ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.66 by jsr166, Sun Jan 7 07:38:27 2007 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12 > * The elements of the priority queue are ordered according to their
13 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
14 > * provided at queue construction time, depending on which constructor is
15 > * used.  A priority queue does not permit {@code null} elements.
16 > * A priority queue relying on natural ordering also does not permit
17 > * insertion of non-comparable objects (doing so may result in
18 > * {@code ClassCastException}).
19 > *
20 > * <p>The <em>head</em> of this queue is the <em>least</em> element
21 > * with respect to the specified ordering.  If multiple elements are
22 > * tied for least value, the head is one of those elements -- ties are
23 > * broken arbitrarily.  The queue retrieval operations {@code poll},
24 > * {@code remove}, {@code peek}, and {@code element} access the
25 > * element at the head of the queue.
26 > *
27 > * <p>A priority queue is unbounded, but has an internal
28 > * <i>capacity</i> governing the size of an array used to store the
29 > * elements on the queue.  It is always at least as large as the queue
30 > * size.  As elements are added to a priority queue, its capacity
31 > * grows automatically.  The details of the growth policy are not
32 > * specified.
33 > *
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
40 > *
41 > * <p> <strong>Note that this implementation is not synchronized.</strong>
42 > * Multiple threads should not access a {@code PriorityQueue}
43 > * instance concurrently if any of the threads modifies the queue.
44 > * Instead, use the thread-safe {@link
45 > * java.util.concurrent.PriorityBlockingQueue} class.
46 > *
47 > * <p>Implementation note: this implementation provides
48 > * O(log(n)) time for the enqueing and dequeing methods
49 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
50 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
51 > * methods; and constant time for the retrieval methods
52 > * ({@code peek}, {@code element}, and {@code size}).
53 > *
54 > * <p>This class is a member of the
55 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 > * Java Collections Framework</a>.
57 > *
58 > * @since 1.5
59 > * @version %I%, %G%
60 > * @author Josh Bloch, Doug Lea
61 > * @param <E> the type of elements held in this collection
62 > */
63 > public class PriorityQueue<E> extends AbstractQueue<E>
64 >    implements java.io.Serializable {
65  
66 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
66 >    private static final long serialVersionUID = -7720805057305804111L;
67  
68 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
68 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70 <    public boolean add(E x) {
71 <        return false;
70 >    /**
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77 >     */
78 >    private transient Object[] queue;
79 >
80 >    /**
81 >     * The number of elements in the priority queue.
82 >     */
83 >    private int size = 0;
84 >
85 >    /**
86 >     * The comparator, or null if priority queue uses elements'
87 >     * natural ordering.
88 >     */
89 >    private final Comparator<? super E> comparator;
90 >
91 >    /**
92 >     * The number of times this priority queue has been
93 >     * <i>structurally modified</i>.  See AbstractList for gory details.
94 >     */
95 >    private transient int modCount = 0;
96 >
97 >    /**
98 >     * Creates a {@code PriorityQueue} with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101 >     */
102 >    public PriorityQueue() {
103 >        this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105 <    public boolean offer(E x) {
106 <        return false;
105 >
106 >    /**
107 >     * Creates a {@code PriorityQueue} with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110 >     *
111 >     * @param initialCapacity the initial capacity for this priority queue
112 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
113 >     *         than 1
114 >     */
115 >    public PriorityQueue(int initialCapacity) {
116 >        this(initialCapacity, null);
117      }
118 <    public boolean remove(Object x) {
119 <        return false;
118 >
119 >    /**
120 >     * Creates a {@code PriorityQueue} with the specified initial capacity
121 >     * that orders its elements according to the specified comparator.
122 >     *
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order this
125 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
126 >     *         natural ordering} of the elements will be used.
127 >     * @throws IllegalArgumentException if {@code initialCapacity} is
128 >     *         less than 1
129 >     */
130 >    public PriorityQueue(int initialCapacity,
131 >                         Comparator<? super E> comparator) {
132 >        // Note: This restriction of at least one is not actually needed,
133 >        // but continues for 1.5 compatibility
134 >        if (initialCapacity < 1)
135 >            throw new IllegalArgumentException();
136 >        this.queue = new Object[initialCapacity];
137 >        this.comparator = comparator;
138      }
139  
140 <    public E remove() {
141 <        return null;
140 >    /**
141 >     * Creates a {@code PriorityQueue} containing the elements in the
142 >     * specified collection.  If the specified collection is an instance of
143 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
144 >     * priority queue will be ordered according to the same ordering.
145 >     * Otherwise, this priority queue will be ordered according to the
146 >     * {@linkplain Comparable natural ordering} of its elements.
147 >     *
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150 >     * @throws ClassCastException if elements of the specified collection
151 >     *         cannot be compared to one another according to the priority
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155 >     */
156 >    public PriorityQueue(Collection<? extends E> c) {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165 >            comparator = null;
166 >            heapify();
167 >        }
168      }
169 <    public Iterator<E> iterator() {
170 <      return null;
169 >
170 >    /**
171 >     * Creates a {@code PriorityQueue} containing the elements in the
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of {@code c} cannot be
179 >     *         compared to one another according to {@code c}'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183 >     */
184 >    public PriorityQueue(PriorityQueue<? extends E> c) {
185 >        comparator = (Comparator<? super E>)c.comparator();
186 >        initFromCollection(c);
187      }
188  
189 <    public E element() {
190 <        return null;
189 >    /**
190 >     * Creates a {@code PriorityQueue} containing the elements in the
191 >     * specified sorted set.   This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193 >     *
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201 >     */
202 >    public PriorityQueue(SortedSet<? extends E> c) {
203 >        comparator = (Comparator<? super E>)c.comparator();
204 >        initFromCollection(c);
205      }
206 <    public E poll() {
207 <        return null;
206 >
207 >    /**
208 >     * Initializes queue array with elements from the given Collection.
209 >     *
210 >     * @param c the collection
211 >     */
212 >    private void initFromCollection(Collection<? extends E> c) {
213 >        Object[] a = c.toArray();
214 >        // If c.toArray incorrectly doesn't return Object[], copy it.
215 >        if (a.getClass() != Object[].class)
216 >            a = Arrays.copyOf(a, a.length, Object[].class);
217 >        queue = a;
218 >        size = a.length;
219      }
220 +
221 +    /**
222 +     * Increases the capacity of the array.
223 +     *
224 +     * @param minCapacity the desired minimum capacity
225 +     */
226 +    private void grow(int minCapacity) {
227 +        if (minCapacity < 0) // overflow
228 +            throw new OutOfMemoryError();
229 +        int oldCapacity = queue.length;
230 +        // Double size if small; else grow by 50%
231 +        int newCapacity = ((oldCapacity < 64)?
232 +                           ((oldCapacity + 1) * 2):
233 +                           ((oldCapacity / 2) * 3));
234 +        if (newCapacity < 0) // overflow
235 +            newCapacity = Integer.MAX_VALUE;
236 +        if (newCapacity < minCapacity)
237 +            newCapacity = minCapacity;
238 +        queue = Arrays.copyOf(queue, newCapacity);
239 +    }
240 +
241 +    /**
242 +     * Inserts the specified element into this priority queue.
243 +     *
244 +     * @return {@code true} (as specified by {@link Collection#add})
245 +     * @throws ClassCastException if the specified element cannot be
246 +     *         compared with elements currently in this priority queue
247 +     *         according to the priority queue's ordering
248 +     * @throws NullPointerException if the specified element is null
249 +     */
250 +    public boolean add(E e) {
251 +        return offer(e);
252 +    }
253 +
254 +    /**
255 +     * Inserts the specified element into this priority queue.
256 +     *
257 +     * @return {@code true} (as specified by {@link Queue#offer})
258 +     * @throws ClassCastException if the specified element cannot be
259 +     *         compared with elements currently in this priority queue
260 +     *         according to the priority queue's ordering
261 +     * @throws NullPointerException if the specified element is null
262 +     */
263 +    public boolean offer(E e) {
264 +        if (e == null)
265 +            throw new NullPointerException();
266 +        modCount++;
267 +        int i = size;
268 +        if (i >= queue.length)
269 +            grow(i + 1);
270 +        size = i + 1;
271 +        if (i == 0)
272 +            queue[0] = e;
273 +        else
274 +            siftUp(i, e);
275 +        return true;
276 +    }
277 +
278      public E peek() {
279 <        return null;
279 >        if (size == 0)
280 >            return null;
281 >        return (E) queue[0];
282      }
283  
284 <    public boolean isEmpty() {
284 >    private int indexOf(Object o) {
285 >        if (o != null) {
286 >            for (int i = 0; i < size; i++)
287 >                if (o.equals(queue[i]))
288 >                    return i;
289 >        }
290 >        return -1;
291 >    }
292 >
293 >    /**
294 >     * Removes a single instance of the specified element from this queue,
295 >     * if it is present.  More formally, removes an element {@code e} such
296 >     * that {@code o.equals(e)}, if this queue contains one or more such
297 >     * elements.  Returns {@code true} if and only if this queue contained
298 >     * the specified element (or equivalently, if this queue changed as a
299 >     * result of the call).
300 >     *
301 >     * @param o element to be removed from this queue, if present
302 >     * @return {@code true} if this queue changed as a result of the call
303 >     */
304 >    public boolean remove(Object o) {
305 >        int i = indexOf(o);
306 >        if (i == -1)
307 >            return false;
308 >        else {
309 >            removeAt(i);
310 >            return true;
311 >        }
312 >    }
313 >
314 >    /**
315 >     * Version of remove using reference equality, not equals.
316 >     * Needed by iterator.remove.
317 >     *
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if removed
320 >     */
321 >    boolean removeEq(Object o) {
322 >        for (int i = 0; i < size; i++) {
323 >            if (o == queue[i]) {
324 >                removeAt(i);
325 >                return true;
326 >            }
327 >        }
328          return false;
329      }
330 <    public int size() {
331 <        return 0;
330 >
331 >    /**
332 >     * Returns {@code true} if this queue contains the specified element.
333 >     * More formally, returns {@code true} if and only if this queue contains
334 >     * at least one element {@code e} such that {@code o.equals(e)}.
335 >     *
336 >     * @param o object to be checked for containment in this queue
337 >     * @return {@code true} if this queue contains the specified element
338 >     */
339 >    public boolean contains(Object o) {
340 >        return indexOf(o) != -1;
341      }
342 +
343 +    /**
344 +     * Returns an array containing all of the elements in this queue.
345 +     * The elements are in no particular order.
346 +     *
347 +     * <p>The returned array will be "safe" in that no references to it are
348 +     * maintained by this queue.  (In other words, this method must allocate
349 +     * a new array).  The caller is thus free to modify the returned array.
350 +     *
351 +     * <p>This method acts as bridge between array-based and collection-based
352 +     * APIs.
353 +     *
354 +     * @return an array containing all of the elements in this queue
355 +     */
356      public Object[] toArray() {
357 <        return null;
357 >        return Arrays.copyOf(queue, size);
358 >    }
359 >
360 >    /**
361 >     * Returns an array containing all of the elements in this queue; the
362 >     * runtime type of the returned array is that of the specified array.
363 >     * The returned array elements are in no particular order.
364 >     * If the queue fits in the specified array, it is returned therein.
365 >     * Otherwise, a new array is allocated with the runtime type of the
366 >     * specified array and the size of this queue.
367 >     *
368 >     * <p>If the queue fits in the specified array with room to spare
369 >     * (i.e., the array has more elements than the queue), the element in
370 >     * the array immediately following the end of the collection is set to
371 >     * {@code null}.
372 >     *
373 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
374 >     * array-based and collection-based APIs.  Further, this method allows
375 >     * precise control over the runtime type of the output array, and may,
376 >     * under certain circumstances, be used to save allocation costs.
377 >     *
378 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
379 >     * The following code can be used to dump the queue into a newly
380 >     * allocated array of <tt>String</tt>:
381 >     *
382 >     * <pre>
383 >     *     String[] y = x.toArray(new String[0]);</pre>
384 >     *
385 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
386 >     * <tt>toArray()</tt>.
387 >     *
388 >     * @param a the array into which the elements of the queue are to
389 >     *          be stored, if it is big enough; otherwise, a new array of the
390 >     *          same runtime type is allocated for this purpose.
391 >     * @return an array containing all of the elements in this queue
392 >     * @throws ArrayStoreException if the runtime type of the specified array
393 >     *         is not a supertype of the runtime type of every element in
394 >     *         this queue
395 >     * @throws NullPointerException if the specified array is null
396 >     */
397 >    public <T> T[] toArray(T[] a) {
398 >        if (a.length < size)
399 >            // Make a new array of a's runtime type, but my contents:
400 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
401 >        System.arraycopy(queue, 0, a, 0, size);
402 >        if (a.length > size)
403 >            a[size] = null;
404 >        return a;
405      }
406  
407 <    public <T> T[] toArray(T[] array) {
407 >    /**
408 >     * Returns an iterator over the elements in this queue. The iterator
409 >     * does not return the elements in any particular order.
410 >     *
411 >     * @return an iterator over the elements in this queue
412 >     */
413 >    public Iterator<E> iterator() {
414 >        return new Itr();
415 >    }
416 >
417 >    private final class Itr implements Iterator<E> {
418 >        /**
419 >         * Index (into queue array) of element to be returned by
420 >         * subsequent call to next.
421 >         */
422 >        private int cursor = 0;
423 >
424 >        /**
425 >         * Index of element returned by most recent call to next,
426 >         * unless that element came from the forgetMeNot list.
427 >         * Set to -1 if element is deleted by a call to remove.
428 >         */
429 >        private int lastRet = -1;
430 >
431 >        /**
432 >         * A queue of elements that were moved from the unvisited portion of
433 >         * the heap into the visited portion as a result of "unlucky" element
434 >         * removals during the iteration.  (Unlucky element removals are those
435 >         * that require a siftup instead of a siftdown.)  We must visit all of
436 >         * the elements in this list to complete the iteration.  We do this
437 >         * after we've completed the "normal" iteration.
438 >         *
439 >         * We expect that most iterations, even those involving removals,
440 >         * will not need to store elements in this field.
441 >         */
442 >        private ArrayDeque<E> forgetMeNot = null;
443 >
444 >        /**
445 >         * Element returned by the most recent call to next iff that
446 >         * element was drawn from the forgetMeNot list.
447 >         */
448 >        private E lastRetElt = null;
449 >
450 >        /**
451 >         * The modCount value that the iterator believes that the backing
452 >         * Queue should have.  If this expectation is violated, the iterator
453 >         * has detected concurrent modification.
454 >         */
455 >        private int expectedModCount = modCount;
456 >
457 >        public boolean hasNext() {
458 >            return cursor < size ||
459 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
460 >        }
461 >
462 >        public E next() {
463 >            if (expectedModCount != modCount)
464 >                throw new ConcurrentModificationException();
465 >            if (cursor < size)
466 >                return (E) queue[lastRet = cursor++];
467 >            if (forgetMeNot != null) {
468 >                lastRet = -1;
469 >                lastRetElt = forgetMeNot.poll();
470 >                if (lastRetElt != null)
471 >                    return lastRetElt;
472 >            }
473 >            throw new NoSuchElementException();
474 >        }
475 >
476 >        public void remove() {
477 >            if (expectedModCount != modCount)
478 >                throw new ConcurrentModificationException();
479 >            if (lastRet != -1) {
480 >                E moved = PriorityQueue.this.removeAt(lastRet);
481 >                lastRet = -1;
482 >                if (moved == null)
483 >                    cursor--;
484 >                else {
485 >                    if (forgetMeNot == null)
486 >                        forgetMeNot = new ArrayDeque<E>();
487 >                    forgetMeNot.add(moved);
488 >                }
489 >            } else if (lastRetElt != null) {
490 >                PriorityQueue.this.removeEq(lastRetElt);
491 >                lastRetElt = null;
492 >            } else {
493 >                throw new IllegalStateException();
494 >            }
495 >            expectedModCount = modCount;
496 >        }
497 >    }
498 >
499 >    public int size() {
500 >        return size;
501 >    }
502 >
503 >    /**
504 >     * Removes all of the elements from this priority queue.
505 >     * The queue will be empty after this call returns.
506 >     */
507 >    public void clear() {
508 >        modCount++;
509 >        for (int i = 0; i < size; i++)
510 >            queue[i] = null;
511 >        size = 0;
512 >    }
513 >
514 >    public E poll() {
515 >        if (size == 0)
516 >            return null;
517 >        int s = --size;
518 >        modCount++;
519 >        E result = (E) queue[0];
520 >        E x = (E) queue[s];
521 >        queue[s] = null;
522 >        if (s != 0)
523 >            siftDown(0, x);
524 >        return result;
525 >    }
526 >
527 >    /**
528 >     * Removes the ith element from queue.
529 >     *
530 >     * Normally this method leaves the elements at up to i-1,
531 >     * inclusive, untouched.  Under these circumstances, it returns
532 >     * null.  Occasionally, in order to maintain the heap invariant,
533 >     * it must swap a later element of the list with one earlier than
534 >     * i.  Under these circumstances, this method returns the element
535 >     * that was previously at the end of the list and is now at some
536 >     * position before i. This fact is used by iterator.remove so as to
537 >     * avoid missing traversing elements.
538 >     */
539 >    private E removeAt(int i) {
540 >        assert i >= 0 && i < size;
541 >        modCount++;
542 >        int s = --size;
543 >        if (s == i) // removed last element
544 >            queue[i] = null;
545 >        else {
546 >            E moved = (E) queue[s];
547 >            queue[s] = null;
548 >            siftDown(i, moved);
549 >            if (queue[i] == moved) {
550 >                siftUp(i, moved);
551 >                if (queue[i] != moved)
552 >                    return moved;
553 >            }
554 >        }
555          return null;
556      }
557  
558 +    /**
559 +     * Inserts item x at position k, maintaining heap invariant by
560 +     * promoting x up the tree until it is greater than or equal to
561 +     * its parent, or is the root.
562 +     *
563 +     * To simplify and speed up coercions and comparisons. the
564 +     * Comparable and Comparator versions are separated into different
565 +     * methods that are otherwise identical. (Similarly for siftDown.)
566 +     *
567 +     * @param k the position to fill
568 +     * @param x the item to insert
569 +     */
570 +    private void siftUp(int k, E x) {
571 +        if (comparator != null)
572 +            siftUpUsingComparator(k, x);
573 +        else
574 +            siftUpComparable(k, x);
575 +    }
576 +
577 +    private void siftUpComparable(int k, E x) {
578 +        Comparable<? super E> key = (Comparable<? super E>) x;
579 +        while (k > 0) {
580 +            int parent = (k - 1) >>> 1;
581 +            Object e = queue[parent];
582 +            if (key.compareTo((E) e) >= 0)
583 +                break;
584 +            queue[k] = e;
585 +            k = parent;
586 +        }
587 +        queue[k] = key;
588 +    }
589 +
590 +    private void siftUpUsingComparator(int k, E x) {
591 +        while (k > 0) {
592 +            int parent = (k - 1) >>> 1;
593 +            Object e = queue[parent];
594 +            if (comparator.compare(x, (E) e) >= 0)
595 +                break;
596 +            queue[k] = e;
597 +            k = parent;
598 +        }
599 +        queue[k] = x;
600 +    }
601 +
602 +    /**
603 +     * Inserts item x at position k, maintaining heap invariant by
604 +     * demoting x down the tree repeatedly until it is less than or
605 +     * equal to its children or is a leaf.
606 +     *
607 +     * @param k the position to fill
608 +     * @param x the item to insert
609 +     */
610 +    private void siftDown(int k, E x) {
611 +        if (comparator != null)
612 +            siftDownUsingComparator(k, x);
613 +        else
614 +            siftDownComparable(k, x);
615 +    }
616 +
617 +    private void siftDownComparable(int k, E x) {
618 +        Comparable<? super E> key = (Comparable<? super E>)x;
619 +        int half = size >>> 1;        // loop while a non-leaf
620 +        while (k < half) {
621 +            int child = (k << 1) + 1; // assume left child is least
622 +            Object c = queue[child];
623 +            int right = child + 1;
624 +            if (right < size &&
625 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
626 +                c = queue[child = right];
627 +            if (key.compareTo((E) c) <= 0)
628 +                break;
629 +            queue[k] = c;
630 +            k = child;
631 +        }
632 +        queue[k] = key;
633 +    }
634 +
635 +    private void siftDownUsingComparator(int k, E x) {
636 +        int half = size >>> 1;
637 +        while (k < half) {
638 +            int child = (k << 1) + 1;
639 +            Object c = queue[child];
640 +            int right = child + 1;
641 +            if (right < size &&
642 +                comparator.compare((E) c, (E) queue[right]) > 0)
643 +                c = queue[child = right];
644 +            if (comparator.compare(x, (E) c) <= 0)
645 +                break;
646 +            queue[k] = c;
647 +            k = child;
648 +        }
649 +        queue[k] = x;
650 +    }
651 +
652 +    /**
653 +     * Establishes the heap invariant (described above) in the entire tree,
654 +     * assuming nothing about the order of the elements prior to the call.
655 +     */
656 +    private void heapify() {
657 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
658 +            siftDown(i, (E) queue[i]);
659 +    }
660 +
661 +    /**
662 +     * Returns the comparator used to order the elements in this
663 +     * queue, or {@code null} if this queue is sorted according to
664 +     * the {@linkplain Comparable natural ordering} of its elements.
665 +     *
666 +     * @return the comparator used to order this queue, or
667 +     *         {@code null} if this queue is sorted according to the
668 +     *         natural ordering of its elements
669 +     */
670 +    public Comparator<? super E> comparator() {
671 +        return comparator;
672 +    }
673 +
674 +    /**
675 +     * Saves the state of the instance to a stream (that
676 +     * is, serializes it).
677 +     *
678 +     * @serialData The length of the array backing the instance is
679 +     *             emitted (int), followed by all of its elements
680 +     *             (each an {@code Object}) in the proper order.
681 +     * @param s the stream
682 +     */
683 +    private void writeObject(java.io.ObjectOutputStream s)
684 +        throws java.io.IOException{
685 +        // Write out element count, and any hidden stuff
686 +        s.defaultWriteObject();
687 +
688 +        // Write out array length, for compatibility with 1.5 version
689 +        s.writeInt(Math.max(2, size + 1));
690 +
691 +        // Write out all elements in the "proper order".
692 +        for (int i = 0; i < size; i++)
693 +            s.writeObject(queue[i]);
694 +    }
695 +
696 +    /**
697 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
698 +     * (that is, deserializes it).
699 +     *
700 +     * @param s the stream
701 +     */
702 +    private void readObject(java.io.ObjectInputStream s)
703 +        throws java.io.IOException, ClassNotFoundException {
704 +        // Read in size, and any hidden stuff
705 +        s.defaultReadObject();
706 +
707 +        // Read in (and discard) array length
708 +        s.readInt();
709 +
710 +        queue = new Object[size];
711 +
712 +        // Read in all elements.
713 +        for (int i = 0; i < size; i++)
714 +            queue[i] = s.readObject();
715 +
716 +        // Elements are guaranteed to be in "proper order", but the
717 +        // spec has never explained what that might be.
718 +        heapify();
719 +    }
720   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines