ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.6 by brian, Mon Jun 23 02:26:15 2003 UTC vs.
Revision 1.61 by jsr166, Tue Feb 7 20:54:24 2006 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9  
10   /**
11 < * An unbounded priority queue based on a priority heap.  This queue orders
12 < * elements according to an order specified at construction time, which is
13 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
14 < * either according to their <i>natural order</i> (see {@link Comparable}), or
15 < * according to a {@link Comparator}, depending on which constructor is used.
16 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
17 < * minimal element with respect to the specified ordering.  If multiple
18 < * elements are tied for least value, no guarantees are made as to
19 < * which of these elements is returned.
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  The elements of the priority queue are ordered according to
13 > * their {@linkplain Comparable natural ordering}, or by a {@link
14 > * Comparator} provided at queue construction time, depending on which
15 > * constructor is used.  A priority queue does not permit
16 > * <tt>null</tt> elements.  A priority queue relying on natural
17 > * ordering also does not permit insertion of non-comparable objects
18 > * (doing so may result in <tt>ClassCastException</tt>).
19 > *
20 > * <p>The <em>head</em> of this queue is the <em>least</em> element
21 > * with respect to the specified ordering.  If multiple elements are
22 > * tied for least value, the head is one of those elements -- ties are
23 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
24 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
25 > * element at the head of the queue.
26   *
27 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the size of
28 < * the array used internally to store the elements on the queue.  It is always at least
29 < * as large as the queue size.  As elements are added to a priority queue,
30 < * its capacity grows automatically.  The details of the growth policy are not
27 > * <p>A priority queue is unbounded, but has an internal
28 > * <i>capacity</i> governing the size of an array used to store the
29 > * elements on the queue.  It is always at least as large as the queue
30 > * size.  As elements are added to a priority queue, its capacity
31 > * grows automatically.  The details of the growth policy are not
32   * specified.
33   *
34 < *<p>Implementation note: this implementation provides O(log(n)) time for
35 < * the insertion methods (<tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>)
36 < * methods; linear time for the <tt>remove(Object)</tt> and
37 < * <tt>contains(Object)</tt> methods; and constant time for the retrieval methods (<tt>peek</tt>,
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
40 > *
41 > * <p> <strong>Note that this implementation is not synchronized.</strong>
42 > * Multiple threads should not access a <tt>PriorityQueue</tt>
43 > * instance concurrently if any of the threads modifies the list
44 > * structurally. Instead, use the thread-safe {@link
45 > * java.util.concurrent.PriorityBlockingQueue} class.
46 > *
47 > * <p>Implementation note: this implementation provides O(log(n)) time
48 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 > * constant time for the retrieval methods (<tt>peek</tt>,
52   * <tt>element</tt>, and <tt>size</tt>).
53   *
54   * <p>This class is a member of the
55   * <a href="{@docRoot}/../guide/collections/index.html">
56   * Java Collections Framework</a>.
57 + * @since 1.5
58 + * @version 1.8, 08/27/05
59 + * @author Josh Bloch
60 + * @param <E> the type of elements held in this collection
61   */
62   public class PriorityQueue<E> extends AbstractQueue<E>
63 <                              implements Queue<E>
64 < {
63 >    implements java.io.Serializable {
64 >
65 >    private static final long serialVersionUID = -7720805057305804111L;
66 >
67      private static final int DEFAULT_INITIAL_CAPACITY = 11;
68  
69      /**
70 <     * Priority queue represented as a balanced binary heap: the two children
71 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
72 <     * ordered by comparator, or by the elements' natural ordering, if
73 <     * comparator is null:  For each node n in the heap and each descendant d
74 <     * of n, n <= d.
75 <     *
42 <     * The element with the lowest value is in queue[1], assuming the queue is
43 <     * nonempty.  (A one-based array is used in preference to the traditional
44 <     * zero-based array to simplify parent and child calculations.)
45 <     *
46 <     * queue.length must be >= 2, even if size == 0.
70 >     * Priority queue represented as a balanced binary heap: the two
71 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
72 >     * priority queue is ordered by comparator, or by the elements'
73 >     * natural ordering, if comparator is null: For each node n in the
74 >     * heap and each descendant d of n, n <= d.  The element with the
75 >     * lowest value is in queue[0], assuming the queue is nonempty.
76       */
77 <    private transient E[] queue;
77 >    private transient Object[] queue;
78  
79      /**
80       * The number of elements in the priority queue.
# Line 56 | Line 85 | public class PriorityQueue<E> extends Ab
85       * The comparator, or null if priority queue uses elements'
86       * natural ordering.
87       */
88 <    private final Comparator<E> comparator;
88 >    private final Comparator<? super E> comparator;
89  
90      /**
91       * The number of times this priority queue has been
# Line 65 | Line 94 | public class PriorityQueue<E> extends Ab
94      private transient int modCount = 0;
95  
96      /**
97 <     * Create a new priority queue with the default initial capacity (11)
98 <     * that orders its elements according to their natural ordering (using <tt>Comparable</tt>.)
97 >     * Creates a <tt>PriorityQueue</tt> with the default initial
98 >     * capacity (11) that orders its elements according to their
99 >     * {@linkplain Comparable natural ordering}.
100       */
101      public PriorityQueue() {
102 <        this(DEFAULT_INITIAL_CAPACITY);
102 >        this(DEFAULT_INITIAL_CAPACITY, null);
103      }
104  
105      /**
106 <     * Create a new priority queue with the specified initial capacity
107 <     * that orders its elements according to their natural ordering (using <tt>Comparable</tt>.)
106 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
107 >     * capacity that orders its elements according to their
108 >     * {@linkplain Comparable natural ordering}.
109       *
110 <     * @param initialCapacity the initial capacity for this priority queue.
110 >     * @param initialCapacity the initial capacity for this priority queue
111 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112 >     * than 1
113       */
114      public PriorityQueue(int initialCapacity) {
115          this(initialCapacity, null);
116      }
117  
118      /**
119 <     * Create a new priority queue with the specified initial capacity (11)
119 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120       * that orders its elements according to the specified comparator.
121       *
122 <     * @param initialCapacity the initial capacity for this priority queue.
123 <     * @param comparator the comparator used to order this priority queue.
124 <     */
125 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
122 >     * @param  initialCapacity the initial capacity for this priority queue
123 >     * @param  comparator the comparator that will be used to order
124 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
125 >     *         ordering</i> of the elements will be used.
126 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
127 >     *         less than 1
128 >     */
129 >    public PriorityQueue(int initialCapacity,
130 >                         Comparator<? super E> comparator) {
131 >        // Note: This restriction of at least one is not actually needed,
132 >        // but continues for 1.5 compatibility
133          if (initialCapacity < 1)
134 <            initialCapacity = 1;
135 <        queue = new E[initialCapacity + 1];
134 >            throw new IllegalArgumentException();
135 >        this.queue = new Object[initialCapacity];
136          this.comparator = comparator;
137      }
138  
139      /**
140 <     * Create a new priority queue containing the elements in the specified
141 <     * collection.  The priority queue has an initial capacity of 110% of the
142 <     * size of the specified collection. If the specified collection
143 <     * implements the {@link Sorted} interface, the priority queue will be
144 <     * sorted according to the same comparator, or according to its elements'
145 <     * natural order if the collection is sorted according to its elements'
106 <     * natural order.  If the specified collection does not implement
107 <     * <tt>Sorted</tt>, the priority queue is ordered according to
108 <     * its elements' natural order.
140 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
141 >     * specified collection.   If the specified collection is an
142 >     * instance of a {@link java.util.SortedSet} or is another
143 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
144 >     * according to the same ordering.  Otherwise, this priority queue
145 >     * will be ordered according to the natural ordering of its elements.
146       *
147 <     * @param initialElements the collection whose elements are to be placed
148 <     *        into this priority queue.
147 >     * @param  c the collection whose elements are to be placed
148 >     *         into this priority queue
149       * @throws ClassCastException if elements of the specified collection
150       *         cannot be compared to one another according to the priority
151 <     *         queue's ordering.
152 <     * @throws NullPointerException if the specified collection or an
153 <     *         element of the specified collection is <tt>null</tt>.
154 <     */
155 <    public PriorityQueue(Collection<E> initialElements) {
156 <        int sz = initialElements.size();
157 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
158 <                                            Integer.MAX_VALUE - 1);
159 <        if (initialCapacity < 1)
160 <            initialCapacity = 1;
161 <        queue = new E[initialCapacity + 1];
162 <
163 <        /* Commented out to compile with generics compiler
127 <
128 <        if (initialElements instanceof Sorted) {
129 <            comparator = ((Sorted)initialElements).comparator();
130 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
131 <                queue[++size] = i.next();
132 <        } else {
133 <        */
134 <        {
151 >     *         queue's ordering
152 >     * @throws NullPointerException if the specified collection or any
153 >     *         of its elements are null
154 >     */
155 >    public PriorityQueue(Collection<? extends E> c) {
156 >        initFromCollection(c);
157 >        if (c instanceof SortedSet)
158 >            comparator = (Comparator<? super E>)
159 >                ((SortedSet<? extends E>)c).comparator();
160 >        else if (c instanceof PriorityQueue)
161 >            comparator = (Comparator<? super E>)
162 >                ((PriorityQueue<? extends E>)c).comparator();
163 >        else {
164              comparator = null;
165 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 <                add(i.next());
165 >            heapify();
166          }
167      }
168  
169 <    // Queue Methods
169 >    /**
170 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 >     * specified priority queue.  This priority queue will be
172 >     * ordered according to the same ordering as the given priority
173 >     * queue.
174 >     *
175 >     * @param  c the priority queue whose elements are to be placed
176 >     *         into this priority queue
177 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
178 >     *         compared to one another according to <tt>c</tt>'s
179 >     *         ordering
180 >     * @throws NullPointerException if the specified priority queue or any
181 >     *         of its elements are null
182 >     */
183 >    public PriorityQueue(PriorityQueue<? extends E> c) {
184 >        comparator = (Comparator<? super E>)c.comparator();
185 >        initFromCollection(c);
186 >    }
187  
188      /**
189 <     * Remove and return the minimal element from this priority queue if
190 <     * it contains one or more elements, otherwise return <tt>null</tt>.  The term
191 <     * <i>minimal</i> is defined according to this priority queue's order.
189 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 >     * specified sorted set.  This priority queue will be ordered
191 >     * according to the same ordering as the given sorted set.
192       *
193 <     * @return the minimal element from this priority queue if it contains
194 <     *         one or more elements, otherwise <tt>null</tt>.
193 >     * @param  c the sorted set whose elements are to be placed
194 >     *         into this priority queue.
195 >     * @throws ClassCastException if elements of the specified sorted
196 >     *         set cannot be compared to one another according to the
197 >     *         sorted set's ordering
198 >     * @throws NullPointerException if the specified sorted set or any
199 >     *         of its elements are null
200       */
201 <    public E poll() {
202 <        if (size == 0)
203 <            return null;
154 <        return remove(1);
201 >    public PriorityQueue(SortedSet<? extends E> c) {
202 >        comparator = (Comparator<? super E>)c.comparator();
203 >        initFromCollection(c);
204      }
205  
206      /**
207 <     * Return, but do not remove, the minimal element from the priority queue,
208 <     * or return <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
209 <     * defined according to this priority queue's order.  This method returns
210 <     * the same object reference that would be returned by by the
211 <     * <tt>poll</tt> method.  The two methods differ in that this method
212 <     * does not remove the element from the priority queue.
207 >     * Initialize queue array with elements from the given Collection.
208 >     * @param c the collection
209 >     */
210 >    private void initFromCollection(Collection<? extends E> c) {
211 >        Object[] a = c.toArray();
212 >        // If c.toArray incorrectly doesn't return Object[], copy it.
213 >        if (a.getClass() != Object[].class)
214 >            a = Arrays.copyOf(a, a.length, Object[].class);
215 >        queue = a;
216 >        size = a.length;
217 >    }
218 >
219 >    /**
220 >     * Increases the capacity of the array.
221       *
222 <     * @return the minimal element from this priority queue if it contains
166 <     *         one or more elements, otherwise <tt>null</tt>.
222 >     * @param minCapacity the desired minimum capacity
223       */
224 <    public E peek() {
225 <        return queue[1];
224 >    private void grow(int minCapacity) {
225 >        if (minCapacity < 0) // overflow
226 >            throw new OutOfMemoryError();
227 >        int oldCapacity = queue.length;
228 >        // Double size if small; else grow by 50%
229 >        int newCapacity = ((oldCapacity < 64)?
230 >                           ((oldCapacity + 1) * 2):
231 >                           ((oldCapacity / 2) * 3));
232 >        if (newCapacity < 0) // overflow
233 >            newCapacity = Integer.MAX_VALUE;
234 >        if (newCapacity < minCapacity)
235 >            newCapacity = minCapacity;
236 >        queue = Arrays.copyOf(queue, newCapacity);
237      }
238  
239 <    // Collection Methods
239 >    /**
240 >     * Inserts the specified element into this priority queue.
241 >     *
242 >     * @return <tt>true</tt> (as specified by {@link Collection#add})
243 >     * @throws ClassCastException if the specified element cannot be
244 >     *         compared with elements currently in this priority queue
245 >     *         according to the priority queue's ordering
246 >     * @throws NullPointerException if the specified element is null
247 >     */
248 >    public boolean add(E e) {
249 >        return offer(e);
250 >    }
251  
252      /**
253 <     * Removes a single instance of the specified element from this priority
176 <     * queue, if it is present.  Returns true if this collection contained the
177 <     * specified element (or equivalently, if this collection changed as a
178 <     * result of the call).
253 >     * Inserts the specified element into this priority queue.
254       *
255 <     * @param element the element to be removed from this collection, if present.
256 <     * @return <tt>true</tt> if this collection changed as a result of the
257 <     *         call
258 <     * @throws ClassCastException if the specified element cannot be compared
259 <     *            with elements currently in the priority queue according
185 <     *            to the priority queue's ordering.
186 <     * @throws NullPointerException if the specified element is null.
255 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
256 >     * @throws ClassCastException if the specified element cannot be
257 >     *         compared with elements currently in this priority queue
258 >     *         according to the priority queue's ordering
259 >     * @throws NullPointerException if the specified element is null
260       */
261 <    public boolean remove(Object element) {
262 <        if (element == null)
261 >    public boolean offer(E e) {
262 >        if (e == null)
263              throw new NullPointerException();
264 +        modCount++;
265 +        int i = size;
266 +        if (i >= queue.length)
267 +            grow(i + 1);
268 +        size = i + 1;
269 +        if (i == 0)
270 +            queue[0] = e;
271 +        else
272 +            siftUp(i, e);
273 +        return true;
274 +    }
275  
276 <        if (comparator == null) {
277 <            for (int i = 1; i <= size; i++) {
278 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
279 <                    remove(i);
280 <                    return true;
281 <                }
282 <            }
283 <        } else {
284 <            for (int i = 1; i <= size; i++) {
285 <                if (comparator.compare(queue[i], (E) element) == 0) {
286 <                    remove(i);
287 <                    return true;
288 <                }
276 >    public E peek() {
277 >        if (size == 0)
278 >            return null;
279 >        return (E) queue[0];
280 >    }
281 >
282 >    private int indexOf(Object o) {
283 >        if (o != null) {
284 >            for (int i = 0; i < size; i++)
285 >                if (o.equals(queue[i]))
286 >                    return i;
287 >        }
288 >        return -1;
289 >    }
290 >
291 >    /**
292 >     * Removes a single instance of the specified element from this queue,
293 >     * if it is present.  More formally, removes an element <tt>e</tt> such
294 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
295 >     * elements.  Returns true if this queue contained the specified element
296 >     * (or equivalently, if this queue changed as a result of the call).
297 >     *
298 >     * @param o element to be removed from this queue, if present
299 >     * @return <tt>true</tt> if this queue changed as a result of the call
300 >     */
301 >    public boolean remove(Object o) {
302 >        int i = indexOf(o);
303 >        if (i == -1)
304 >            return false;
305 >        else {
306 >            removeAt(i);
307 >            return true;
308 >        }
309 >    }
310 >
311 >    /**
312 >     * Version of remove using reference equality, not equals.
313 >     * Needed by iterator.remove.
314 >     *
315 >     * @param o element to be removed from this queue, if present
316 >     * @return <tt>true</tt> if removed
317 >     */
318 >    boolean removeEq(Object o) {
319 >        for (int i = 0; i < size; i++) {
320 >            if (o == queue[i]) {
321 >                removeAt(i);
322 >                return true;
323              }
324          }
325          return false;
326      }
327  
328      /**
329 <     * Returns an iterator over the elements in this priority queue.  The
330 <     * elements of the priority queue will be returned by this iterator in the
331 <     * order specified by the queue, which is to say the order they would be
332 <     * returned by repeated calls to <tt>poll</tt>.
333 <     *
334 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
329 >     * Returns <tt>true</tt> if this queue contains the specified element.
330 >     * More formally, returns <tt>true</tt> if and only if this queue contains
331 >     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
332 >     *
333 >     * @param o object to be checked for containment in this queue
334 >     * @return <tt>true</tt> if this queue contains the specified element
335 >     */
336 >    public boolean contains(Object o) {
337 >        return indexOf(o) != -1;
338 >    }
339 >
340 >    /**
341 >     * Returns an array containing all of the elements in this queue,
342 >     * The elements are in no particular order.
343 >     *
344 >     * <p>The returned array will be "safe" in that no references to it are
345 >     * maintained by this list.  (In other words, this method must allocate
346 >     * a new array).  The caller is thus free to modify the returned array.
347 >     *
348 >     * @return an array containing all of the elements in this queue
349 >     */
350 >    public Object[] toArray() {
351 >        return Arrays.copyOf(queue, size);
352 >    }
353 >
354 >    /**
355 >     * Returns an array containing all of the elements in this queue.
356 >     * The elements are in no particular order.  The runtime type of
357 >     * the returned array is that of the specified array.  If the queue
358 >     * fits in the specified array, it is returned therein.
359 >     * Otherwise, a new array is allocated with the runtime type of
360 >     * the specified array and the size of this queue.
361 >     *
362 >     * <p>If the queue fits in the specified array with room to spare
363 >     * (i.e., the array has more elements than the queue), the element in
364 >     * the array immediately following the end of the collection is set to
365 >     * <tt>null</tt>.  (This is useful in determining the length of the
366 >     * queue <i>only</i> if the caller knows that the queue does not contain
367 >     * any null elements.)
368 >     *
369 >     * @param a the array into which the elements of the queue are to
370 >     *          be stored, if it is big enough; otherwise, a new array of the
371 >     *          same runtime type is allocated for this purpose.
372 >     * @return an array containing the elements of the queue
373 >     * @throws ArrayStoreException if the runtime type of the specified array
374 >     *         is not a supertype of the runtime type of every element in
375 >     *         this queue
376 >     * @throws NullPointerException if the specified array is null
377 >     */
378 >    public <T> T[] toArray(T[] a) {
379 >        if (a.length < size)
380 >            // Make a new array of a's runtime type, but my contents:
381 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
382 >        System.arraycopy(queue, 0, a, 0, size);
383 >        if (a.length > size)
384 >            a[size] = null;
385 >        return a;
386 >    }
387 >
388 >    /**
389 >     * Returns an iterator over the elements in this queue. The iterator
390 >     * does not return the elements in any particular order.
391 >     *
392 >     * @return an iterator over the elements in this queue
393       */
394      public Iterator<E> iterator() {
395 <        return new Itr();
395 >        return new Itr();
396      }
397  
398 <    private class Itr implements Iterator<E> {
399 <        /**
400 <         * Index (into queue array) of element to be returned by
398 >    private final class Itr implements Iterator<E> {
399 >        /**
400 >         * Index (into queue array) of element to be returned by
401           * subsequent call to next.
402 <         */
403 <        int cursor = 1;
402 >         */
403 >        private int cursor = 0;
404  
405 <        /**
406 <         * Index of element returned by most recent call to next or
407 <         * previous.  Reset to 0 if this element is deleted by a call
408 <         * to remove.
409 <         */
410 <        int lastRet = 0;
411 <
412 <        /**
413 <         * The modCount value that the iterator believes that the backing
414 <         * List should have.  If this expectation is violated, the iterator
415 <         * has detected concurrent modification.
416 <         */
417 <        int expectedModCount = modCount;
418 <
419 <        public boolean hasNext() {
420 <            return cursor <= size;
421 <        }
405 >        /**
406 >         * Index of element returned by most recent call to next,
407 >         * unless that element came from the forgetMeNot list.
408 >         * Set to -1 if element is deleted by a call to remove.
409 >         */
410 >        private int lastRet = -1;
411 >
412 >        /**
413 >         * A queue of elements that were moved from the unvisited portion of
414 >         * the heap into the visited portion as a result of "unlucky" element
415 >         * removals during the iteration.  (Unlucky element removals are those
416 >         * that require a siftup instead of a siftdown.)  We must visit all of
417 >         * the elements in this list to complete the iteration.  We do this
418 >         * after we've completed the "normal" iteration.
419 >         *
420 >         * We expect that most iterations, even those involving removals,
421 >         * will not use need to store elements in this field.
422 >         */
423 >        private ArrayDeque<E> forgetMeNot = null;
424 >
425 >        /**
426 >         * Element returned by the most recent call to next iff that
427 >         * element was drawn from the forgetMeNot list.
428 >         */
429 >        private E lastRetElt = null;
430 >
431 >        /**
432 >         * The modCount value that the iterator believes that the backing
433 >         * List should have.  If this expectation is violated, the iterator
434 >         * has detected concurrent modification.
435 >         */
436 >        private int expectedModCount = modCount;
437 >
438 >        public boolean hasNext() {
439 >            return cursor < size ||
440 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
441 >        }
442  
443 <        public E next() {
444 <            checkForComodification();
445 <            if (cursor > size)
446 <                throw new NoSuchElementException();
447 <            E result = queue[cursor];
448 <            lastRet = cursor++;
449 <            return result;
450 <        }
443 >        public E next() {
444 >            if (expectedModCount != modCount)
445 >                throw new ConcurrentModificationException();
446 >            if (cursor < size)
447 >                return (E) queue[lastRet = cursor++];
448 >            if (forgetMeNot != null) {
449 >                lastRet = -1;
450 >                lastRetElt = forgetMeNot.poll();
451 >                if (lastRetElt != null)
452 >                    return lastRetElt;
453 >            }
454 >            throw new NoSuchElementException();
455 >        }
456  
457 <        public void remove() {
458 <            if (lastRet == 0)
459 <                throw new IllegalStateException();
460 <            checkForComodification();
461 <
462 <            PriorityQueue.this.remove(lastRet);
463 <            if (lastRet < cursor)
464 <                cursor--;
465 <            lastRet = 0;
457 >        public void remove() {
458 >            if (expectedModCount != modCount)
459 >                throw new ConcurrentModificationException();
460 >            if (lastRet == -1 && lastRetElt == null)
461 >                throw new IllegalStateException();
462 >            if (lastRet != -1) {
463 >                E moved = PriorityQueue.this.removeAt(lastRet);
464 >                lastRet = -1;
465 >                if (moved == null)
466 >                    cursor--;
467 >                else {
468 >                    if (forgetMeNot == null)
469 >                        forgetMeNot = new ArrayDeque<E>();
470 >                    forgetMeNot.add(moved);
471 >                }
472 >            } else {
473 >                PriorityQueue.this.removeEq(lastRetElt);
474 >                lastRetElt = null;
475 >            }
476              expectedModCount = modCount;
477 <        }
477 >        }
478  
268        final void checkForComodification() {
269            if (modCount != expectedModCount)
270                throw new ConcurrentModificationException();
271        }
479      }
480  
274    /**
275     * Returns the number of elements in this priority queue.
276     *
277     * @return the number of elements in this priority queue.
278     */
481      public int size() {
482          return size;
483      }
484  
485      /**
486 <     * Add the specified element to this priority queue.
487 <     *
286 <     * @param element the element to add.
287 <     * @return true
288 <     * @throws ClassCastException if the specified element cannot be compared
289 <     *            with elements currently in the priority queue according
290 <     *            to the priority queue's ordering.
291 <     * @throws NullPointerException if the specified element is null.
486 >     * Removes all of the elements from this priority queue.
487 >     * The queue will be empty after this call returns.
488       */
489 <    public boolean offer(E element) {
294 <        if (element == null)
295 <            throw new NullPointerException();
489 >    public void clear() {
490          modCount++;
491 +        for (int i = 0; i < size; i++)
492 +            queue[i] = null;
493 +        size = 0;
494 +    }
495  
496 <        // Grow backing store if necessary
497 <        if (++size == queue.length) {
498 <            E[] newQueue = new E[2 * queue.length];
499 <            System.arraycopy(queue, 0, newQueue, 0, size);
500 <            queue = newQueue;
501 <        }
502 <
503 <        queue[size] = element;
504 <        fixUp(size);
505 <        return true;
496 >    public E poll() {
497 >        if (size == 0)
498 >            return null;
499 >        int s = --size;
500 >        modCount++;
501 >        E result = (E)queue[0];
502 >        E x = (E)queue[s];
503 >        queue[s] = null;
504 >        if (s != 0)
505 >            siftDown(0, x);
506 >        return result;
507      }
508  
509      /**
510 <     * Remove all elements from the priority queue.
510 >     * Removes the ith element from queue.
511 >     *
512 >     * Normally this method leaves the elements at up to i-1,
513 >     * inclusive, untouched.  Under these circumstances, it returns
514 >     * null.  Occasionally, in order to maintain the heap invariant,
515 >     * it must swap a later element of the list with one earlier than
516 >     * i.  Under these circumstances, this method returns the element
517 >     * that was previously at the end of the list and is now at some
518 >     * position before i. This fact is used by iterator.remove so as to
519 >     * avoid missing traverseing elements.
520       */
521 <    public void clear() {
521 >    private E removeAt(int i) {
522 >        assert i >= 0 && i < size;
523          modCount++;
524 <
525 <        // Null out element references to prevent memory leak
317 <        for (int i=1; i<=size; i++)
524 >        int s = --size;
525 >        if (s == i) // removed last element
526              queue[i] = null;
527 <
528 <        size = 0;
527 >        else {
528 >            E moved = (E) queue[s];
529 >            queue[s] = null;
530 >            siftDown(i, moved);
531 >            if (queue[i] == moved) {
532 >                siftUp(i, moved);
533 >                if (queue[i] != moved)
534 >                    return moved;
535 >            }
536 >        }
537 >        return null;
538      }
539  
540      /**
541 <     * Removes and returns the ith element from queue.  Recall
542 <     * that queue is one-based, so 1 <= i <= size.
541 >     * Inserts item x at position k, maintaining heap invariant by
542 >     * promoting x up the tree until it is greater than or equal to
543 >     * its parent, or is the root.
544       *
545 <     * XXX: Could further special-case i==size, but is it worth it?
546 <     * XXX: Could special-case i==0, but is it worth it?
545 >     * To simplify and speed up coercions and comparisons. the
546 >     * Comparable and Comparator versions are separated into different
547 >     * methods that are otherwise identical. (Similarly for siftDown.)
548 >     *
549 >     * @param k the position to fill
550 >     * @param x the item to insert
551       */
552 <    private E remove(int i) {
553 <        assert i <= size;
554 <        modCount++;
552 >    private void siftUp(int k, E x) {
553 >        if (comparator != null)
554 >            siftUpUsingComparator(k, x);
555 >        else
556 >            siftUpComparable(k, x);
557 >    }
558  
559 <        E result = queue[i];
560 <        queue[i] = queue[size];
561 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
562 <        if (i <= size)
563 <            fixDown(i);
564 <        return result;
559 >    private void siftUpComparable(int k, E x) {
560 >        Comparable<? super E> key = (Comparable<? super E>) x;
561 >        while (k > 0) {
562 >            int parent = (k - 1) >>> 1;
563 >            Object e = queue[parent];
564 >            if (key.compareTo((E)e) >= 0)
565 >                break;
566 >            queue[k] = e;
567 >            k = parent;
568 >        }
569 >        queue[k] = key;
570      }
571  
572 <    /**
573 <     * Establishes the heap invariant (described above) assuming the heap
574 <     * satisfies the invariant except possibly for the leaf-node indexed by k
575 <     * (which may have a nextExecutionTime less than its parent's).
576 <     *
577 <     * This method functions by "promoting" queue[k] up the hierarchy
578 <     * (by swapping it with its parent) repeatedly until queue[k]
579 <     * is greater than or equal to its parent.
350 <     */
351 <    private void fixUp(int k) {
352 <        if (comparator == null) {
353 <            while (k > 1) {
354 <                int j = k >> 1;
355 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
356 <                    break;
357 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
358 <                k = j;
359 <            }
360 <        } else {
361 <            while (k > 1) {
362 <                int j = k >> 1;
363 <                if (comparator.compare(queue[j], queue[k]) <= 0)
364 <                    break;
365 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
366 <                k = j;
367 <            }
572 >    private void siftUpUsingComparator(int k, E x) {
573 >        while (k > 0) {
574 >            int parent = (k - 1) >>> 1;
575 >            Object e = queue[parent];
576 >            if (comparator.compare(x, (E)e) >= 0)
577 >                break;
578 >            queue[k] = e;
579 >            k = parent;
580          }
581 +        queue[k] = x;
582      }
583  
584      /**
585 <     * Establishes the heap invariant (described above) in the subtree
586 <     * rooted at k, which is assumed to satisfy the heap invariant except
587 <     * possibly for node k itself (which may be greater than its children).
588 <     *
589 <     * This method functions by "demoting" queue[k] down the hierarchy
590 <     * (by swapping it with its smaller child) repeatedly until queue[k]
591 <     * is less than or equal to its children.
592 <     */
593 <    private void fixDown(int k) {
594 <        int j;
595 <        if (comparator == null) {
596 <            while ((j = k << 1) <= size) {
597 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
598 <                    j++; // j indexes smallest kid
599 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
600 <                    break;
601 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
602 <                k = j;
603 <            }
604 <        } else {
605 <            while ((j = k << 1) <= size) {
606 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
607 <                    j++; // j indexes smallest kid
608 <                if (comparator.compare(queue[k], queue[j]) <= 0)
609 <                    break;
610 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
611 <                k = j;
612 <            }
585 >     * Inserts item x at position k, maintaining heap invariant by
586 >     * demoting x down the tree repeatedly until it is less than or
587 >     * equal to its children or is a leaf.
588 >     *
589 >     * @param k the position to fill
590 >     * @param x the item to insert
591 >     */
592 >    private void siftDown(int k, E x) {
593 >        if (comparator != null)
594 >            siftDownUsingComparator(k, x);
595 >        else
596 >            siftDownComparable(k, x);
597 >    }
598 >
599 >    private void siftDownComparable(int k, E x) {
600 >        Comparable<? super E> key = (Comparable<? super E>)x;
601 >        int half = size >>> 1;        // loop while a non-leaf
602 >        while (k < half) {
603 >            int child = (k << 1) + 1; // assume left child is least
604 >            Object c = queue[child];
605 >            int right = child + 1;
606 >            if (right < size &&
607 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
608 >                c = queue[child = right];
609 >            if (key.compareTo((E)c) <= 0)
610 >                break;
611 >            queue[k] = c;
612 >            k = child;
613          }
614 +        queue[k] = key;
615 +    }
616 +
617 +    private void siftDownUsingComparator(int k, E x) {
618 +        int half = size >>> 1;
619 +        while (k < half) {
620 +            int child = (k << 1) + 1;
621 +            Object c = queue[child];
622 +            int right = child + 1;
623 +            if (right < size &&
624 +                comparator.compare((E)c, (E)queue[right]) > 0)
625 +                c = queue[child = right];
626 +            if (comparator.compare(x, (E)c) <= 0)
627 +                break;
628 +            queue[k] = c;
629 +            k = child;
630 +        }
631 +        queue[k] = x;
632 +    }
633 +
634 +    /**
635 +     * Establishes the heap invariant (described above) in the entire tree,
636 +     * assuming nothing about the order of the elements prior to the call.
637 +     */
638 +    private void heapify() {
639 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
640 +            siftDown(i, (E)queue[i]);
641      }
642  
643      /**
644 <     * Returns the comparator associated with this priority queue, or
645 <     * <tt>null</tt> if it uses its elements' natural ordering.
644 >     * Returns the comparator used to order the elements in this
645 >     * queue, or <tt>null</tt> if this queue is sorted according to
646 >     * the {@linkplain Comparable natural ordering} of its elements.
647       *
648 <     * @return the comparator associated with this priority queue, or
649 <     *         <tt>null</tt> if it uses its elements' natural ordering.
648 >     * @return the comparator used to order this queue, or
649 >     *         <tt>null</tt> if this queue is sorted according to the
650 >     *         natural ordering of its elements.
651       */
652 <    Comparator comparator() {
652 >    public Comparator<? super E> comparator() {
653          return comparator;
654      }
655  
# Line 418 | Line 660 | public class PriorityQueue<E> extends Ab
660       * @serialData The length of the array backing the instance is
661       * emitted (int), followed by all of its elements (each an
662       * <tt>Object</tt>) in the proper order.
663 +     * @param s the stream
664       */
665 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
665 >    private void writeObject(java.io.ObjectOutputStream s)
666          throws java.io.IOException{
667 <        // Write out element count, and any hidden stuff
668 <        s.defaultWriteObject();
667 >        // Write out element count, and any hidden stuff
668 >        s.defaultWriteObject();
669  
670          // Write out array length
671 <        s.writeInt(queue.length);
671 >        // For compatibility with 1.5 version, must be at least 2.
672 >        s.writeInt(Math.max(2, queue.length));
673  
674 <        // Write out all elements in the proper order.
675 <        for (int i=0; i<size; i++)
674 >        // Write out all elements in the proper order.
675 >        for (int i=0; i<size; i++)
676              s.writeObject(queue[i]);
677      }
678  
679      /**
680 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
681 <     * deserialize it).
680 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
681 >     * (that is, deserialize it).
682 >     * @param s the stream
683       */
684 <    private synchronized void readObject(java.io.ObjectInputStream s)
684 >    private void readObject(java.io.ObjectInputStream s)
685          throws java.io.IOException, ClassNotFoundException {
686 <        // Read in size, and any hidden stuff
687 <        s.defaultReadObject();
686 >        // Read in size, and any hidden stuff
687 >        s.defaultReadObject();
688  
689          // Read in array length and allocate array
690          int arrayLength = s.readInt();
691 <        queue = new E[arrayLength];
691 >        queue = new Object[arrayLength];
692  
693 <        // Read in all elements in the proper order.
694 <        for (int i=0; i<size; i++)
695 <            queue[i] = (E)s.readObject();
693 >        // Read in all elements in the proper order.
694 >        for (int i=0; i<size; i++)
695 >            queue[i] = (E) s.readObject();
696      }
697  
698   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines