ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.12 by dl, Mon Jul 28 09:40:07 2003 UTC vs.
Revision 1.60 by jsr166, Mon Dec 5 02:56:59 2005 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9 > import java.util.*; // for javadoc (till 6280605 is fixed)
10  
11   /**
12 < * An unbounded priority queue based on a priority heap.  This queue orders
13 < * elements according to an order specified at construction time, which is
14 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
15 < * elements are ordered
16 < * either according to their <i>natural order</i> (see {@link Comparable}), or
17 < * according to a {@link Comparator}, depending on which constructor is used.
18 < * The <em>head</em> of this queue is the least element with respect to the
19 < * specified ordering. If multiple elements are tied for least value, the
20 < * head is one of those elements. A priority queue does not permit
21 < * <tt>null</tt> elements.
22 < *
23 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
24 < * return the head of the queue.
12 > * An unbounded priority {@linkplain Queue queue} based on a priority
13 > * heap.  The elements of the priority queue are ordered according to
14 > * their {@linkplain Comparable natural ordering}, or by a {@link
15 > * Comparator} provided at queue construction time, depending on which
16 > * constructor is used.  A priority queue does not permit
17 > * <tt>null</tt> elements.  A priority queue relying on natural
18 > * ordering also does not permit insertion of non-comparable objects
19 > * (doing so may result in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27   *
28 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
29 < * not delete, the head of the queue.
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34   *
35 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
36 < * size of the array used internally to store the elements on the
37 < * queue.  It is always at least as large as the queue size.  As
38 < * elements are added to a priority queue, its capacity grows
39 < * automatically.  The details of the growth policy are not specified.
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.  The Iterator provided in method {@link
38 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 > * the priority queue in any particular order. If you need ordered
40 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 > *
42 > * <p> <strong>Note that this implementation is not synchronized.</strong>
43 > * Multiple threads should not access a <tt>PriorityQueue</tt>
44 > * instance concurrently if any of the threads modifies the list
45 > * structurally. Instead, use the thread-safe {@link
46 > * java.util.concurrent.PriorityBlockingQueue} class.
47   *
48   * <p>Implementation note: this implementation provides O(log(n)) time
49   * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
# Line 35 | Line 56
56   * <a href="{@docRoot}/../guide/collections/index.html">
57   * Java Collections Framework</a>.
58   * @since 1.5
59 + * @version 1.8, 08/27/05
60   * @author Josh Bloch
61 + * @param <E> the type of elements held in this collection
62   */
63   public class PriorityQueue<E> extends AbstractQueue<E>
64 <    implements Queue<E>, Sorted, java.io.Serializable {
64 >    implements java.io.Serializable {
65 >
66 >    private static final long serialVersionUID = -7720805057305804111L;
67  
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78 <    private transient E[] queue;
78 >    private transient Object[] queue;
79  
80      /**
81       * The number of elements in the priority queue.
# Line 66 | Line 86 | public class PriorityQueue<E> extends Ab
86       * The comparator, or null if priority queue uses elements'
87       * natural ordering.
88       */
89 <    private final Comparator<E> comparator;
89 >    private final Comparator<? super E> comparator;
90  
91      /**
92       * The number of times this priority queue has been
# Line 75 | Line 95 | public class PriorityQueue<E> extends Ab
95      private transient int modCount = 0;
96  
97      /**
98 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
99 <     * (11) that orders its elements according to their natural
100 <     * ordering (using <tt>Comparable</tt>.)
98 >     * Creates a <tt>PriorityQueue</tt> with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101       */
102      public PriorityQueue() {
103          this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105  
106      /**
107 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
108 <     * that orders its elements according to their natural ordering
109 <     * (using <tt>Comparable</tt>.)
110 <     *
111 <     * @param initialCapacity the initial capacity for this priority queue.
107 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110 >     *
111 >     * @param initialCapacity the initial capacity for this priority queue
112 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113 >     * than 1
114       */
115      public PriorityQueue(int initialCapacity) {
116          this(initialCapacity, null);
117      }
118  
119      /**
120 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
120 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121       * that orders its elements according to the specified comparator.
122       *
123 <     * @param initialCapacity the initial capacity for this priority queue.
124 <     * @param comparator the comparator used to order this priority queue.
125 <     * If <tt>null</tt> then the order depends on the elements' natural
126 <     * ordering.
127 <     */
128 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order
125 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
126 >     *         ordering</i> of the elements will be used.
127 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128 >     *         less than 1
129 >     */
130 >    public PriorityQueue(int initialCapacity,
131 >                         Comparator<? super E> comparator) {
132 >        // Note: This restriction of at least one is not actually needed,
133 >        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135 <            initialCapacity = 1;
136 <        queue = (E[]) new Object[initialCapacity + 1];
135 >            throw new IllegalArgumentException();
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
141 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
142 <     * collection.  The priority queue has an initial capacity of 110% of the
143 <     * size of the specified collection. If the specified collection
144 <     * implements the {@link Sorted} interface, the priority queue will be
145 <     * sorted according to the same comparator, or according to its elements'
146 <     * natural order if the collection is sorted according to its elements'
120 <     * natural order.  If the specified collection does not implement
121 <     * <tt>Sorted</tt>, the priority queue is ordered according to
122 <     * its elements' natural order.
141 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 >     * specified collection.   If the specified collection is an
143 >     * instance of a {@link java.util.SortedSet} or is another
144 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
145 >     * according to the same ordering.  Otherwise, this priority queue
146 >     * will be ordered according to the natural ordering of its elements.
147       *
148 <     * @param initialElements the collection whose elements are to be placed
149 <     *        into this priority queue.
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150       * @throws ClassCastException if elements of the specified collection
151       *         cannot be compared to one another according to the priority
152 <     *         queue's ordering.
153 <     * @throws NullPointerException if the specified collection or an
154 <     *         element of the specified collection is <tt>null</tt>.
155 <     */
156 <    public PriorityQueue(Collection<E> initialElements) {
157 <        int sz = initialElements.size();
158 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
159 <                                            Integer.MAX_VALUE - 1);
160 <        if (initialCapacity < 1)
161 <            initialCapacity = 1;
162 <        queue = (E[]) new Object[initialCapacity + 1];
163 <
164 <        if (initialElements instanceof Sorted) {
141 <            comparator = ((Sorted)initialElements).comparator();
142 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 <                queue[++size] = i.next();
144 <        } else {
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155 >     */
156 >    public PriorityQueue(Collection<? extends E> c) {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
147 <                add(i.next());
166 >            heapify();
167          }
168      }
169  
170 <    // Queue Methods
170 >    /**
171 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 >     *         compared to one another according to <tt>c</tt>'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183 >     */
184 >    public PriorityQueue(PriorityQueue<? extends E> c) {
185 >        comparator = (Comparator<? super E>)c.comparator();
186 >        initFromCollection(c);
187 >    }
188  
189      /**
190 <     * Add the specified element to this priority queue.
190 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 >     * specified sorted set.  This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193       *
194 <     * @param element the element to add.
195 <     * @return <tt>true</tt>
196 <     * @throws ClassCastException if the specified element cannot be compared
197 <     * with elements currently in the priority queue according
198 <     * to the priority queue's ordering.
199 <     * @throws NullPointerException if the specified element is null.
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue.
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201       */
202 <    public boolean offer(E element) {
203 <        if (element == null)
204 <            throw new NullPointerException();
205 <        modCount++;
167 <        ++size;
202 >    public PriorityQueue(SortedSet<? extends E> c) {
203 >        comparator = (Comparator<? super E>)c.comparator();
204 >        initFromCollection(c);
205 >    }
206  
207 <        // Grow backing store if necessary
208 <        while (size >= queue.length) {
209 <            E[] newQueue = (E[]) new Object[2 * queue.length];
210 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
211 <            queue = newQueue;
212 <        }
207 >    /**
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210 >     */
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218 >    }
219  
220 <        queue[size] = element;
221 <        fixUp(size);
220 >    /**
221 >     * Increases the capacity of the array.
222 >     *
223 >     * @param minCapacity the desired minimum capacity
224 >     */
225 >    private void grow(int minCapacity) {
226 >        if (minCapacity < 0) // overflow
227 >            throw new OutOfMemoryError();
228 >        int oldCapacity = queue.length;
229 >        // Double size if small; else grow by 50%
230 >        int newCapacity = ((oldCapacity < 64)?
231 >                           ((oldCapacity + 1) * 2):
232 >                           ((oldCapacity / 2) * 3));
233 >        if (newCapacity < 0) // overflow
234 >            newCapacity = Integer.MAX_VALUE;
235 >        if (newCapacity < minCapacity)
236 >            newCapacity = minCapacity;
237 >        queue = Arrays.copyOf(queue, newCapacity);
238 >    }
239 >
240 >    /**
241 >     * Inserts the specified element into this priority queue.
242 >     *
243 >     * @return <tt>true</tt> (as specified by {@link Collection#add})
244 >     * @throws ClassCastException if the specified element cannot be
245 >     *         compared with elements currently in this priority queue
246 >     *         according to the priority queue's ordering
247 >     * @throws NullPointerException if the specified element is null
248 >     */
249 >    public boolean add(E e) {
250 >        return offer(e);
251 >    }
252 >
253 >    /**
254 >     * Inserts the specified element into this priority queue.
255 >     *
256 >     * @return <tt>true</tt> (as specified by {@link Queue#offer})
257 >     * @throws ClassCastException if the specified element cannot be
258 >     *         compared with elements currently in this priority queue
259 >     *         according to the priority queue's ordering
260 >     * @throws NullPointerException if the specified element is null
261 >     */
262 >    public boolean offer(E e) {
263 >        if (e == null)
264 >            throw new NullPointerException();
265 >        modCount++;
266 >        int i = size;
267 >        if (i >= queue.length)
268 >            grow(i + 1);
269 >        size = i + 1;
270 >        if (i == 0)
271 >            queue[0] = e;
272 >        else
273 >            siftUp(i, e);
274          return true;
275      }
276  
277 <    public E poll() {
277 >    public E peek() {
278          if (size == 0)
279              return null;
280 <        return remove(1);
280 >        return (E) queue[0];
281      }
282  
283 <    public E peek() {
284 <        return queue[1];
283 >    private int indexOf(Object o) {
284 >        if (o != null) {
285 >            for (int i = 0; i < size; i++)
286 >                if (o.equals(queue[i]))
287 >                    return i;
288 >        }
289 >        return -1;
290      }
291  
292 <    // Collection Methods
292 >    /**
293 >     * Removes a single instance of the specified element from this queue,
294 >     * if it is present.  More formally, removes an element <tt>e</tt> such
295 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
296 >     * elements.  Returns true if this queue contained the specified element
297 >     * (or equivalently, if this queue changed as a result of the call).
298 >     *
299 >     * @param o element to be removed from this queue, if present
300 >     * @return <tt>true</tt> if this queue changed as a result of the call
301 >     */
302 >    public boolean remove(Object o) {
303 >        int i = indexOf(o);
304 >        if (i == -1)
305 >            return false;
306 >        else {
307 >            removeAt(i);
308 >            return true;
309 >        }
310 >    }
311  
312 <    // these first two override just to get the throws docs
312 >    /**
313 >     * Version of remove using reference equality, not equals.
314 >     * Needed by iterator.remove.
315 >     *
316 >     * @param o element to be removed from this queue, if present
317 >     * @return <tt>true</tt> if removed
318 >     */
319 >    boolean removeEq(Object o) {
320 >        for (int i = 0; i < size; i++) {
321 >            if (o == queue[i]) {
322 >                removeAt(i);
323 >                return true;
324 >            }
325 >        }
326 >        return false;
327 >    }
328  
329      /**
330 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
330 >     * Returns <tt>true</tt> if this queue contains the specified element.
331 >     * More formally, returns <tt>true</tt> if and only if this queue contains
332 >     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
333 >     *
334 >     * @param o object to be checked for containment in this queue
335 >     * @return <tt>true</tt> if this queue contains the specified element
336       */
337 <    public boolean add(E element) {
338 <        return super.add(element);
337 >    public boolean contains(Object o) {
338 >        return indexOf(o) != -1;
339      }
340  
202    //    /**
203    //     * @throws NullPointerException if any element is <tt>null</tt>.
204    //     */
205    //    public boolean addAll(Collection c) {
206    //        return super.addAll(c);
207    //    }
208
341      /**
342 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
342 >     * Returns an array containing all of the elements in this queue,
343 >     * The elements are in no particular order.
344 >     *
345 >     * <p>The returned array will be "safe" in that no references to it are
346 >     * maintained by this list.  (In other words, this method must allocate
347 >     * a new array).  The caller is thus free to modify the returned array.
348 >     *
349 >     * @return an array containing all of the elements in this queue
350       */
351 <    public boolean remove(Object o) {
352 <        if (o == null)
353 <            throw new NullPointerException();
351 >    public Object[] toArray() {
352 >        return Arrays.copyOf(queue, size);
353 >    }
354  
355 <        if (comparator == null) {
356 <            for (int i = 1; i <= size; i++) {
357 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
358 <                    remove(i);
359 <                    return true;
360 <                }
361 <            }
362 <        } else {
363 <            for (int i = 1; i <= size; i++) {
364 <                if (comparator.compare(queue[i], (E)o) == 0) {
365 <                    remove(i);
366 <                    return true;
367 <                }
368 <            }
369 <        }
370 <        return false;
355 >    /**
356 >     * Returns an array containing all of the elements in this queue.
357 >     * The elements are in no particular order.  The runtime type of
358 >     * the returned array is that of the specified array.  If the queue
359 >     * fits in the specified array, it is returned therein.
360 >     * Otherwise, a new array is allocated with the runtime type of
361 >     * the specified array and the size of this queue.
362 >     *
363 >     * <p>If the queue fits in the specified array with room to spare
364 >     * (i.e., the array has more elements than the queue), the element in
365 >     * the array immediately following the end of the collection is set to
366 >     * <tt>null</tt>.  (This is useful in determining the length of the
367 >     * queue <i>only</i> if the caller knows that the queue does not contain
368 >     * any null elements.)
369 >     *
370 >     * @param a the array into which the elements of the queue are to
371 >     *          be stored, if it is big enough; otherwise, a new array of the
372 >     *          same runtime type is allocated for this purpose.
373 >     * @return an array containing the elements of the queue
374 >     * @throws ArrayStoreException if the runtime type of the specified array
375 >     *         is not a supertype of the runtime type of every element in
376 >     *         this queue
377 >     * @throws NullPointerException if the specified array is null
378 >     */
379 >    public <T> T[] toArray(T[] a) {
380 >        if (a.length < size)
381 >            // Make a new array of a's runtime type, but my contents:
382 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
383 >        System.arraycopy(queue, 0, a, 0, size);
384 >        if (a.length > size)
385 >            a[size] = null;
386 >        return a;
387      }
388  
389      /**
390 <     * Returns an iterator over the elements in this priority queue.  The
391 <     * elements of the priority queue will be returned by this iterator in the
237 <     * order specified by the queue, which is to say the order they would be
238 <     * returned by repeated calls to <tt>poll</tt>.
390 >     * Returns an iterator over the elements in this queue. The iterator
391 >     * does not return the elements in any particular order.
392       *
393 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
393 >     * @return an iterator over the elements in this queue
394       */
395      public Iterator<E> iterator() {
396          return new Itr();
397      }
398  
399 <    private class Itr implements Iterator<E> {
399 >    private final class Itr implements Iterator<E> {
400          /**
401           * Index (into queue array) of element to be returned by
402           * subsequent call to next.
403           */
404 <        private int cursor = 1;
404 >        private int cursor = 0;
405 >
406 >        /**
407 >         * Index of element returned by most recent call to next,
408 >         * unless that element came from the forgetMeNot list.
409 >         * Set to -1 if element is deleted by a call to remove.
410 >         */
411 >        private int lastRet = -1;
412 >
413 >        /**
414 >         * A queue of elements that were moved from the unvisited portion of
415 >         * the heap into the visited portion as a result of "unlucky" element
416 >         * removals during the iteration.  (Unlucky element removals are those
417 >         * that require a siftup instead of a siftdown.)  We must visit all of
418 >         * the elements in this list to complete the iteration.  We do this
419 >         * after we've completed the "normal" iteration.
420 >         *
421 >         * We expect that most iterations, even those involving removals,
422 >         * will not use need to store elements in this field.
423 >         */
424 >        private ArrayDeque<E> forgetMeNot = null;
425  
426          /**
427 <         * Index of element returned by most recent call to next or
428 <         * previous.  Reset to 0 if this element is deleted by a call
256 <         * to remove.
427 >         * Element returned by the most recent call to next iff that
428 >         * element was drawn from the forgetMeNot list.
429           */
430 <        private int lastRet = 0;
430 >        private E lastRetElt = null;
431  
432          /**
433           * The modCount value that the iterator believes that the backing
# Line 265 | Line 437 | public class PriorityQueue<E> extends Ab
437          private int expectedModCount = modCount;
438  
439          public boolean hasNext() {
440 <            return cursor <= size;
440 >            return cursor < size ||
441 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
442          }
443  
444          public E next() {
445 <            checkForComodification();
446 <            if (cursor > size)
447 <                throw new NoSuchElementException();
448 <            E result = queue[cursor];
449 <            lastRet = cursor++;
450 <            return result;
445 >            if (expectedModCount != modCount)
446 >                throw new ConcurrentModificationException();
447 >            if (cursor < size)
448 >                return (E) queue[lastRet = cursor++];
449 >            if (forgetMeNot != null) {
450 >                lastRet = -1;
451 >                lastRetElt = forgetMeNot.poll();
452 >                if (lastRetElt != null)
453 >                    return lastRetElt;
454 >            }
455 >            throw new NoSuchElementException();
456          }
457  
458          public void remove() {
459 <            if (lastRet == 0)
459 >            if (expectedModCount != modCount)
460 >                throw new ConcurrentModificationException();
461 >            if (lastRet == -1 && lastRetElt == null)
462                  throw new IllegalStateException();
463 <            checkForComodification();
464 <
465 <            PriorityQueue.this.remove(lastRet);
466 <            if (lastRet < cursor)
467 <                cursor--;
468 <            lastRet = 0;
463 >            if (lastRet != -1) {
464 >                E moved = PriorityQueue.this.removeAt(lastRet);
465 >                lastRet = -1;
466 >                if (moved == null)
467 >                    cursor--;
468 >                else {
469 >                    if (forgetMeNot == null)
470 >                        forgetMeNot = new ArrayDeque<E>();
471 >                    forgetMeNot.add(moved);
472 >                }
473 >            } else {
474 >                PriorityQueue.this.removeEq(lastRetElt);
475 >                lastRetElt = null;
476 >            }
477              expectedModCount = modCount;
478          }
479  
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
480      }
481  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
482      public int size() {
483          return size;
484      }
485  
486      /**
487 <     * Remove all elements from the priority queue.
487 >     * Removes all of the elements from this priority queue.
488 >     * The queue will be empty after this call returns.
489       */
490      public void clear() {
491          modCount++;
492 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
492 >        for (int i = 0; i < size; i++)
493              queue[i] = null;
316
494          size = 0;
495      }
496  
497 +    public E poll() {
498 +        if (size == 0)
499 +            return null;
500 +        int s = --size;
501 +        modCount++;
502 +        E result = (E)queue[0];
503 +        E x = (E)queue[s];
504 +        queue[s] = null;
505 +        if (s != 0)
506 +            siftDown(0, x);
507 +        return result;
508 +    }
509 +
510      /**
511 <     * Removes and returns the ith element from queue.  Recall
322 <     * that queue is one-based, so 1 <= i <= size.
511 >     * Removes the ith element from queue.
512       *
513 <     * XXX: Could further special-case i==size, but is it worth it?
514 <     * XXX: Could special-case i==0, but is it worth it?
513 >     * Normally this method leaves the elements at up to i-1,
514 >     * inclusive, untouched.  Under these circumstances, it returns
515 >     * null.  Occasionally, in order to maintain the heap invariant,
516 >     * it must swap a later element of the list with one earlier than
517 >     * i.  Under these circumstances, this method returns the element
518 >     * that was previously at the end of the list and is now at some
519 >     * position before i. This fact is used by iterator.remove so as to
520 >     * avoid missing traverseing elements.
521       */
522 <    private E remove(int i) {
523 <        assert i <= size;
522 >    private E removeAt(int i) {
523 >        assert i >= 0 && i < size;
524          modCount++;
525 <
526 <        E result = queue[i];
527 <        queue[i] = queue[size];
528 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
529 <        if (i <= size)
530 <            fixDown(i);
531 <        return result;
525 >        int s = --size;
526 >        if (s == i) // removed last element
527 >            queue[i] = null;
528 >        else {
529 >            E moved = (E) queue[s];
530 >            queue[s] = null;
531 >            siftDown(i, moved);
532 >            if (queue[i] == moved) {
533 >                siftUp(i, moved);
534 >                if (queue[i] != moved)
535 >                    return moved;
536 >            }
537 >        }
538 >        return null;
539      }
540  
541      /**
542 <     * Establishes the heap invariant (described above) assuming the heap
543 <     * satisfies the invariant except possibly for the leaf-node indexed by k
544 <     * (which may have a nextExecutionTime less than its parent's).
545 <     *
546 <     * This method functions by "promoting" queue[k] up the hierarchy
547 <     * (by swapping it with its parent) repeatedly until queue[k]
548 <     * is greater than or equal to its parent.
549 <     */
550 <    private void fixUp(int k) {
551 <        if (comparator == null) {
552 <            while (k > 1) {
553 <                int j = k >> 1;
554 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
555 <                    break;
556 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
557 <                k = j;
558 <            }
559 <        } else {
560 <            while (k > 1) {
561 <                int j = k >> 1;
562 <                if (comparator.compare(queue[j], queue[k]) <= 0)
563 <                    break;
564 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
565 <                k = j;
566 <            }
542 >     * Inserts item x at position k, maintaining heap invariant by
543 >     * promoting x up the tree until it is greater than or equal to
544 >     * its parent, or is the root.
545 >     *
546 >     * To simplify and speed up coercions and comparisons. the
547 >     * Comparable and Comparator versions are separated into different
548 >     * methods that are otherwise identical. (Similarly for siftDown.)
549 >     *
550 >     * @param k the position to fill
551 >     * @param x the item to insert
552 >     */
553 >    private void siftUp(int k, E x) {
554 >        if (comparator != null)
555 >            siftUpUsingComparator(k, x);
556 >        else
557 >            siftUpComparable(k, x);
558 >    }
559 >
560 >    private void siftUpComparable(int k, E x) {
561 >        Comparable<? super E> key = (Comparable<? super E>) x;
562 >        while (k > 0) {
563 >            int parent = (k - 1) >>> 1;
564 >            Object e = queue[parent];
565 >            if (key.compareTo((E)e) >= 0)
566 >                break;
567 >            queue[k] = e;
568 >            k = parent;
569 >        }
570 >        queue[k] = key;
571 >    }
572 >
573 >    private void siftUpUsingComparator(int k, E x) {
574 >        while (k > 0) {
575 >            int parent = (k - 1) >>> 1;
576 >            Object e = queue[parent];
577 >            if (comparator.compare(x, (E)e) >= 0)
578 >                break;
579 >            queue[k] = e;
580 >            k = parent;
581          }
582 +        queue[k] = x;
583      }
584  
585      /**
586 <     * Establishes the heap invariant (described above) in the subtree
587 <     * rooted at k, which is assumed to satisfy the heap invariant except
588 <     * possibly for node k itself (which may be greater than its children).
589 <     *
590 <     * This method functions by "demoting" queue[k] down the hierarchy
591 <     * (by swapping it with its smaller child) repeatedly until queue[k]
592 <     * is less than or equal to its children.
593 <     */
594 <    private void fixDown(int k) {
595 <        int j;
596 <        if (comparator == null) {
597 <            while ((j = k << 1) <= size) {
598 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
599 <                    j++; // j indexes smallest kid
600 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
601 <                    break;
602 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
603 <                k = j;
604 <            }
605 <        } else {
606 <            while ((j = k << 1) <= size) {
607 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
608 <                    j++; // j indexes smallest kid
609 <                if (comparator.compare(queue[k], queue[j]) <= 0)
610 <                    break;
611 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
612 <                k = j;
613 <            }
586 >     * Inserts item x at position k, maintaining heap invariant by
587 >     * demoting x down the tree repeatedly until it is less than or
588 >     * equal to its children or is a leaf.
589 >     *
590 >     * @param k the position to fill
591 >     * @param x the item to insert
592 >     */
593 >    private void siftDown(int k, E x) {
594 >        if (comparator != null)
595 >            siftDownUsingComparator(k, x);
596 >        else
597 >            siftDownComparable(k, x);
598 >    }
599 >
600 >    private void siftDownComparable(int k, E x) {
601 >        Comparable<? super E> key = (Comparable<? super E>)x;
602 >        int half = size >>> 1;        // loop while a non-leaf
603 >        while (k < half) {
604 >            int child = (k << 1) + 1; // assume left child is least
605 >            Object c = queue[child];
606 >            int right = child + 1;
607 >            if (right < size &&
608 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
609 >                c = queue[child = right];
610 >            if (key.compareTo((E)c) <= 0)
611 >                break;
612 >            queue[k] = c;
613 >            k = child;
614          }
615 +        queue[k] = key;
616      }
617  
618 <    public Comparator comparator() {
618 >    private void siftDownUsingComparator(int k, E x) {
619 >        int half = size >>> 1;
620 >        while (k < half) {
621 >            int child = (k << 1) + 1;
622 >            Object c = queue[child];
623 >            int right = child + 1;
624 >            if (right < size &&
625 >                comparator.compare((E)c, (E)queue[right]) > 0)
626 >                c = queue[child = right];
627 >            if (comparator.compare(x, (E)c) <= 0)
628 >                break;
629 >            queue[k] = c;
630 >            k = child;
631 >        }
632 >        queue[k] = x;
633 >    }
634 >
635 >    /**
636 >     * Establishes the heap invariant (described above) in the entire tree,
637 >     * assuming nothing about the order of the elements prior to the call.
638 >     */
639 >    private void heapify() {
640 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
641 >            siftDown(i, (E)queue[i]);
642 >    }
643 >
644 >    /**
645 >     * Returns the comparator used to order the elements in this
646 >     * queue, or <tt>null</tt> if this queue is sorted according to
647 >     * the {@linkplain Comparable natural ordering} of its elements.
648 >     *
649 >     * @return the comparator used to order this queue, or
650 >     *         <tt>null</tt> if this queue is sorted according to the
651 >     *         natural ordering of its elements.
652 >     */
653 >    public Comparator<? super E> comparator() {
654          return comparator;
655      }
656  
# Line 410 | Line 663 | public class PriorityQueue<E> extends Ab
663       * <tt>Object</tt>) in the proper order.
664       * @param s the stream
665       */
666 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
666 >    private void writeObject(java.io.ObjectOutputStream s)
667          throws java.io.IOException{
668          // Write out element count, and any hidden stuff
669          s.defaultWriteObject();
670  
671          // Write out array length
672 <        s.writeInt(queue.length);
672 >        // For compatibility with 1.5 version, must be at least 2.
673 >        s.writeInt(Math.max(2, queue.length));
674  
675          // Write out all elements in the proper order.
676          for (int i=0; i<size; i++)
# Line 424 | Line 678 | public class PriorityQueue<E> extends Ab
678      }
679  
680      /**
681 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
682 <     * deserialize it).
681 >     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
682 >     * (that is, deserialize it).
683       * @param s the stream
684       */
685 <    private synchronized void readObject(java.io.ObjectInputStream s)
685 >    private void readObject(java.io.ObjectInputStream s)
686          throws java.io.IOException, ClassNotFoundException {
687          // Read in size, and any hidden stuff
688          s.defaultReadObject();
689  
690          // Read in array length and allocate array
691          int arrayLength = s.readInt();
692 <        queue = (E[]) new Object[arrayLength];
692 >        queue = new Object[arrayLength];
693  
694          // Read in all elements in the proper order.
695          for (int i=0; i<size; i++)
696 <            queue[i] = (E)s.readObject();
696 >            queue[i] = (E) s.readObject();
697      }
698  
699   }
446

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines