ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.17 by tim, Thu Jul 31 19:49:42 2003 UTC vs.
Revision 1.63 by jsr166, Tue Mar 7 07:11:39 2006 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7 >
8 > package java.util;
9  
10   /**
11 < * An unbounded priority queue based on a priority heap.  This queue orders
12 < * elements according to an order specified at construction time, which is
13 < * specified in the same manner as {@link java.util.TreeSet} and {@link java.util.TreeMap}:
14 < * elements are ordered
15 < * either according to their <i>natural order</i> (see {@link Comparable}), or
16 < * according to a {@link java.util.Comparator}, depending on which constructor is used.
17 < * The <em>head</em> of this queue is the least element with respect to the
18 < * specified ordering. If multiple elements are tied for least value, the
12 < * head is one of those elements. A priority queue does not permit
13 < * <tt>null</tt> elements.
11 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12 > * The elements of the priority queue are ordered according to their
13 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
14 > * provided at queue construction time, depending on which constructor is
15 > * used.  A priority queue does not permit {@code null} elements.
16 > * A priority queue relying on natural ordering also does not permit
17 > * insertion of non-comparable objects (doing so may result in
18 > * {@code ClassCastException}).
19   *
20 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
21 < * return the head of the queue.
20 > * <p>The <em>head</em> of this queue is the <em>least</em> element
21 > * with respect to the specified ordering.  If multiple elements are
22 > * tied for least value, the head is one of those elements -- ties are
23 > * broken arbitrarily.  The queue retrieval operations {@code poll},
24 > * {@code remove}, {@code peek}, and {@code element} access the
25 > * element at the head of the queue.
26   *
27 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
28 < * not delete, the head of the queue.
27 > * <p>A priority queue is unbounded, but has an internal
28 > * <i>capacity</i> governing the size of an array used to store the
29 > * elements on the queue.  It is always at least as large as the queue
30 > * size.  As elements are added to a priority queue, its capacity
31 > * grows automatically.  The details of the growth policy are not
32 > * specified.
33   *
34 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
35 < * size of the array used internally to store the elements on the
36 < * queue.  It is always at least as large as the queue size.  As
37 < * elements are added to a priority queue, its capacity grows
38 < * automatically.  The details of the growth policy are not specified.
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
40   *
41 < * <p>Implementation note: this implementation provides O(log(n)) time
42 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
43 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
44 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
45 < * constant time for the retrieval methods (<tt>peek</tt>,
46 < * <tt>element</tt>, and <tt>size</tt>).
41 > * <p> <strong>Note that this implementation is not synchronized.</strong>
42 > * Multiple threads should not access a {@code PriorityQueue}
43 > * instance concurrently if any of the threads modifies the queue.
44 > * Instead, use the thread-safe {@link
45 > * java.util.concurrent.PriorityBlockingQueue} class.
46 > *
47 > * <p>Implementation note: this implementation provides
48 > * O(log(n)) time for the enqueing and dequeing methods
49 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
50 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
51 > * methods; and constant time for the retrieval methods
52 > * ({@code peek}, {@code element}, and {@code size}).
53   *
54   * <p>This class is a member of the
55   * <a href="{@docRoot}/../guide/collections/index.html">
56   * Java Collections Framework</a>.
57 + *
58   * @since 1.5
59 < * @author Josh Bloch
59 > * @version %I%, %G%
60 > * @author Josh Bloch, Doug Lea
61 > * @param <E> the type of elements held in this collection
62   */
63   public class PriorityQueue<E> extends AbstractQueue<E>
64 <    implements Queue<E>, java.io.Serializable {
64 >    implements java.io.Serializable {
65 >
66 >    private static final long serialVersionUID = -7720805057305804111L;
67  
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 75 | Line 95 | public class PriorityQueue<E> extends Ab
95      private transient int modCount = 0;
96  
97      /**
98 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
99 <     * (11) that orders its elements according to their natural
100 <     * ordering (using <tt>Comparable</tt>.)
98 >     * Creates a {@code PriorityQueue} with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101       */
102      public PriorityQueue() {
103          this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105  
106      /**
107 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
108 <     * that orders its elements according to their natural ordering
109 <     * (using <tt>Comparable</tt>.)
110 <     *
111 <     * @param initialCapacity the initial capacity for this priority queue.
107 >     * Creates a {@code PriorityQueue} with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110 >     *
111 >     * @param initialCapacity the initial capacity for this priority queue
112 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
113 >     *         than 1
114       */
115      public PriorityQueue(int initialCapacity) {
116          this(initialCapacity, null);
117      }
118  
119      /**
120 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
120 >     * Creates a {@code PriorityQueue} with the specified initial capacity
121       * that orders its elements according to the specified comparator.
122       *
123 <     * @param initialCapacity the initial capacity for this priority queue.
124 <     * @param comparator the comparator used to order this priority queue.
125 <     * If <tt>null</tt> then the order depends on the elements' natural
126 <     * ordering.
127 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
128 <     * than 1
129 <     */
130 <    public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order this
125 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
126 >     *         natural ordering} of the elements will be used.
127 >     * @throws IllegalArgumentException if {@code initialCapacity} is
128 >     *         less than 1
129 >     */
130 >    public PriorityQueue(int initialCapacity,
131 >                         Comparator<? super E> comparator) {
132 >        // Note: This restriction of at least one is not actually needed,
133 >        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
141 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
142 <     * collection.  The priority queue has an initial capacity of 110% of the
143 <     * size of the specified collection; or 1 if the collection is empty.
144 <     * If the specified collection
145 <     * implements the {@link Sorted} interface, the priority queue will be
146 <     * sorted according to the same comparator, or according to its elements'
122 <     * natural order if the collection is sorted according to its elements'
123 <     * natural order.  If the specified collection does not implement
124 <     * <tt>Sorted</tt>, the priority queue is ordered according to
125 <     * its elements' natural order.
141 >     * Creates a {@code PriorityQueue} containing the elements in the
142 >     * specified collection.  If the specified collection is an instance of
143 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
144 >     * priority queue will be ordered according to the same ordering.
145 >     * Otherwise, this priority queue will be ordered according to the
146 >     * {@linkplain Comparable natural ordering} of its elements.
147       *
148 <     * @param c the collection whose elements are to be placed
149 <     *        into this priority queue.
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150       * @throws ClassCastException if elements of the specified collection
151       *         cannot be compared to one another according to the priority
152 <     *         queue's ordering.
153 <     * @throws NullPointerException if <tt>c</tt> or any element within it
154 <     * is <tt>null</tt>
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        int sz = c.size();
158 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
159 <                                            Integer.MAX_VALUE - 1);
160 <        if (initialCapacity < 1)
161 <            initialCapacity = 1;
162 <
163 <        this.queue = new Object[initialCapacity + 1];
164 <
144 <        if (c instanceof Sorted) {
145 <            // FIXME: this code assumes too much
146 <            this.comparator = (Comparator<? super E>) ((Sorted)c).comparator();
147 <            for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
148 <                queue[++size] = i.next();
149 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
152 <                add(i.next());
166 >            heapify();
167          }
168      }
169  
170 <    // Queue Methods
170 >    /**
171 >     * Creates a {@code PriorityQueue} containing the elements in the
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of {@code c} cannot be
179 >     *         compared to one another according to {@code c}'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183 >     */
184 >    public PriorityQueue(PriorityQueue<? extends E> c) {
185 >        comparator = (Comparator<? super E>)c.comparator();
186 >        initFromCollection(c);
187 >    }
188  
189      /**
190 <     * Add the specified element to this priority queue.
190 >     * Creates a {@code PriorityQueue} containing the elements in the
191 >     * specified sorted set.   This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193       *
194 <     * @param element the element to add.
195 <     * @return <tt>true</tt>
196 <     * @throws ClassCastException if the specified element cannot be compared
197 <     * with elements currently in the priority queue according
198 <     * to the priority queue's ordering.
199 <     * @throws NullPointerException if the specified element is null.
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201       */
202 <    public boolean offer(E element) {
203 <        if (element == null)
204 <            throw new NullPointerException();
205 <        modCount++;
172 <        ++size;
202 >    public PriorityQueue(SortedSet<? extends E> c) {
203 >        comparator = (Comparator<? super E>)c.comparator();
204 >        initFromCollection(c);
205 >    }
206  
207 <        // Grow backing store if necessary
208 <        while (size >= queue.length) {
209 <            Object[] newQueue = new Object[2 * queue.length];
210 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
211 <            queue = newQueue;
212 <        }
207 >    /**
208 >     * Initializes queue array with elements from the given Collection.
209 >     *
210 >     * @param c the collection
211 >     */
212 >    private void initFromCollection(Collection<? extends E> c) {
213 >        Object[] a = c.toArray();
214 >        // If c.toArray incorrectly doesn't return Object[], copy it.
215 >        if (a.getClass() != Object[].class)
216 >            a = Arrays.copyOf(a, a.length, Object[].class);
217 >        queue = a;
218 >        size = a.length;
219 >    }
220 >
221 >    /**
222 >     * Increases the capacity of the array.
223 >     *
224 >     * @param minCapacity the desired minimum capacity
225 >     */
226 >    private void grow(int minCapacity) {
227 >        if (minCapacity < 0) // overflow
228 >            throw new OutOfMemoryError();
229 >        int oldCapacity = queue.length;
230 >        // Double size if small; else grow by 50%
231 >        int newCapacity = ((oldCapacity < 64)?
232 >                           ((oldCapacity + 1) * 2):
233 >                           ((oldCapacity / 2) * 3));
234 >        if (newCapacity < 0) // overflow
235 >            newCapacity = Integer.MAX_VALUE;
236 >        if (newCapacity < minCapacity)
237 >            newCapacity = minCapacity;
238 >        queue = Arrays.copyOf(queue, newCapacity);
239 >    }
240 >
241 >    /**
242 >     * Inserts the specified element into this priority queue.
243 >     *
244 >     * @return {@code true} (as specified by {@link Collection#add})
245 >     * @throws ClassCastException if the specified element cannot be
246 >     *         compared with elements currently in this priority queue
247 >     *         according to the priority queue's ordering
248 >     * @throws NullPointerException if the specified element is null
249 >     */
250 >    public boolean add(E e) {
251 >        return offer(e);
252 >    }
253  
254 <        queue[size] = element;
255 <        fixUp(size);
254 >    /**
255 >     * Inserts the specified element into this priority queue.
256 >     *
257 >     * @return {@code true} (as specified by {@link Queue#offer})
258 >     * @throws ClassCastException if the specified element cannot be
259 >     *         compared with elements currently in this priority queue
260 >     *         according to the priority queue's ordering
261 >     * @throws NullPointerException if the specified element is null
262 >     */
263 >    public boolean offer(E e) {
264 >        if (e == null)
265 >            throw new NullPointerException();
266 >        modCount++;
267 >        int i = size;
268 >        if (i >= queue.length)
269 >            grow(i + 1);
270 >        size = i + 1;
271 >        if (i == 0)
272 >            queue[0] = e;
273 >        else
274 >            siftUp(i, e);
275          return true;
276      }
277  
278 <    public E poll() {
278 >    public E peek() {
279          if (size == 0)
280              return null;
281 <        return (E) remove(1);
281 >        return (E) queue[0];
282      }
283  
284 <    public E peek() {
285 <        return (E) queue[1];
284 >    private int indexOf(Object o) {
285 >        if (o != null) {
286 >            for (int i = 0; i < size; i++)
287 >                if (o.equals(queue[i]))
288 >                    return i;
289 >        }
290 >        return -1;
291      }
292  
293 <    // Collection Methods
293 >    /**
294 >     * Removes a single instance of the specified element from this queue,
295 >     * if it is present.  More formally, removes an element {@code e} such
296 >     * that {@code o.equals(e)}, if this queue contains one or more such
297 >     * elements.  Returns {@code true} if and only if this queue contained
298 >     * the specified element (or equivalently, if this queue changed as a
299 >     * result of the call).
300 >     *
301 >     * @param o element to be removed from this queue, if present
302 >     * @return {@code true} if this queue changed as a result of the call
303 >     */
304 >    public boolean remove(Object o) {
305 >        int i = indexOf(o);
306 >        if (i == -1)
307 >            return false;
308 >        else {
309 >            removeAt(i);
310 >            return true;
311 >        }
312 >    }
313  
314 <    // these first two override just to get the throws docs
314 >    /**
315 >     * Version of remove using reference equality, not equals.
316 >     * Needed by iterator.remove.
317 >     *
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if removed
320 >     */
321 >    boolean removeEq(Object o) {
322 >        for (int i = 0; i < size; i++) {
323 >            if (o == queue[i]) {
324 >                removeAt(i);
325 >                return true;
326 >            }
327 >        }
328 >        return false;
329 >    }
330  
331      /**
332 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
333 <     * @throws ClassCastException if the specified element cannot be compared
334 <     * with elements currently in the priority queue according
335 <     * to the priority queue's ordering.
332 >     * Returns {@code true} if this queue contains the specified element.
333 >     * More formally, returns {@code true} if and only if this queue contains
334 >     * at least one element {@code e} such that {@code o.equals(e)}.
335 >     *
336 >     * @param o object to be checked for containment in this queue
337 >     * @return {@code true} if this queue contains the specified element
338       */
339 <    public boolean add(E element) {
340 <        return super.add(element);
339 >    public boolean contains(Object o) {
340 >        return indexOf(o) != -1;
341      }
342  
343      /**
344 <     * @throws NullPointerException if any element is <tt>null</tt>.
345 <     * @throws ClassCastException if any element cannot be compared
346 <     * with elements currently in the priority queue according
347 <     * to the priority queue's ordering.
344 >     * Returns an array containing all of the elements in this queue.
345 >     * The elements are in no particular order.
346 >     *
347 >     * <p>The returned array will be "safe" in that no references to it are
348 >     * maintained by this queue.  (In other words, this method must allocate
349 >     * a new array).  The caller is thus free to modify the returned array.
350 >     *
351 >     * <p>This method acts as bridge between array-based and collection-based
352 >     * APIs.
353 >     *
354 >     * @return an array containing all of the elements in this queue
355       */
356 <    public boolean addAll(Collection<? extends E> c) {
357 <        return super.addAll(c);
356 >    public Object[] toArray() {
357 >        return Arrays.copyOf(queue, size);
358      }
359  
360 <    public boolean remove(Object o) {
361 <        if (o == null)
362 <            return false;
363 <
364 <        if (comparator == null) {
365 <            for (int i = 1; i <= size; i++) {
366 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
367 <                    remove(i);
368 <                    return true;
369 <                }
370 <            }
371 <        } else {
372 <            for (int i = 1; i <= size; i++) {
373 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
374 <                    remove(i);
375 <                    return true;
376 <                }
377 <            }
378 <        }
379 <        return false;
360 >    /**
361 >     * Returns an array containing all of the elements in this queue; the
362 >     * runtime type of the returned array is that of the specified array.
363 >     * The returned array elements are in no particular order.
364 >     * If the queue fits in the specified array, it is returned therein.
365 >     * Otherwise, a new array is allocated with the runtime type of the
366 >     * specified array and the size of this queue.
367 >     *
368 >     * <p>If the queue fits in the specified array with room to spare
369 >     * (i.e., the array has more elements than the queue), the element in
370 >     * the array immediately following the end of the collection is set to
371 >     * {@code null}.
372 >     *
373 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
374 >     * array-based and collection-based APIs.  Further, this method allows
375 >     * precise control over the runtime type of the output array, and may,
376 >     * under certain circumstances, be used to save allocation costs.
377 >     *
378 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
379 >     * The following code can be used to dump the queue into a newly
380 >     * allocated array of <tt>String</tt>:
381 >     *
382 >     * <pre>
383 >     *     String[] y = x.toArray(new String[0]);</pre>
384 >     *
385 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
386 >     * <tt>toArray()</tt>.
387 >     *
388 >     * @param a the array into which the elements of the queue are to
389 >     *          be stored, if it is big enough; otherwise, a new array of the
390 >     *          same runtime type is allocated for this purpose.
391 >     * @return an array containing all of the elements in this queue
392 >     * @throws ArrayStoreException if the runtime type of the specified array
393 >     *         is not a supertype of the runtime type of every element in
394 >     *         this queue
395 >     * @throws NullPointerException if the specified array is null
396 >     */
397 >    public <T> T[] toArray(T[] a) {
398 >        if (a.length < size)
399 >            // Make a new array of a's runtime type, but my contents:
400 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
401 >        System.arraycopy(queue, 0, a, 0, size);
402 >        if (a.length > size)
403 >            a[size] = null;
404 >        return a;
405      }
406  
407 +    /**
408 +     * Returns an iterator over the elements in this queue. The iterator
409 +     * does not return the elements in any particular order.
410 +     *
411 +     * @return an iterator over the elements in this queue
412 +     */
413      public Iterator<E> iterator() {
414          return new Itr();
415      }
416  
417 <    private class Itr implements Iterator<E> {
417 >    private final class Itr implements Iterator<E> {
418          /**
419           * Index (into queue array) of element to be returned by
420           * subsequent call to next.
421           */
422 <        private int cursor = 1;
422 >        private int cursor = 0;
423  
424          /**
425 <         * Index of element returned by most recent call to next or
426 <         * previous.  Reset to 0 if this element is deleted by a call
427 <         * to remove.
425 >         * Index of element returned by most recent call to next,
426 >         * unless that element came from the forgetMeNot list.
427 >         * Set to -1 if element is deleted by a call to remove.
428           */
429 <        private int lastRet = 0;
429 >        private int lastRet = -1;
430 >
431 >        /**
432 >         * A queue of elements that were moved from the unvisited portion of
433 >         * the heap into the visited portion as a result of "unlucky" element
434 >         * removals during the iteration.  (Unlucky element removals are those
435 >         * that require a siftup instead of a siftdown.)  We must visit all of
436 >         * the elements in this list to complete the iteration.  We do this
437 >         * after we've completed the "normal" iteration.
438 >         *
439 >         * We expect that most iterations, even those involving removals,
440 >         * will not need to store elements in this field.
441 >         */
442 >        private ArrayDeque<E> forgetMeNot = null;
443 >
444 >        /**
445 >         * Element returned by the most recent call to next iff that
446 >         * element was drawn from the forgetMeNot list.
447 >         */
448 >        private E lastRetElt = null;
449  
450          /**
451           * The modCount value that the iterator believes that the backing
452 <         * List should have.  If this expectation is violated, the iterator
452 >         * Queue should have.  If this expectation is violated, the iterator
453           * has detected concurrent modification.
454           */
455          private int expectedModCount = modCount;
456  
457          public boolean hasNext() {
458 <            return cursor <= size;
458 >            return cursor < size ||
459 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
460          }
461  
462          public E next() {
463 <            checkForComodification();
464 <            if (cursor > size)
465 <                throw new NoSuchElementException();
466 <            E result = (E) queue[cursor];
467 <            lastRet = cursor++;
468 <            return result;
463 >            if (expectedModCount != modCount)
464 >                throw new ConcurrentModificationException();
465 >            if (cursor < size)
466 >                return (E) queue[lastRet = cursor++];
467 >            if (forgetMeNot != null) {
468 >                lastRet = -1;
469 >                lastRetElt = forgetMeNot.poll();
470 >                if (lastRetElt != null)
471 >                    return lastRetElt;
472 >            }
473 >            throw new NoSuchElementException();
474          }
475  
476          public void remove() {
477 <            if (lastRet == 0)
477 >            if (expectedModCount != modCount)
478 >                throw new ConcurrentModificationException();
479 >            if (lastRet != -1) {
480 >                E moved = PriorityQueue.this.removeAt(lastRet);
481 >                lastRet = -1;
482 >                if (moved == null)
483 >                    cursor--;
484 >                else {
485 >                    if (forgetMeNot == null)
486 >                        forgetMeNot = new ArrayDeque<E>();
487 >                    forgetMeNot.add(moved);
488 >                }
489 >            } else if (lastRetElt != null) {
490 >                PriorityQueue.this.removeEq(lastRetElt);
491 >                lastRetElt = null;
492 >            } else {
493                  throw new IllegalStateException();
494 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
494 >            }
495              expectedModCount = modCount;
496          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
497      }
498  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
499      public int size() {
500          return size;
501      }
502  
503      /**
504 <     * Remove all elements from the priority queue.
504 >     * Removes all of the elements from this priority queue.
505 >     * The queue will be empty after this call returns.
506       */
507      public void clear() {
508          modCount++;
509 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
509 >        for (int i = 0; i < size; i++)
510              queue[i] = null;
316
511          size = 0;
512      }
513  
514 +    public E poll() {
515 +        if (size == 0)
516 +            return null;
517 +        int s = --size;
518 +        modCount++;
519 +        E result = (E) queue[0];
520 +        E x = (E) queue[s];
521 +        queue[s] = null;
522 +        if (s != 0)
523 +            siftDown(0, x);
524 +        return result;
525 +    }
526 +
527      /**
528 <     * Removes and returns the ith element from queue.  Recall
322 <     * that queue is one-based, so 1 <= i <= size.
528 >     * Removes the ith element from queue.
529       *
530 <     * XXX: Could further special-case i==size, but is it worth it?
531 <     * XXX: Could special-case i==0, but is it worth it?
530 >     * Normally this method leaves the elements at up to i-1,
531 >     * inclusive, untouched.  Under these circumstances, it returns
532 >     * null.  Occasionally, in order to maintain the heap invariant,
533 >     * it must swap a later element of the list with one earlier than
534 >     * i.  Under these circumstances, this method returns the element
535 >     * that was previously at the end of the list and is now at some
536 >     * position before i. This fact is used by iterator.remove so as to
537 >     * avoid missing traversing elements.
538       */
539 <    private E remove(int i) {
540 <        assert i <= size;
539 >    private E removeAt(int i) {
540 >        assert i >= 0 && i < size;
541          modCount++;
542 <
543 <        E result = (E) queue[i];
544 <        queue[i] = queue[size];
545 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
546 <        if (i <= size)
547 <            fixDown(i);
548 <        return result;
542 >        int s = --size;
543 >        if (s == i) // removed last element
544 >            queue[i] = null;
545 >        else {
546 >            E moved = (E) queue[s];
547 >            queue[s] = null;
548 >            siftDown(i, moved);
549 >            if (queue[i] == moved) {
550 >                siftUp(i, moved);
551 >                if (queue[i] != moved)
552 >                    return moved;
553 >            }
554 >        }
555 >        return null;
556      }
557  
558      /**
559 <     * Establishes the heap invariant (described above) assuming the heap
560 <     * satisfies the invariant except possibly for the leaf-node indexed by k
561 <     * (which may have a nextExecutionTime less than its parent's).
562 <     *
563 <     * This method functions by "promoting" queue[k] up the hierarchy
564 <     * (by swapping it with its parent) repeatedly until queue[k]
565 <     * is greater than or equal to its parent.
566 <     */
567 <    private void fixUp(int k) {
568 <        if (comparator == null) {
569 <            while (k > 1) {
570 <                int j = k >> 1;
571 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
572 <                    break;
573 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
574 <                k = j;
575 <            }
576 <        } else {
577 <            while (k > 1) {
578 <                int j = k >> 1;
579 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
580 <                    break;
581 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
582 <                k = j;
583 <            }
559 >     * Inserts item x at position k, maintaining heap invariant by
560 >     * promoting x up the tree until it is greater than or equal to
561 >     * its parent, or is the root.
562 >     *
563 >     * To simplify and speed up coercions and comparisons. the
564 >     * Comparable and Comparator versions are separated into different
565 >     * methods that are otherwise identical. (Similarly for siftDown.)
566 >     *
567 >     * @param k the position to fill
568 >     * @param x the item to insert
569 >     */
570 >    private void siftUp(int k, E x) {
571 >        if (comparator != null)
572 >            siftUpUsingComparator(k, x);
573 >        else
574 >            siftUpComparable(k, x);
575 >    }
576 >
577 >    private void siftUpComparable(int k, E x) {
578 >        Comparable<? super E> key = (Comparable<? super E>) x;
579 >        while (k > 0) {
580 >            int parent = (k - 1) >>> 1;
581 >            Object e = queue[parent];
582 >            if (key.compareTo((E) e) >= 0)
583 >                break;
584 >            queue[k] = e;
585 >            k = parent;
586 >        }
587 >        queue[k] = key;
588 >    }
589 >
590 >    private void siftUpUsingComparator(int k, E x) {
591 >        while (k > 0) {
592 >            int parent = (k - 1) >>> 1;
593 >            Object e = queue[parent];
594 >            if (comparator.compare(x, (E) e) >= 0)
595 >                break;
596 >            queue[k] = e;
597 >            k = parent;
598          }
599 +        queue[k] = x;
600      }
601  
602      /**
603 <     * Establishes the heap invariant (described above) in the subtree
604 <     * rooted at k, which is assumed to satisfy the heap invariant except
605 <     * possibly for node k itself (which may be greater than its children).
606 <     *
607 <     * This method functions by "demoting" queue[k] down the hierarchy
608 <     * (by swapping it with its smaller child) repeatedly until queue[k]
609 <     * is less than or equal to its children.
610 <     */
611 <    private void fixDown(int k) {
612 <        int j;
613 <        if (comparator == null) {
614 <            while ((j = k << 1) <= size) {
615 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
616 <                    j++; // j indexes smallest kid
617 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
618 <                    break;
619 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
620 <                k = j;
621 <            }
622 <        } else {
623 <            while ((j = k << 1) <= size) {
624 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
625 <                    j++; // j indexes smallest kid
626 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
627 <                    break;
628 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
629 <                k = j;
630 <            }
603 >     * Inserts item x at position k, maintaining heap invariant by
604 >     * demoting x down the tree repeatedly until it is less than or
605 >     * equal to its children or is a leaf.
606 >     *
607 >     * @param k the position to fill
608 >     * @param x the item to insert
609 >     */
610 >    private void siftDown(int k, E x) {
611 >        if (comparator != null)
612 >            siftDownUsingComparator(k, x);
613 >        else
614 >            siftDownComparable(k, x);
615 >    }
616 >
617 >    private void siftDownComparable(int k, E x) {
618 >        Comparable<? super E> key = (Comparable<? super E>)x;
619 >        int half = size >>> 1;        // loop while a non-leaf
620 >        while (k < half) {
621 >            int child = (k << 1) + 1; // assume left child is least
622 >            Object c = queue[child];
623 >            int right = child + 1;
624 >            if (right < size &&
625 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
626 >                c = queue[child = right];
627 >            if (key.compareTo((E) c) <= 0)
628 >                break;
629 >            queue[k] = c;
630 >            k = child;
631 >        }
632 >        queue[k] = key;
633 >    }
634 >
635 >    private void siftDownUsingComparator(int k, E x) {
636 >        int half = size >>> 1;
637 >        while (k < half) {
638 >            int child = (k << 1) + 1;
639 >            Object c = queue[child];
640 >            int right = child + 1;
641 >            if (right < size &&
642 >                comparator.compare((E) c, (E) queue[right]) > 0)
643 >                c = queue[child = right];
644 >            if (comparator.compare(x, (E) c) <= 0)
645 >                break;
646 >            queue[k] = c;
647 >            k = child;
648          }
649 +        queue[k] = x;
650 +    }
651 +
652 +    /**
653 +     * Establishes the heap invariant (described above) in the entire tree,
654 +     * assuming nothing about the order of the elements prior to the call.
655 +     */
656 +    private void heapify() {
657 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
658 +            siftDown(i, (E) queue[i]);
659      }
660  
661 +    /**
662 +     * Returns the comparator used to order the elements in this
663 +     * queue, or {@code null} if this queue is sorted according to
664 +     * the {@linkplain Comparable natural ordering} of its elements.
665 +     *
666 +     * @return the comparator used to order this queue, or
667 +     *         {@code null} if this queue is sorted according to the
668 +     *         natural ordering of its elements
669 +     */
670      public Comparator<? super E> comparator() {
671          return comparator;
672      }
673  
674      /**
675 <     * Save the state of the instance to a stream (that
676 <     * is, serialize it).
675 >     * Saves the state of the instance to a stream (that
676 >     * is, serializes it).
677       *
678       * @serialData The length of the array backing the instance is
679 <     * emitted (int), followed by all of its elements (each an
680 <     * <tt>Object</tt>) in the proper order.
679 >     *             emitted (int), followed by all of its elements
680 >     *             (each an {@code Object}) in the proper order.
681       * @param s the stream
682       */
683 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
683 >    private void writeObject(java.io.ObjectOutputStream s)
684          throws java.io.IOException{
685          // Write out element count, and any hidden stuff
686          s.defaultWriteObject();
687  
688 <        // Write out array length
689 <        s.writeInt(queue.length);
688 >        // Write out array length, for compatibility with 1.5 version
689 >        s.writeInt(Math.max(2, size + 1));
690  
691          // Write out all elements in the proper order.
692 <        for (int i=0; i<size; i++)
692 >        for (int i = 0; i < size; i++)
693              s.writeObject(queue[i]);
694      }
695  
696      /**
697 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
698 <     * deserialize it).
697 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
698 >     * (that is, deserializes it).
699 >     *
700       * @param s the stream
701       */
702 <    private synchronized void readObject(java.io.ObjectInputStream s)
702 >    private void readObject(java.io.ObjectInputStream s)
703          throws java.io.IOException, ClassNotFoundException {
704          // Read in size, and any hidden stuff
705          s.defaultReadObject();
706  
707 <        // Read in array length and allocate array
708 <        int arrayLength = s.readInt();
709 <        queue = new Object[arrayLength];
707 >        // Read in (and discard) array length
708 >        s.readInt();
709 >
710 >        queue = new Object[size];
711  
712          // Read in all elements in the proper order.
713 <        for (int i=0; i<size; i++)
713 >        for (int i = 0; i < size; i++)
714              queue[i] = s.readObject();
715      }
444
716   }
446

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines