ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.52 by dl, Tue Nov 22 11:44:47 2005 UTC vs.
Revision 1.66 by jsr166, Sun Jan 7 07:38:27 2007 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * %W% %E%
3   *
4 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
8   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
9  
10   /**
11 < * An unbounded priority {@linkplain Queue queue} based on a priority
12 < * heap.  The elements of the priority queue are ordered according to
13 < * their {@linkplain Comparable natural ordering}, or by a {@link
14 < * Comparator} provided at queue construction time, depending on which
15 < * constructor is used.  A priority queue does not permit
16 < * <tt>null</tt> elements.  A priority queue relying on natural
17 < * ordering also does not permit insertion of non-comparable objects
18 < * (doing so may result in <tt>ClassCastException</tt>).
11 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12 > * The elements of the priority queue are ordered according to their
13 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
14 > * provided at queue construction time, depending on which constructor is
15 > * used.  A priority queue does not permit {@code null} elements.
16 > * A priority queue relying on natural ordering also does not permit
17 > * insertion of non-comparable objects (doing so may result in
18 > * {@code ClassCastException}).
19   *
20   * <p>The <em>head</em> of this queue is the <em>least</em> element
21   * with respect to the specified ordering.  If multiple elements are
22   * tied for least value, the head is one of those elements -- ties are
23 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
24 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
23 > * broken arbitrarily.  The queue retrieval operations {@code poll},
24 > * {@code remove}, {@code peek}, and {@code element} access the
25   * element at the head of the queue.
26   *
27   * <p>A priority queue is unbounded, but has an internal
# Line 37 | Line 36 | import java.util.*; // for javadoc (till
36   * Iterator} interfaces.  The Iterator provided in method {@link
37   * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38   * the priority queue in any particular order. If you need ordered
39 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
39 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
40   *
41   * <p> <strong>Note that this implementation is not synchronized.</strong>
42 < * Multiple threads should not access a <tt>PriorityQueue</tt>
43 < * instance concurrently if any of the threads modifies the list
44 < * structurally. Instead, use the thread-safe {@link
42 > * Multiple threads should not access a {@code PriorityQueue}
43 > * instance concurrently if any of the threads modifies the queue.
44 > * Instead, use the thread-safe {@link
45   * java.util.concurrent.PriorityBlockingQueue} class.
46   *
47 < * <p>Implementation note: this implementation provides O(log(n)) time
48 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 < * constant time for the retrieval methods (<tt>peek</tt>,
52 < * <tt>element</tt>, and <tt>size</tt>).
47 > * <p>Implementation note: this implementation provides
48 > * O(log(n)) time for the enqueing and dequeing methods
49 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
50 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
51 > * methods; and constant time for the retrieval methods
52 > * ({@code peek}, {@code element}, and {@code size}).
53   *
54   * <p>This class is a member of the
55 < * <a href="{@docRoot}/../guide/collections/index.html">
55 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56   * Java Collections Framework</a>.
57 + *
58   * @since 1.5
59 < * @version 1.8, 08/27/05
60 < * @author Josh Bloch
59 > * @version %I%, %G%
60 > * @author Josh Bloch, Doug Lea
61   * @param <E> the type of elements held in this collection
62   */
63   public class PriorityQueue<E> extends AbstractQueue<E>
# Line 68 | Line 68 | public class PriorityQueue<E> extends Ab
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 100 | Line 95 | public class PriorityQueue<E> extends Ab
95      private transient int modCount = 0;
96  
97      /**
98 <     * Creates a <tt>PriorityQueue</tt> with the default initial
98 >     * Creates a {@code PriorityQueue} with the default initial
99       * capacity (11) that orders its elements according to their
100       * {@linkplain Comparable natural ordering}.
101       */
# Line 109 | Line 104 | public class PriorityQueue<E> extends Ab
104      }
105  
106      /**
107 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
107 >     * Creates a {@code PriorityQueue} with the specified initial
108       * capacity that orders its elements according to their
109       * {@linkplain Comparable natural ordering}.
110       *
111       * @param initialCapacity the initial capacity for this priority queue
112 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113 <     * than 1
112 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
113 >     *         than 1
114       */
115      public PriorityQueue(int initialCapacity) {
116          this(initialCapacity, null);
117      }
118  
119      /**
120 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120 >     * Creates a {@code PriorityQueue} with the specified initial capacity
121       * that orders its elements according to the specified comparator.
122       *
123       * @param  initialCapacity the initial capacity for this priority queue
124 <     * @param  comparator the comparator that will be used to order
125 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
126 <     *         ordering</i> of the elements will be used.
127 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
124 >     * @param  comparator the comparator that will be used to order this
125 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
126 >     *         natural ordering} of the elements will be used.
127 >     * @throws IllegalArgumentException if {@code initialCapacity} is
128       *         less than 1
129       */
130      public PriorityQueue(int initialCapacity,
131                           Comparator<? super E> comparator) {
132 +        // Note: This restriction of at least one is not actually needed,
133 +        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139  
140      /**
141 <     * Common code to initialize underlying queue array across
142 <     * constructors below.
143 <     */
144 <    private void initializeArray(Collection<? extends E> c) {
145 <        int sz = c.size();
146 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
186 <    /**
187 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
191 <     * instance of a {@link java.util.SortedSet} or is another
192 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 <     * according to the same ordering.  Otherwise, this priority queue
194 <     * will be ordered according to the natural ordering of its elements.
141 >     * Creates a {@code PriorityQueue} containing the elements in the
142 >     * specified collection.  If the specified collection is an instance of
143 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
144 >     * priority queue will be ordered according to the same ordering.
145 >     * Otherwise, this priority queue will be ordered according to the
146 >     * {@linkplain Comparable natural ordering} of its elements.
147       *
148       * @param  c the collection whose elements are to be placed
149       *         into this priority queue
# Line 202 | Line 154 | public class PriorityQueue<E> extends Ab
154       *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        initializeArray(c);
158 <        if (c instanceof SortedSet) {
159 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
160 <            comparator = (Comparator<? super E>)s.comparator();
161 <            fillFromSorted(s);
162 <        } else if (c instanceof PriorityQueue) {
163 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
164 <            comparator = (Comparator<? super E>)s.comparator();
213 <            fillFromSorted(s);
214 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            fillFromUnsorted(c);
166 >            heapify();
167          }
168      }
169  
170      /**
171 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
171 >     * Creates a {@code PriorityQueue} containing the elements in the
172 >     * specified priority queue.  This priority queue will be
173       * ordered according to the same ordering as the given priority
174       * queue.
175       *
176       * @param  c the priority queue whose elements are to be placed
177       *         into this priority queue
178 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 <     *         compared to one another according to <tt>c</tt>'s
178 >     * @throws ClassCastException if elements of {@code c} cannot be
179 >     *         compared to one another according to {@code c}'s
180       *         ordering
181       * @throws NullPointerException if the specified priority queue or any
182       *         of its elements are null
183       */
184      public PriorityQueue(PriorityQueue<? extends E> c) {
237        initializeArray(c);
185          comparator = (Comparator<? super E>)c.comparator();
186 <        fillFromSorted(c);
186 >        initFromCollection(c);
187      }
188  
189      /**
190 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
190 >     * Creates a {@code PriorityQueue} containing the elements in the
191 >     * specified sorted set.   This priority queue will be ordered
192       * according to the same ordering as the given sorted set.
193       *
194       * @param  c the sorted set whose elements are to be placed
195 <     *         into this priority queue.
195 >     *         into this priority queue
196       * @throws ClassCastException if elements of the specified sorted
197       *         set cannot be compared to one another according to the
198       *         sorted set's ordering
# Line 255 | Line 200 | public class PriorityQueue<E> extends Ab
200       *         of its elements are null
201       */
202      public PriorityQueue(SortedSet<? extends E> c) {
258        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205 >    }
206 >
207 >    /**
208 >     * Initializes queue array with elements from the given Collection.
209 >     *
210 >     * @param c the collection
211 >     */
212 >    private void initFromCollection(Collection<? extends E> c) {
213 >        Object[] a = c.toArray();
214 >        // If c.toArray incorrectly doesn't return Object[], copy it.
215 >        if (a.getClass() != Object[].class)
216 >            a = Arrays.copyOf(a, a.length, Object[].class);
217 >        queue = a;
218 >        size = a.length;
219      }
220  
221      /**
222 <     * Resize array, if necessary, to be able to hold given index.
222 >     * Increases the capacity of the array.
223 >     *
224 >     * @param minCapacity the desired minimum capacity
225       */
226 <    private void grow(int index) {
227 <        int newlen = queue.length;
268 <        if (index < newlen) // don't need to grow
269 <            return;
270 <        if (index == Integer.MAX_VALUE)
226 >    private void grow(int minCapacity) {
227 >        if (minCapacity < 0) // overflow
228              throw new OutOfMemoryError();
229 <        while (newlen <= index) {
230 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
231 <                newlen = Integer.MAX_VALUE;
232 <            else
233 <                newlen <<= 2;
234 <        }
235 <        queue = Arrays.copyOf(queue, newlen);
229 >        int oldCapacity = queue.length;
230 >        // Double size if small; else grow by 50%
231 >        int newCapacity = ((oldCapacity < 64)?
232 >                           ((oldCapacity + 1) * 2):
233 >                           ((oldCapacity / 2) * 3));
234 >        if (newCapacity < 0) // overflow
235 >            newCapacity = Integer.MAX_VALUE;
236 >        if (newCapacity < minCapacity)
237 >            newCapacity = minCapacity;
238 >        queue = Arrays.copyOf(queue, newCapacity);
239      }
240  
241      /**
242       * Inserts the specified element into this priority queue.
243       *
244 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
244 >     * @return {@code true} (as specified by {@link Collection#add})
245       * @throws ClassCastException if the specified element cannot be
246       *         compared with elements currently in this priority queue
247       *         according to the priority queue's ordering
# Line 294 | Line 254 | public class PriorityQueue<E> extends Ab
254      /**
255       * Inserts the specified element into this priority queue.
256       *
257 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
257 >     * @return {@code true} (as specified by {@link Queue#offer})
258       * @throws ClassCastException if the specified element cannot be
259       *         compared with elements currently in this priority queue
260       *         according to the priority queue's ordering
# Line 304 | Line 264 | public class PriorityQueue<E> extends Ab
264          if (e == null)
265              throw new NullPointerException();
266          modCount++;
267 <        ++size;
268 <
269 <        // Grow backing store if necessary
270 <        if (size >= queue.length)
271 <            grow(size);
272 <
273 <        queue[size] = e;
274 <        fixUp(size);
267 >        int i = size;
268 >        if (i >= queue.length)
269 >            grow(i + 1);
270 >        size = i + 1;
271 >        if (i == 0)
272 >            queue[0] = e;
273 >        else
274 >            siftUp(i, e);
275          return true;
276      }
277  
278      public E peek() {
279          if (size == 0)
280              return null;
281 <        return (E) queue[1];
281 >        return (E) queue[0];
282      }
283  
284      private int indexOf(Object o) {
285 <        if (o == null)
286 <            return -1;
287 <        for (int i = 1; i <= size; i++)
288 <            if (o.equals(queue[i]))
289 <                return i;
285 >        if (o != null) {
286 >            for (int i = 0; i < size; i++)
287 >                if (o.equals(queue[i]))
288 >                    return i;
289 >        }
290          return -1;
291      }
292  
293      /**
294       * Removes a single instance of the specified element from this queue,
295 <     * if it is present.  More formally, removes an element <tt>e</tt> such
296 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
297 <     * elements.  Returns true if this queue contained the specified element
298 <     * (or equivalently, if this queue changed as a result of the call).
295 >     * if it is present.  More formally, removes an element {@code e} such
296 >     * that {@code o.equals(e)}, if this queue contains one or more such
297 >     * elements.  Returns {@code true} if and only if this queue contained
298 >     * the specified element (or equivalently, if this queue changed as a
299 >     * result of the call).
300       *
301       * @param o element to be removed from this queue, if present
302 <     * @return <tt>true</tt> if this queue changed as a result of the call
302 >     * @return {@code true} if this queue changed as a result of the call
303       */
304      public boolean remove(Object o) {
305          int i = indexOf(o);
# Line 351 | Line 312 | public class PriorityQueue<E> extends Ab
312      }
313  
314      /**
315 <     * Returns <tt>true</tt> if this queue contains the specified element.
316 <     * More formally, returns <tt>true</tt> if and only if this queue contains
317 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
315 >     * Version of remove using reference equality, not equals.
316 >     * Needed by iterator.remove.
317 >     *
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if removed
320 >     */
321 >    boolean removeEq(Object o) {
322 >        for (int i = 0; i < size; i++) {
323 >            if (o == queue[i]) {
324 >                removeAt(i);
325 >                return true;
326 >            }
327 >        }
328 >        return false;
329 >    }
330 >
331 >    /**
332 >     * Returns {@code true} if this queue contains the specified element.
333 >     * More formally, returns {@code true} if and only if this queue contains
334 >     * at least one element {@code e} such that {@code o.equals(e)}.
335       *
336       * @param o object to be checked for containment in this queue
337 <     * @return <tt>true</tt> if this queue contains the specified element
337 >     * @return {@code true} if this queue contains the specified element
338       */
339      public boolean contains(Object o) {
340          return indexOf(o) != -1;
341      }
342  
343      /**
344 <     * Returns an array containing all of the elements in this queue,
344 >     * Returns an array containing all of the elements in this queue.
345       * The elements are in no particular order.
346       *
347       * <p>The returned array will be "safe" in that no references to it are
348 <     * maintained by this list.  (In other words, this method must allocate
348 >     * maintained by this queue.  (In other words, this method must allocate
349       * a new array).  The caller is thus free to modify the returned array.
350       *
351 <     * @return an array containing all of the elements in this queue.
351 >     * <p>This method acts as bridge between array-based and collection-based
352 >     * APIs.
353 >     *
354 >     * @return an array containing all of the elements in this queue
355       */
356      public Object[] toArray() {
357 <        return Arrays.copyOfRange(queue, 1, size+1);
357 >        return Arrays.copyOf(queue, size);
358      }
359  
360      /**
361 <     * Returns an array containing all of the elements in this queue.
362 <     * The elements are in no particular order.  The runtime type of
363 <     * the returned array is that of the specified array.  If the queue
364 <     * fits in the specified array, it is returned therein.
365 <     * Otherwise, a new array is allocated with the runtime type of
366 <     * the specified array and the size of this queue.
361 >     * Returns an array containing all of the elements in this queue; the
362 >     * runtime type of the returned array is that of the specified array.
363 >     * The returned array elements are in no particular order.
364 >     * If the queue fits in the specified array, it is returned therein.
365 >     * Otherwise, a new array is allocated with the runtime type of the
366 >     * specified array and the size of this queue.
367       *
368       * <p>If the queue fits in the specified array with room to spare
369       * (i.e., the array has more elements than the queue), the element in
370       * the array immediately following the end of the collection is set to
371 <     * <tt>null</tt>.  (This is useful in determining the length of the
372 <     * queue <i>only</i> if the caller knows that the queue does not contain
373 <     * any null elements.)
371 >     * {@code null}.
372 >     *
373 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
374 >     * array-based and collection-based APIs.  Further, this method allows
375 >     * precise control over the runtime type of the output array, and may,
376 >     * under certain circumstances, be used to save allocation costs.
377 >     *
378 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
379 >     * The following code can be used to dump the queue into a newly
380 >     * allocated array of <tt>String</tt>:
381 >     *
382 >     * <pre>
383 >     *     String[] y = x.toArray(new String[0]);</pre>
384 >     *
385 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
386 >     * <tt>toArray()</tt>.
387       *
388       * @param a the array into which the elements of the queue are to
389       *          be stored, if it is big enough; otherwise, a new array of the
390       *          same runtime type is allocated for this purpose.
391 <     * @return an array containing the elements of the queue
391 >     * @return an array containing all of the elements in this queue
392       * @throws ArrayStoreException if the runtime type of the specified array
393       *         is not a supertype of the runtime type of every element in
394       *         this queue
# Line 403 | Line 397 | public class PriorityQueue<E> extends Ab
397      public <T> T[] toArray(T[] a) {
398          if (a.length < size)
399              // Make a new array of a's runtime type, but my contents:
400 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
401 <        System.arraycopy(queue, 1, a, 0, size);
400 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
401 >        System.arraycopy(queue, 0, a, 0, size);
402          if (a.length > size)
403              a[size] = null;
404          return a;
# Line 420 | Line 414 | public class PriorityQueue<E> extends Ab
414          return new Itr();
415      }
416  
417 <    private class Itr implements Iterator<E> {
424 <
417 >    private final class Itr implements Iterator<E> {
418          /**
419           * Index (into queue array) of element to be returned by
420           * subsequent call to next.
421           */
422 <        private int cursor = 1;
422 >        private int cursor = 0;
423  
424          /**
425           * Index of element returned by most recent call to next,
426           * unless that element came from the forgetMeNot list.
427 <         * Reset to 0 if element is deleted by a call to remove.
427 >         * Set to -1 if element is deleted by a call to remove.
428           */
429 <        private int lastRet = 0;
429 >        private int lastRet = -1;
430  
431          /**
432 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
442 <         */
443 <        private int expectedModCount = modCount;
444 <
445 <        /**
446 <         * A list of elements that were moved from the unvisited portion of
432 >         * A queue of elements that were moved from the unvisited portion of
433           * the heap into the visited portion as a result of "unlucky" element
434           * removals during the iteration.  (Unlucky element removals are those
435 <         * that require a fixup instead of a fixdown.)  We must visit all of
435 >         * that require a siftup instead of a siftdown.)  We must visit all of
436           * the elements in this list to complete the iteration.  We do this
437           * after we've completed the "normal" iteration.
438           *
439           * We expect that most iterations, even those involving removals,
440 <         * will not use need to store elements in this field.
440 >         * will not need to store elements in this field.
441           */
442 <        private ArrayList<E> forgetMeNot = null;
442 >        private ArrayDeque<E> forgetMeNot = null;
443  
444          /**
445           * Element returned by the most recent call to next iff that
446           * element was drawn from the forgetMeNot list.
447           */
448 <        private Object lastRetElt = null;
448 >        private E lastRetElt = null;
449 >
450 >        /**
451 >         * The modCount value that the iterator believes that the backing
452 >         * Queue should have.  If this expectation is violated, the iterator
453 >         * has detected concurrent modification.
454 >         */
455 >        private int expectedModCount = modCount;
456  
457          public boolean hasNext() {
458 <            return cursor <= size || forgetMeNot != null;
458 >            return cursor < size ||
459 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
460          }
461  
462          public E next() {
463 <            checkForComodification();
464 <            E result;
465 <            if (cursor <= size) {
466 <                result = (E) queue[cursor];
467 <                lastRet = cursor++;
468 <            }
469 <            else if (forgetMeNot == null)
470 <                throw new NoSuchElementException();
471 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
463 >            if (expectedModCount != modCount)
464 >                throw new ConcurrentModificationException();
465 >            if (cursor < size)
466 >                return (E) queue[lastRet = cursor++];
467 >            if (forgetMeNot != null) {
468 >                lastRet = -1;
469 >                lastRetElt = forgetMeNot.poll();
470 >                if (lastRetElt != null)
471 >                    return lastRetElt;
472              }
473 <            return result;
473 >            throw new NoSuchElementException();
474          }
475  
476          public void remove() {
477 <            checkForComodification();
478 <
479 <            if (lastRet != 0) {
477 >            if (expectedModCount != modCount)
478 >                throw new ConcurrentModificationException();
479 >            if (lastRet != -1) {
480                  E moved = PriorityQueue.this.removeAt(lastRet);
481 <                lastRet = 0;
482 <                if (moved == null) {
481 >                lastRet = -1;
482 >                if (moved == null)
483                      cursor--;
484 <                } else {
484 >                else {
485                      if (forgetMeNot == null)
486 <                        forgetMeNot = new ArrayList<E>();
486 >                        forgetMeNot = new ArrayDeque<E>();
487                      forgetMeNot.add(moved);
488                  }
489              } else if (lastRetElt != null) {
490 <                PriorityQueue.this.remove(lastRetElt);
490 >                PriorityQueue.this.removeEq(lastRetElt);
491                  lastRetElt = null;
492              } else {
493                  throw new IllegalStateException();
494 <            }
507 <
494 >            }
495              expectedModCount = modCount;
496          }
510
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
497      }
498  
499      public int size() {
# Line 524 | Line 506 | public class PriorityQueue<E> extends Ab
506       */
507      public void clear() {
508          modCount++;
509 <
528 <        // Null out element references to prevent memory leak
529 <        for (int i=1; i<=size; i++)
509 >        for (int i = 0; i < size; i++)
510              queue[i] = null;
531
511          size = 0;
512      }
513  
514      public E poll() {
515          if (size == 0)
516              return null;
517 +        int s = --size;
518          modCount++;
519 <
520 <        E result = (E) queue[1];
521 <        queue[1] = queue[size];
522 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
523 <        if (size > 1)
544 <            fixDown(1);
545 <
519 >        E result = (E) queue[0];
520 >        E x = (E) queue[s];
521 >        queue[s] = null;
522 >        if (s != 0)
523 >            siftDown(0, x);
524          return result;
525      }
526  
527      /**
528 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
528 >     * Removes the ith element from queue.
529       *
530 <     * Normally this method leaves the elements at positions from 1 up to i-1,
531 <     * inclusive, untouched.  Under these circumstances, it returns null.
532 <     * Occasionally, in order to maintain the heap invariant, it must move
533 <     * the last element of the list to some index in the range [2, i-1],
534 <     * and move the element previously at position (i/2) to position i.
535 <     * Under these circumstances, this method returns the element that was
536 <     * previously at the end of the list and is now at some position between
537 <     * 2 and i-1 inclusive.
530 >     * Normally this method leaves the elements at up to i-1,
531 >     * inclusive, untouched.  Under these circumstances, it returns
532 >     * null.  Occasionally, in order to maintain the heap invariant,
533 >     * it must swap a later element of the list with one earlier than
534 >     * i.  Under these circumstances, this method returns the element
535 >     * that was previously at the end of the list and is now at some
536 >     * position before i. This fact is used by iterator.remove so as to
537 >     * avoid missing traversing elements.
538       */
539      private E removeAt(int i) {
540 <        assert i > 0 && i <= size;
540 >        assert i >= 0 && i < size;
541          modCount++;
542 <
543 <        E moved = (E) queue[size];
544 <        queue[i] = moved;
545 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
546 <        if (i <= size) {
547 <            fixDown(i);
542 >        int s = --size;
543 >        if (s == i) // removed last element
544 >            queue[i] = null;
545 >        else {
546 >            E moved = (E) queue[s];
547 >            queue[s] = null;
548 >            siftDown(i, moved);
549              if (queue[i] == moved) {
550 <                fixUp(i);
550 >                siftUp(i, moved);
551                  if (queue[i] != moved)
552                      return moved;
553              }
# Line 578 | Line 556 | public class PriorityQueue<E> extends Ab
556      }
557  
558      /**
559 <     * Establishes the heap invariant (described above) assuming the heap
560 <     * satisfies the invariant except possibly for the leaf-node indexed by k
561 <     * (which may have a nextExecutionTime less than its parent's).
562 <     *
563 <     * This method functions by "promoting" queue[k] up the hierarchy
564 <     * (by swapping it with its parent) repeatedly until queue[k]
565 <     * is greater than or equal to its parent.
566 <     */
567 <    private void fixUp(int k) {
568 <        if (comparator == null) {
569 <            while (k > 1) {
570 <                int j = k >> 1;
571 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
572 <                    break;
573 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
574 <                k = j;
575 <            }
576 <        } else {
577 <            while (k > 1) {
578 <                int j = k >>> 1;
579 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
580 <                    break;
581 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
582 <                k = j;
583 <            }
584 <        }
585 <    }
586 <
587 <    /**
588 <     * Establishes the heap invariant (described above) in the subtree
589 <     * rooted at k, which is assumed to satisfy the heap invariant except
590 <     * possibly for node k itself (which may be greater than its children).
591 <     *
592 <     * This method functions by "demoting" queue[k] down the hierarchy
593 <     * (by swapping it with its smaller child) repeatedly until queue[k]
594 <     * is less than or equal to its children.
595 <     */
596 <    private void fixDown(int k) {
597 <        int j;
598 <        if (comparator == null) {
599 <            while ((j = k << 1) <= size && (j > 0)) {
600 <                if (j<size &&
601 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
602 <                    j++; // j indexes smallest kid
603 <
604 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
605 <                    break;
606 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
607 <                k = j;
608 <            }
609 <        } else {
610 <            while ((j = k << 1) <= size && (j > 0)) {
611 <                if (j<size &&
612 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
613 <                    j++; // j indexes smallest kid
614 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
615 <                    break;
616 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
617 <                k = j;
618 <            }
559 >     * Inserts item x at position k, maintaining heap invariant by
560 >     * promoting x up the tree until it is greater than or equal to
561 >     * its parent, or is the root.
562 >     *
563 >     * To simplify and speed up coercions and comparisons. the
564 >     * Comparable and Comparator versions are separated into different
565 >     * methods that are otherwise identical. (Similarly for siftDown.)
566 >     *
567 >     * @param k the position to fill
568 >     * @param x the item to insert
569 >     */
570 >    private void siftUp(int k, E x) {
571 >        if (comparator != null)
572 >            siftUpUsingComparator(k, x);
573 >        else
574 >            siftUpComparable(k, x);
575 >    }
576 >
577 >    private void siftUpComparable(int k, E x) {
578 >        Comparable<? super E> key = (Comparable<? super E>) x;
579 >        while (k > 0) {
580 >            int parent = (k - 1) >>> 1;
581 >            Object e = queue[parent];
582 >            if (key.compareTo((E) e) >= 0)
583 >                break;
584 >            queue[k] = e;
585 >            k = parent;
586 >        }
587 >        queue[k] = key;
588 >    }
589 >
590 >    private void siftUpUsingComparator(int k, E x) {
591 >        while (k > 0) {
592 >            int parent = (k - 1) >>> 1;
593 >            Object e = queue[parent];
594 >            if (comparator.compare(x, (E) e) >= 0)
595 >                break;
596 >            queue[k] = e;
597 >            k = parent;
598 >        }
599 >        queue[k] = x;
600 >    }
601 >
602 >    /**
603 >     * Inserts item x at position k, maintaining heap invariant by
604 >     * demoting x down the tree repeatedly until it is less than or
605 >     * equal to its children or is a leaf.
606 >     *
607 >     * @param k the position to fill
608 >     * @param x the item to insert
609 >     */
610 >    private void siftDown(int k, E x) {
611 >        if (comparator != null)
612 >            siftDownUsingComparator(k, x);
613 >        else
614 >            siftDownComparable(k, x);
615 >    }
616 >
617 >    private void siftDownComparable(int k, E x) {
618 >        Comparable<? super E> key = (Comparable<? super E>)x;
619 >        int half = size >>> 1;        // loop while a non-leaf
620 >        while (k < half) {
621 >            int child = (k << 1) + 1; // assume left child is least
622 >            Object c = queue[child];
623 >            int right = child + 1;
624 >            if (right < size &&
625 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
626 >                c = queue[child = right];
627 >            if (key.compareTo((E) c) <= 0)
628 >                break;
629 >            queue[k] = c;
630 >            k = child;
631 >        }
632 >        queue[k] = key;
633 >    }
634 >
635 >    private void siftDownUsingComparator(int k, E x) {
636 >        int half = size >>> 1;
637 >        while (k < half) {
638 >            int child = (k << 1) + 1;
639 >            Object c = queue[child];
640 >            int right = child + 1;
641 >            if (right < size &&
642 >                comparator.compare((E) c, (E) queue[right]) > 0)
643 >                c = queue[child = right];
644 >            if (comparator.compare(x, (E) c) <= 0)
645 >                break;
646 >            queue[k] = c;
647 >            k = child;
648          }
649 +        queue[k] = x;
650      }
651  
652      /**
# Line 646 | Line 654 | public class PriorityQueue<E> extends Ab
654       * assuming nothing about the order of the elements prior to the call.
655       */
656      private void heapify() {
657 <        for (int i = size/2; i >= 1; i--)
658 <            fixDown(i);
657 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
658 >            siftDown(i, (E) queue[i]);
659      }
660  
661      /**
662       * Returns the comparator used to order the elements in this
663 <     * queue, or <tt>null</tt> if this queue is sorted according to
663 >     * queue, or {@code null} if this queue is sorted according to
664       * the {@linkplain Comparable natural ordering} of its elements.
665       *
666       * @return the comparator used to order this queue, or
667 <     *         <tt>null</tt> if this queue is sorted according to the
668 <     *         natural ordering of its elements.
667 >     *         {@code null} if this queue is sorted according to the
668 >     *         natural ordering of its elements
669       */
670      public Comparator<? super E> comparator() {
671          return comparator;
672      }
673  
674      /**
675 <     * Save the state of the instance to a stream (that
676 <     * is, serialize it).
675 >     * Saves the state of the instance to a stream (that
676 >     * is, serializes it).
677       *
678       * @serialData The length of the array backing the instance is
679 <     * emitted (int), followed by all of its elements (each an
680 <     * <tt>Object</tt>) in the proper order.
679 >     *             emitted (int), followed by all of its elements
680 >     *             (each an {@code Object}) in the proper order.
681       * @param s the stream
682       */
683      private void writeObject(java.io.ObjectOutputStream s)
# Line 677 | Line 685 | public class PriorityQueue<E> extends Ab
685          // Write out element count, and any hidden stuff
686          s.defaultWriteObject();
687  
688 <        // Write out array length
689 <        s.writeInt(queue.length);
688 >        // Write out array length, for compatibility with 1.5 version
689 >        s.writeInt(Math.max(2, size + 1));
690  
691 <        // Write out all elements in the proper order.
692 <        for (int i=1; i<=size; i++)
691 >        // Write out all elements in the "proper order".
692 >        for (int i = 0; i < size; i++)
693              s.writeObject(queue[i]);
694      }
695  
696      /**
697 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
698 <     * (that is, deserialize it).
697 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
698 >     * (that is, deserializes it).
699 >     *
700       * @param s the stream
701       */
702      private void readObject(java.io.ObjectInputStream s)
# Line 695 | Line 704 | public class PriorityQueue<E> extends Ab
704          // Read in size, and any hidden stuff
705          s.defaultReadObject();
706  
707 <        // Read in array length and allocate array
708 <        int arrayLength = s.readInt();
700 <        queue = new Object[arrayLength];
701 <
702 <        // Read in all elements in the proper order.
703 <        for (int i=1; i<=size; i++)
704 <            queue[i] = (E) s.readObject();
705 <    }
707 >        // Read in (and discard) array length
708 >        s.readInt();
709  
710 +        queue = new Object[size];
711 +
712 +        // Read in all elements.
713 +        for (int i = 0; i < size; i++)
714 +            queue[i] = s.readObject();
715 +
716 +        // Elements are guaranteed to be in "proper order", but the
717 +        // spec has never explained what that might be.
718 +        heapify();
719 +    }
720   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines