
242 <     * according to its elements' natural order if the collection is
243 <     * sorted according to its elements' natural order.
191 >     * specified sorted set.  This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193       *
194 <     * @param c the collection whose elements are to be placed
195 <     *        into this priority queue.
196 <     * @throws ClassCastException if elements of the specified collection
197 <     *         cannot be compared to one another according to the priority
198 <     *         queue's ordering.
199 <     * @throws NullPointerException if <tt>c</tt> or any element within it
200 <     * is <tt>null</tt>
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue.
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201       */
202      public PriorityQueue(SortedSet<? extends E> c) {
254        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205      }
206  
207      /**
208 <     * Resize array, if necessary, to be able to hold given index
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210       */
211 <    private void grow(int index) {
212 <        int newlen = queue.length;
213 <        if (index < newlen) // don't need to grow
214 <            return;
215 <        if (index == Integer.MAX_VALUE)
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218 >    }
219 >
220 >    /**
221 >     * Increases the capacity of the array.
222 >     *
223 >     * @param minCapacity the desired minimum capacity
224 >     */
225 >    private void grow(int minCapacity) {
226 >        if (minCapacity < 0) // overflow
227              throw new OutOfMemoryError();
228 <        while (newlen <= index) {
229 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
230 <                newlen = Integer.MAX_VALUE;
231 <            else
232 <                newlen <<= 2;
233 <        }
234 <        Object[] newQueue = new Object[newlen];
235 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
236 <        queue = newQueue;
228 >        int oldCapacity = queue.length;
229 >        // Double size if small; else grow by 50%
230 >        int newCapacity = ((oldCapacity < 64)?
231 >                           ((oldCapacity + 1) * 2):
232 >                           ((oldCapacity / 2) * 3));
233 >        if (newCapacity < 0) // overflow
234 >            newCapacity = Integer.MAX_VALUE;
235 >        if (newCapacity < minCapacity)
236 >            newCapacity = minCapacity;
237 >        queue = Arrays.copyOf(queue, newCapacity);
238 >    }
239 >
240 >    /**
241 >     * Inserts the specified element into this priority queue.
242 >     *
243 >     * @return <tt>true</tt> (as specified by {@link Collection#add})
244 >     * @throws ClassCastException if the specified element cannot be
245 >     *         compared with elements currently in this priority queue
246 >     *         according to the priority queue's ordering
247 >     * @throws NullPointerException if the specified element is null
248 >     */
249 >    public boolean add(E e) {
250 >        return offer(e);
251      }
278            
252  
253      /**
254 <     * Inserts the specified element to this priority queue.
254 >     * Inserts the specified element into this priority queue.
255       *
256 <     * @return <tt>true</tt>
257 <     * @throws ClassCastException if the specified element cannot be compared
258 <     * with elements currently in the priority queue according
259 <     * to the priority queue's ordering.
260 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
256 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
257 >     * @throws ClassCastException if the specified element cannot be
258 >     *         compared with elements currently in this priority queue
259 >     *         according to the priority queue's ordering
260 >     * @throws NullPointerException if the specified element is null
261       */
262 <    public boolean offer(E o) {
263 <        if (o == null)
262 >    public boolean offer(E e) {
263 >        if (e == null)
264              throw new NullPointerException();
265          modCount++;
266 <        ++size;
267 <
268 <        // Grow backing store if necessary
269 <        if (size >= queue.length)
270 <            grow(size);
271 <
272 <        queue[size] = o;
273 <        fixUp(size);
266 >        int i = size;
267 >        if (i >= queue.length)
268 >            grow(i + 1);
269 >        size = i + 1;
270 >        if (i == 0)
271 >            queue[0] = e;
272 >        else
273 >            siftUp(i, e);
274          return true;
275      }
276  
277      public E peek() {
278          if (size == 0)
279              return null;
280 <        return (E) queue[1];
280 >        return (E) queue[0];
281      }
282  
283 <    // Collection Methods - the first two override to update docs
283 >    private int indexOf(Object o) {
284 >        if (o != null) {
285 >            for (int i = 0; i < size; i++)
286 >                if (o.equals(queue[i]))
287 >                    return i;
288 >        }
289 >        return -1;
290 >    }
291  
292      /**
293 <     * Adds the specified element to this queue.
294 <     * @return <tt>true</tt> (as per the general contract of
295 <     * <tt>Collection.add</tt>).
296 <     *
297 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
298 <     * @throws ClassCastException if the specified element cannot be compared
299 <     * with elements currently in the priority queue according
300 <     * to the priority queue's ordering.
321 <     */
322 <    public boolean add(E o) {
323 <        return offer(o);
324 <    }
325 <
326 <  
327 <    /**
328 <     * Adds all of the elements in the specified collection to this queue.
329 <     * The behavior of this operation is undefined if
330 <     * the specified collection is modified while the operation is in
331 <     * progress.  (This implies that the behavior of this call is undefined if
332 <     * the specified collection is this queue, and this queue is nonempty.)
333 <     * <p>
334 <     * This implementation iterates over the specified collection, and adds
335 <     * each object returned by the iterator to this collection, in turn.
336 <     * @param c collection whose elements are to be added to this queue
337 <     * @return <tt>true</tt> if this queue changed as a result of the
338 <     *         call.
339 <     * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
340 <     * is <tt>null</tt>
341 <     * @throws ClassCastException if any element cannot be compared
342 <     * with elements currently in the priority queue according
343 <     * to the priority queue's ordering.
293 >     * Removes a single instance of the specified element from this queue,
294 >     * if it is present.  More formally, removes an element <tt>e</tt> such
295 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
296 >     * elements.  Returns true if this queue contained the specified element
297 >     * (or equivalently, if this queue changed as a result of the call).
298 >     *
299 >     * @param o element to be removed from this queue, if present
300 >     * @return <tt>true</tt> if this queue changed as a result of the call
301       */
345    public boolean addAll(Collection<? extends E> c) {
346        return super.addAll(c);
347    }
348
302      public boolean remove(Object o) {
303 <        if (o == null)
304 <            return false;
303 >        int i = indexOf(o);
304 >        if (i == -1)
305 >            return false;
306 >        else {
307 >            removeAt(i);
308 >            return true;
309 >        }
310 >    }
311  
312 <        if (comparator == null) {
313 <            for (int i = 1; i <= size; i++) {
314 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
315 <                    removeAt(i);
316 <                    return true;
317 <                }
318 <            }
319 <        } else {
320 <            for (int i = 1; i <= size; i++) {
321 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
322 <                    removeAt(i);
323 <                    return true;
365 <                }
312 >    /**
313 >     * Version of remove using reference equality, not equals.
314 >     * Needed by iterator.remove.
315 >     *
316 >     * @param o element to be removed from this queue, if present
317 >     * @return <tt>true</tt> if removed
318 >     */
319 >    boolean removeEq(Object o) {
320 >        for (int i = 0; i < size; i++) {
321 >            if (o == queue[i]) {
322 >                removeAt(i);
323 >                return true;
324              }
325          }
326          return false;
327      }
328  
329      /**
330 +     * Returns <tt>true</tt> if this queue contains the specified element.
331 +     * More formally, returns <tt>true</tt> if and only if this queue contains
332 +     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
333 +     *
334 +     * @param o object to be checked for containment in this queue
335 +     * @return <tt>true</tt> if this queue contains the specified element
336 +     */
337 +    public boolean contains(Object o) {
338 +        return indexOf(o) != -1;
339 +    }
340 +
341 +    /**
342 +     * Returns an array containing all of the elements in this queue,
343 +     * The elements are in no particular order.
344 +     *
345 +     * <p>The returned array will be "safe" in that no references to it are
346 +     * maintained by this list.  (In other words, this method must allocate
347 +     * a new array).  The caller is thus free to modify the returned array.
348 +     *
349 +     * @return an array containing all of the elements in this queue
350 +     */
351 +    public Object[] toArray() {
352 +        return Arrays.copyOf(queue, size);
353 +    }
354 +
355 +    /**
356 +     * Returns an array containing all of the elements in this queue.
357 +     * The elements are in no particular order.  The runtime type of
358 +     * the returned array is that of the specified array.  If the queue
359 +     * fits in the specified array, it is returned therein.
360 +     * Otherwise, a new array is allocated with the runtime type of
361 +     * the specified array and the size of this queue.
362 +     *
363 +     * <p>If the queue fits in the specified array with room to spare
364 +     * (i.e., the array has more elements than the queue), the element in
365 +     * the array immediately following the end of the collection is set to
366 +     * <tt>null</tt>.  (This is useful in determining the length of the
367 +     * queue <i>only</i> if the caller knows that the queue does not contain
368 +     * any null elements.)
369 +     *
370 +     * @param a the array into which the elements of the queue are to
371 +     *          be stored, if it is big enough; otherwise, a new array of the
372 +     *          same runtime type is allocated for this purpose.
373 +     * @return an array containing the elements of the queue
374 +     * @throws ArrayStoreException if the runtime type of the specified array
375 +     *         is not a supertype of the runtime type of every element in
376 +     *         this queue
377 +     * @throws NullPointerException if the specified array is null
378 +     */
379 +    public <T> T[] toArray(T[] a) {
380 +        if (a.length < size)
381 +            // Make a new array of a's runtime type, but my contents:
382 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
383 +        System.arraycopy(queue, 0, a, 0, size);
384 +        if (a.length > size)
385 +            a[size] = null;
386 +        return a;
387 +    }
388 +
389 +    /**
390       * Returns an iterator over the elements in this queue. The iterator
391       * does not return the elements in any particular order.
392       *
393 <     * @return an iterator over the elements in this queue.
393 >     * @return an iterator over the elements in this queue
394       */
395      public Iterator<E> iterator() {
396          return new Itr();
397      }
398  
399 <    private class Itr implements Iterator<E> {
382 <
399 >    private final class Itr implements Iterator<E> {
400          /**
401           * Index (into queue array) of element to be returned by
402           * subsequent call to next.
403           */
404 <        private int cursor = 1;
404 >        private int cursor = 0;
405  
406          /**
407           * Index of element returned by most recent call to next,
408           * unless that element came from the forgetMeNot list.
409 <         * Reset to 0 if element is deleted by a call to remove.
393 <         */
394 <        private int lastRet = 0;
395 <
396 <        /**
397 <         * The modCount value that the iterator believes that the backing
398 <         * List should have.  If this expectation is violated, the iterator
399 <         * has detected concurrent modification.
409 >         * Set to -1 if element is deleted by a call to remove.
410           */
411 <        private int expectedModCount = modCount;
411 >        private int lastRet = -1;
412  
413          /**
414 <         * A list of elements that were moved from the unvisited portion of
414 >         * A queue of elements that were moved from the unvisited portion of
415           * the heap into the visited portion as a result of "unlucky" element
416           * removals during the iteration.  (Unlucky element removals are those
417 <         * that require a fixup instead of a fixdown.)  We must visit all of
417 >         * that require a siftup instead of a siftdown.)  We must visit all of
418           * the elements in this list to complete the iteration.  We do this
419           * after we've completed the "normal" iteration.
420           *
421           * We expect that most iterations, even those involving removals,
422           * will not use need to store elements in this field.
423           */
424 <        private ArrayList<E> forgetMeNot = null;
424 >        private ArrayDeque<E> forgetMeNot = null;
425  
426          /**
427           * Element returned by the most recent call to next iff that
428           * element was drawn from the forgetMeNot list.
429           */
430 <        private Object lastRetElt = null;
430 >        private E lastRetElt = null;
431 >
432 >        /**
433 >         * The modCount value that the iterator believes that the backing
434 >         * List should have.  If this expectation is violated, the iterator
435 >         * has detected concurrent modification.
436 >         */
437 >        private int expectedModCount = modCount;
438  
439          public boolean hasNext() {
440 <            return cursor <= size || forgetMeNot != null;
440 >            return cursor < size ||
441 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
442          }
443  
444          public E next() {
445 <            checkForComodification();
446 <            E result;
447 <            if (cursor <= size) {
448 <                result = (E) queue[cursor];
449 <                lastRet = cursor++;
450 <            }
451 <            else if (forgetMeNot == null)
452 <                throw new NoSuchElementException();
453 <            else {
436 <                int remaining = forgetMeNot.size();
437 <                result = forgetMeNot.remove(remaining - 1);
438 <                if (remaining == 1)
439 <                    forgetMeNot = null;
440 <                lastRet = 0;
441 <                lastRetElt = result;
445 >            if (expectedModCount != modCount)
446 >                throw new ConcurrentModificationException();
447 >            if (cursor < size)
448 >                return (E) queue[lastRet = cursor++];
449 >            if (forgetMeNot != null) {
450 >                lastRet = -1;
451 >                lastRetElt = forgetMeNot.poll();
452 >                if (lastRetElt != null)
453 >                    return lastRetElt;
454              }
455 <            return result;
455 >            throw new NoSuchElementException();
456          }
457  
458          public void remove() {
459 <            checkForComodification();
460 <
461 <            if (lastRet != 0) {
459 >            if (expectedModCount != modCount)
460 >                throw new ConcurrentModificationException();
461 >            if (lastRet == -1 && lastRetElt == null)
462 >                throw new IllegalStateException();
463 >            if (lastRet != -1) {
464                  E moved = PriorityQueue.this.removeAt(lastRet);
465 <                lastRet = 0;
466 <                if (moved == null) {
465 >                lastRet = -1;
466 >                if (moved == null)
467                      cursor--;
468 <                } else {
468 >                else {
469                      if (forgetMeNot == null)
470 <                        forgetMeNot = new ArrayList<E>();
470 >                        forgetMeNot = new ArrayDeque<E>();
471                      forgetMeNot.add(moved);
472                  }
459            } else if (lastRetElt != null) {
460                PriorityQueue.this.remove(lastRetElt);
461                lastRetElt = null;
473              } else {
474 <                throw new IllegalStateException();
474 >                PriorityQueue.this.removeEq(lastRetElt);
475 >                lastRetElt = null;
476              }
465
477              expectedModCount = modCount;
478          }
479  
469        final void checkForComodification() {
470            if (modCount != expectedModCount)
471                throw new ConcurrentModificationException();
472        }
480      }
481  
482      public int size() {
# Line 477 | Line 484 | public class PriorityQueue<E> extends Ab
484      }
485  
486      /**
487 <     * Remove all elements from the priority queue.
487 >     * Removes all of the elements from this priority queue.
488 >     * The queue will be empty after this call returns.
489       */
490      public void clear() {
491          modCount++;
492 <
485 <        // Null out element references to prevent memory leak
486 <        for (int i=1; i<=size; i++)
492 >        for (int i = 0; i < size; i++)
493              queue[i] = null;
488
494          size = 0;
495      }
496  
497      public E poll() {
498          if (size == 0)
499              return null;
500 +        int s = --size;
501          modCount++;
502 <
503 <        E result = (E) queue[1];
504 <        queue[1] = queue[size];
505 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
506 <        if (size > 1)
501 <            fixDown(1);
502 <
502 >        E result = (E)queue[0];
503 >        E x = (E)queue[s];
504 >        queue[s] = null;
505 >        if (s != 0)
506 >            siftDown(0, x);
507          return result;
508      }
509  
510      /**
511 <     * Removes and returns the ith element from queue.  (Recall that queue
508 <     * is one-based, so 1 <= i <= size.)
511 >     * Removes the ith element from queue.
512       *
513 <     * Normally this method leaves the elements at positions from 1 up to i-1,
514 <     * inclusive, untouched.  Under these circumstances, it returns null.
515 <     * Occasionally, in order to maintain the heap invariant, it must move
516 <     * the last element of the list to some index in the range [2, i-1],
517 <     * and move the element previously at position (i/2) to position i.
518 <     * Under these circumstances, this method returns the element that was
519 <     * previously at the end of the list and is now at some position between
520 <     * 2 and i-1 inclusive.
513 >     * Normally this method leaves the elements at up to i-1,
514 >     * inclusive, untouched.  Under these circumstances, it returns
515 >     * null.  Occasionally, in order to maintain the heap invariant,
516 >     * it must swap a later element of the list with one earlier than
517 >     * i.  Under these circumstances, this method returns the element
518 >     * that was previously at the end of the list and is now at some
519 >     * position before i. This fact is used by iterator.remove so as to
520 >     * avoid missing traverseing elements.
521       */
522 <    private E removeAt(int i) {
523 <        assert i > 0 && i <= size;
522 >    private E removeAt(int i) {
523 >        assert i >= 0 && i < size;
524          modCount++;
525 <
526 <        E moved = (E) queue[size];
527 <        queue[i] = moved;
528 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
529 <        if (i <= size) {
530 <            fixDown(i);
525 >        int s = --size;
526 >        if (s == i) // removed last element
527 >            queue[i] = null;
528 >        else {
529 >            E moved = (E) queue[s];
530 >            queue[s] = null;
531 >            siftDown(i, moved);
532              if (queue[i] == moved) {
533 <                fixUp(i);
533 >                siftUp(i, moved);
534                  if (queue[i] != moved)
535                      return moved;
536              }
# Line 535 | Line 539 | public class PriorityQueue<E> extends Ab
539      }
540  
541      /**
542 <     * Establishes the heap invariant (described above) assuming the heap
543 <     * satisfies the invariant except possibly for the leaf-node indexed by k
544 <     * (which may have a nextExecutionTime less than its parent's).
545 <     *
546 <     * This method functions by "promoting" queue[k] up the hierarchy
547 <     * (by swapping it with its parent) repeatedly until queue[k]
548 <     * is greater than or equal to its parent.
549 <     */
550 <    private void fixUp(int k) {
551 <        if (comparator == null) {
552 <            while (k > 1) {
553 <                int j = k >> 1;
554 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
555 <                    break;
556 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
557 <                k = j;
558 <            }
559 <        } else {
560 <            while (k > 1) {
561 <                int j = k >>> 1;
562 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
563 <                    break;
564 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
565 <                k = j;
566 <            }
542 >     * Inserts item x at position k, maintaining heap invariant by
543 >     * promoting x up the tree until it is greater than or equal to
544 >     * its parent, or is the root.
545 >     *
546 >     * To simplify and speed up coercions and comparisons. the
547 >     * Comparable and Comparator versions are separated into different
548 >     * methods that are otherwise identical. (Similarly for siftDown.)
549 >     *
550 >     * @param k the position to fill
551 >     * @param x the item to insert
552 >     */
553 >    private void siftUp(int k, E x) {
554 >        if (comparator != null)
555 >            siftUpUsingComparator(k, x);
556 >        else
557 >            siftUpComparable(k, x);
558 >    }
559 >
560 >    private void siftUpComparable(int k, E x) {
561 >        Comparable<? super E> key = (Comparable<? super E>) x;
562 >        while (k > 0) {
563 >            int parent = (k - 1) >>> 1;
564 >            Object e = queue[parent];
565 >            if (key.compareTo((E)e) >= 0)
566 >                break;
567 >            queue[k] = e;
568 >            k = parent;
569 >        }
570 >        queue[k] = key;
571 >    }
572 >
573 >    private void siftUpUsingComparator(int k, E x) {
574 >        while (k > 0) {
575 >            int parent = (k - 1) >>> 1;
576 >            Object e = queue[parent];
577 >            if (comparator.compare(x, (E)e) >= 0)
578 >                break;
579 >            queue[k] = e;
580 >            k = parent;
581          }
582 +        queue[k] = x;
583      }
584  
585      /**
586 <     * Establishes the heap invariant (described above) in the subtree
587 <     * rooted at k, which is assumed to satisfy the heap invariant except
588 <     * possibly for node k itself (which may be greater than its children).
589 <     *
590 <     * This method functions by "demoting" queue[k] down the hierarchy
591 <     * (by swapping it with its smaller child) repeatedly until queue[k]
592 <     * is less than or equal to its children.
593 <     */
594 <    private void fixDown(int k) {
595 <        int j;
596 <        if (comparator == null) {
597 <            while ((j = k << 1) <= size && (j > 0)) {
598 <                if (j<size &&
599 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
600 <                    j++; // j indexes smallest kid
601 <
602 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
603 <                    break;
604 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
605 <                k = j;
606 <            }
607 <        } else {
608 <            while ((j = k << 1) <= size && (j > 0)) {
609 <                if (j<size &&
610 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
611 <                    j++; // j indexes smallest kid
612 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
613 <                    break;
614 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
615 <                k = j;
616 <            }
586 >     * Inserts item x at position k, maintaining heap invariant by
587 >     * demoting x down the tree repeatedly until it is less than or
588 >     * equal to its children or is a leaf.
589 >     *
590 >     * @param k the position to fill
591 >     * @param x the item to insert
592 >     */
593 >    private void siftDown(int k, E x) {
594 >        if (comparator != null)
595 >            siftDownUsingComparator(k, x);
596 >        else
597 >            siftDownComparable(k, x);
598 >    }
599 >
600 >    private void siftDownComparable(int k, E x) {
601 >        Comparable<? super E> key = (Comparable<? super E>)x;
602 >        int half = size >>> 1;        // loop while a non-leaf
603 >        while (k < half) {
604 >            int child = (k << 1) + 1; // assume left child is least
605 >            Object c = queue[child];
606 >            int right = child + 1;
607 >            if (right < size &&
608 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
609 >                c = queue[child = right];
610 >            if (key.compareTo((E)c) <= 0)
611 >                break;
612 >            queue[k] = c;
613 >            k = child;
614 >        }
615 >        queue[k] = key;
616 >    }
617 >
618 >    private void siftDownUsingComparator(int k, E x) {
619 >        int half = size >>> 1;
620 >        while (k < half) {
621 >            int child = (k << 1) + 1;
622 >            Object c = queue[child];
623 >            int right = child + 1;
624 >            if (right < size &&
625 >                comparator.compare((E)c, (E)queue[right]) > 0)
626 >                c = queue[child = right];
627 >            if (comparator.compare(x, (E)c) <= 0)
628 >                break;
629 >            queue[k] = c;
630 >            k = child;
631          }
632 +        queue[k] = x;
633      }
634  
635      /**
# Line 603 | Line 637 | public class PriorityQueue<E> extends Ab
637       * assuming nothing about the order of the elements prior to the call.
638       */
639      private void heapify() {
640 <        for (int i = size/2; i >= 1; i--)
641 <            fixDown(i);
640 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
641 >            siftDown(i, (E)queue[i]);
642      }
643  
644      /**
645 <     * Returns the comparator used to order this collection, or <tt>null</tt>
646 <     * if this collection is sorted according to its elements natural ordering
647 <     * (using <tt>Comparable</tt>).
645 >     * Returns the comparator used to order the elements in this
646 >     * queue, or <tt>null</tt> if this queue is sorted according to
647 >     * the {@linkplain Comparable natural ordering} of its elements.
648       *
649 <     * @return the comparator used to order this collection, or <tt>null</tt>
650 <     * if this collection is sorted according to its elements natural ordering.
649 >     * @return the comparator used to order this queue, or
650 >     *         <tt>null</tt> if this queue is sorted according to the
651 >     *         natural ordering of its elements.
652       */
653      public Comparator<? super E> comparator() {
654          return comparator;
# Line 634 | Line 669 | public class PriorityQueue<E> extends Ab
669          s.defaultWriteObject();
670  
671          // Write out array length
672 <        s.writeInt(queue.length);
672 >        // For compatibility with 1.5 version, must be at least 2.
673 >        s.writeInt(Math.max(2, queue.length));
674  
675          // Write out all elements in the proper order.
676 <        for (int i=1; i<=size; i++)
676 >        for (int i=0; i<size; i++)
677              s.writeObject(queue[i]);
678      }
679  
680      /**
681 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
682 <     * deserialize it).
681 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
682 >     * (that is, deserialize it).
683       * @param s the stream
684       */
685      private void readObject(java.io.ObjectInputStream s)
# Line 656 | Line 692 | public class PriorityQueue<E> extends Ab
692          queue = new Object[arrayLength];
693  
694          // Read in all elements in the proper order.
695 <        for (int i=1; i<=size; i++)
695 >        for (int i=0; i<size; i++)
696              queue[i] = (E) s.readObject();
697      }
698  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines