ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.32 by dl, Mon Aug 25 23:47:01 2003 UTC vs.
Revision 1.68 by jsr166, Sun May 18 23:47:56 2008 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24 > */
25 >
26 > package java.util;
27  
28   /**
29 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
30 < * This queue orders
31 < * elements according to an order specified at construction time, which is
32 < * specified in the same manner as {@link java.util.TreeSet} and
33 < * {@link java.util.TreeMap}: elements are ordered
34 < * either according to their <i>natural order</i> (see {@link Comparable}), or
35 < * according to a {@link java.util.Comparator}, depending on which
36 < * constructor is used.
37 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
38 < * respect to the specified ordering.
39 < * If multiple elements are tied for least value, the
40 < * head is one of those elements. A priority queue does not permit
41 < * <tt>null</tt> elements.
42 < *
43 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
44 < * return the head of the queue.
45 < *
46 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
47 < * not delete, the head of the queue.
48 < *
49 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
50 < * size of the array used internally to store the elements on the
51 < * queue.
52 < * It is always at least as large as the queue size.  As
53 < * elements are added to a priority queue, its capacity grows
54 < * automatically.  The details of the growth policy are not specified.
55 < *
56 < * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
57 < * guaranteed to traverse the elements of the PriorityQueue in any
33 < * particular order. If you need ordered traversal, consider using
34 < * <tt>Arrays.sort(pq.toArray())</tt>.
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58   *
59   * <p> <strong>Note that this implementation is not synchronized.</strong>
60 < * Multiple threads should not access a <tt>PriorityQueue</tt>
61 < * instance concurrently if any of the threads modifies the list
62 < * structurally. Instead, use the thread-safe {@link
63 < * java.util.concurrent.BlockingPriorityQueue} class.
64 < *
65 < *
66 < * <p>Implementation note: this implementation provides O(log(n)) time
67 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
68 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
69 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
70 < * constant time for the retrieval methods (<tt>peek</tt>,
48 < * <tt>element</tt>, and <tt>size</tt>).
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @author Josh Bloch
77 > * @version %I%, %G%
78 > * @author Josh Bloch, Doug Lea
79 > * @param <E> the type of elements held in this collection
80   */
81   public class PriorityQueue<E> extends AbstractQueue<E>
82 <    implements Queue<E>, java.io.Serializable {
82 >    implements java.io.Serializable {
83  
84      private static final long serialVersionUID = -7720805057305804111L;
85  
86      private static final int DEFAULT_INITIAL_CAPACITY = 11;
87  
88      /**
89 <     * Priority queue represented as a balanced binary heap: the two children
90 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
91 <     * ordered by comparator, or by the elements' natural ordering, if
92 <     * comparator is null:  For each node n in the heap and each descendant d
93 <     * of n, n <= d.
94 <     *
70 <     * The element with the lowest value is in queue[1], assuming the queue is
71 <     * nonempty.  (A one-based array is used in preference to the traditional
72 <     * zero-based array to simplify parent and child calculations.)
73 <     *
74 <     * queue.length must be >= 2, even if size == 0.
89 >     * Priority queue represented as a balanced binary heap: the two
90 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
91 >     * priority queue is ordered by comparator, or by the elements'
92 >     * natural ordering, if comparator is null: For each node n in the
93 >     * heap and each descendant d of n, n <= d.  The element with the
94 >     * lowest value is in queue[0], assuming the queue is nonempty.
95       */
96      private transient Object[] queue;
97  
# Line 93 | Line 113 | public class PriorityQueue<E> extends Ab
113      private transient int modCount = 0;
114  
115      /**
116 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
117 <     * (11) that orders its elements according to their natural
118 <     * ordering (using <tt>Comparable</tt>).
116 >     * Creates a {@code PriorityQueue} with the default initial
117 >     * capacity (11) that orders its elements according to their
118 >     * {@linkplain Comparable natural ordering}.
119       */
120      public PriorityQueue() {
121          this(DEFAULT_INITIAL_CAPACITY, null);
122      }
123  
124      /**
125 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
126 <     * that orders its elements according to their natural ordering
127 <     * (using <tt>Comparable</tt>).
128 <     *
129 <     * @param initialCapacity the initial capacity for this priority queue.
130 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
131 <     * than 1
125 >     * Creates a {@code PriorityQueue} with the specified initial
126 >     * capacity that orders its elements according to their
127 >     * {@linkplain Comparable natural ordering}.
128 >     *
129 >     * @param initialCapacity the initial capacity for this priority queue
130 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
131 >     *         than 1
132       */
133      public PriorityQueue(int initialCapacity) {
134          this(initialCapacity, null);
135      }
136  
137      /**
138 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
138 >     * Creates a {@code PriorityQueue} with the specified initial capacity
139       * that orders its elements according to the specified comparator.
140       *
141 <     * @param initialCapacity the initial capacity for this priority queue.
142 <     * @param comparator the comparator used to order this priority queue.
143 <     * If <tt>null</tt> then the order depends on the elements' natural
144 <     * ordering.
145 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
146 <     * than 1
141 >     * @param  initialCapacity the initial capacity for this priority queue
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @throws IllegalArgumentException if {@code initialCapacity} is
146 >     *         less than 1
147       */
148 <    public PriorityQueue(int initialCapacity,
148 >    public PriorityQueue(int initialCapacity,
149                           Comparator<? super E> comparator) {
150 +        // Note: This restriction of at least one is not actually needed,
151 +        // but continues for 1.5 compatibility
152          if (initialCapacity < 1)
153              throw new IllegalArgumentException();
154 <        this.queue = new Object[initialCapacity + 1];
154 >        this.queue = new Object[initialCapacity];
155          this.comparator = comparator;
156      }
157  
158      /**
159 <     * Common code to initialize underlying queue array across
160 <     * constructors below.
161 <     */
162 <    private void initializeArray(Collection<? extends E> c) {
163 <        int sz = c.size();
164 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
143 <                                            Integer.MAX_VALUE - 1);
144 <        if (initialCapacity < 1)
145 <            initialCapacity = 1;
146 <
147 <        this.queue = new Object[initialCapacity + 1];
148 <    }
149 <
150 <    /**
151 <     * Initially fill elements of the queue array under the
152 <     * knowledge that it is sorted or is another PQ, in which
153 <     * case we can just place the elements without fixups.
154 <     */
155 <    private void fillFromSorted(Collection<? extends E> c) {
156 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
157 <            queue[++size] = i.next();
158 <    }
159 <
160 <
161 <    /**
162 <     * Initially fill elements of the queue array that is
163 <     * not to our knowledge sorted, so we must add them
164 <     * one by one.
165 <     */
166 <    private void fillFromUnsorted(Collection<? extends E> c) {
167 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
168 <            add(i.next());
169 <    }
170 <
171 <    /**
172 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
173 <     * specified collection.  The priority queue has an initial
174 <     * capacity of 110% of the size of the specified collection or 1
175 <     * if the collection is empty.  If the specified collection is an
176 <     * instance of a {@link java.util.SortedSet} or is another
177 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
178 <     * according to the same comparator, or according to its elements'
179 <     * natural order if the collection is sorted according to its
180 <     * elements' natural order.  Otherwise, the priority queue is
181 <     * ordered according to its elements' natural order.
159 >     * Creates a {@code PriorityQueue} containing the elements in the
160 >     * specified collection.  If the specified collection is an instance of
161 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 >     * priority queue will be ordered according to the same ordering.
163 >     * Otherwise, this priority queue will be ordered according to the
164 >     * {@linkplain Comparable natural ordering} of its elements.
165       *
166 <     * @param c the collection whose elements are to be placed
167 <     *        into this priority queue.
166 >     * @param  c the collection whose elements are to be placed
167 >     *         into this priority queue
168       * @throws ClassCastException if elements of the specified collection
169       *         cannot be compared to one another according to the priority
170 <     *         queue's ordering.
171 <     * @throws NullPointerException if <tt>c</tt> or any element within it
172 <     * is <tt>null</tt>
170 >     *         queue's ordering
171 >     * @throws NullPointerException if the specified collection or any
172 >     *         of its elements are null
173       */
174      public PriorityQueue(Collection<? extends E> c) {
175 <        initializeArray(c);
176 <        if (c instanceof SortedSet) {
177 <            // @fixme double-cast workaround for compiler
178 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
179 <            comparator = (Comparator<? super E>)s.comparator();
180 <            fillFromSorted(s);
181 <        } else if (c instanceof PriorityQueue) {
182 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
200 <            comparator = (Comparator<? super E>)s.comparator();
201 <            fillFromSorted(s);
202 <        } else {
175 >        initFromCollection(c);
176 >        if (c instanceof SortedSet)
177 >            comparator = (Comparator<? super E>)
178 >                ((SortedSet<? extends E>)c).comparator();
179 >        else if (c instanceof PriorityQueue)
180 >            comparator = (Comparator<? super E>)
181 >                ((PriorityQueue<? extends E>)c).comparator();
182 >        else {
183              comparator = null;
184 <            fillFromUnsorted(c);
184 >            heapify();
185          }
186      }
187  
188      /**
189 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 <     * specified collection.  The priority queue has an initial
191 <     * capacity of 110% of the size of the specified collection or 1
192 <     * if the collection is empty.  This priority queue will be sorted
193 <     * according to the same comparator as the given collection, or
194 <     * according to its elements' natural order if the collection is
195 <     * sorted according to its elements' natural order.
196 <     *
197 <     * @param c the collection whose elements are to be placed
198 <     *        into this priority queue.
199 <     * @throws ClassCastException if elements of the specified collection
200 <     *         cannot be compared to one another according to the priority
221 <     *         queue's ordering.
222 <     * @throws NullPointerException if <tt>c</tt> or any element within it
223 <     * is <tt>null</tt>
189 >     * Creates a {@code PriorityQueue} containing the elements in the
190 >     * specified priority queue.  This priority queue will be
191 >     * ordered according to the same ordering as the given priority
192 >     * queue.
193 >     *
194 >     * @param  c the priority queue whose elements are to be placed
195 >     *         into this priority queue
196 >     * @throws ClassCastException if elements of {@code c} cannot be
197 >     *         compared to one another according to {@code c}'s
198 >     *         ordering
199 >     * @throws NullPointerException if the specified priority queue or any
200 >     *         of its elements are null
201       */
202      public PriorityQueue(PriorityQueue<? extends E> c) {
226        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205      }
206  
207      /**
208 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
209 <     * specified collection.  The priority queue has an initial
210 <     * capacity of 110% of the size of the specified collection or 1
235 <     * if the collection is empty.  This priority queue will be sorted
236 <     * according to the same comparator as the given collection, or
237 <     * according to its elements' natural order if the collection is
238 <     * sorted according to its elements' natural order.
208 >     * Creates a {@code PriorityQueue} containing the elements in the
209 >     * specified sorted set.   This priority queue will be ordered
210 >     * according to the same ordering as the given sorted set.
211       *
212 <     * @param c the collection whose elements are to be placed
213 <     *        into this priority queue.
214 <     * @throws ClassCastException if elements of the specified collection
215 <     *         cannot be compared to one another according to the priority
216 <     *         queue's ordering.
217 <     * @throws NullPointerException if <tt>c</tt> or any element within it
218 <     * is <tt>null</tt>
212 >     * @param  c the sorted set whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of the specified sorted
215 >     *         set cannot be compared to one another according to the
216 >     *         sorted set's ordering
217 >     * @throws NullPointerException if the specified sorted set or any
218 >     *         of its elements are null
219       */
220      public PriorityQueue(SortedSet<? extends E> c) {
249        initializeArray(c);
221          comparator = (Comparator<? super E>)c.comparator();
222 <        fillFromSorted(c);
222 >        initFromCollection(c);
223      }
224  
225      /**
226 <     * Resize array, if necessary, to be able to hold given index
226 >     * Initializes queue array with elements from the given Collection.
227 >     *
228 >     * @param c the collection
229       */
230 <    private void grow(int index) {
231 <        int newlen = queue.length;
232 <        if (index < newlen) // don't need to grow
233 <            return;
234 <        if (index == Integer.MAX_VALUE)
235 <            throw new OutOfMemoryError();
236 <        while (newlen <= index) {
264 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
265 <                newlen = Integer.MAX_VALUE;
266 <            else
267 <                newlen <<= 2;
268 <        }
269 <        Object[] newQueue = new Object[newlen];
270 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
271 <        queue = newQueue;
230 >    private void initFromCollection(Collection<? extends E> c) {
231 >        Object[] a = c.toArray();
232 >        // If c.toArray incorrectly doesn't return Object[], copy it.
233 >        if (a.getClass() != Object[].class)
234 >            a = Arrays.copyOf(a, a.length, Object[].class);
235 >        queue = a;
236 >        size = a.length;
237      }
273            
274    // Queue Methods
238  
239 +    /**
240 +     * Increases the capacity of the array.
241 +     *
242 +     * @param minCapacity the desired minimum capacity
243 +     */
244 +    private void grow(int minCapacity) {
245 +        if (minCapacity < 0) // overflow
246 +            throw new OutOfMemoryError();
247 +        int oldCapacity = queue.length;
248 +        // Double size if small; else grow by 50%
249 +        int newCapacity = ((oldCapacity < 64)?
250 +                           ((oldCapacity + 1) * 2):
251 +                           ((oldCapacity / 2) * 3));
252 +        if (newCapacity < 0) // overflow
253 +            newCapacity = Integer.MAX_VALUE;
254 +        if (newCapacity < minCapacity)
255 +            newCapacity = minCapacity;
256 +        queue = Arrays.copyOf(queue, newCapacity);
257 +    }
258  
259 +    /**
260 +     * Inserts the specified element into this priority queue.
261 +     *
262 +     * @return {@code true} (as specified by {@link Collection#add})
263 +     * @throws ClassCastException if the specified element cannot be
264 +     *         compared with elements currently in this priority queue
265 +     *         according to the priority queue's ordering
266 +     * @throws NullPointerException if the specified element is null
267 +     */
268 +    public boolean add(E e) {
269 +        return offer(e);
270 +    }
271  
272      /**
273 <     * Add the specified element to this priority queue.
273 >     * Inserts the specified element into this priority queue.
274       *
275 <     * @return <tt>true</tt>
276 <     * @throws ClassCastException if the specified element cannot be compared
277 <     * with elements currently in the priority queue according
278 <     * to the priority queue's ordering.
279 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
275 >     * @return {@code true} (as specified by {@link Queue#offer})
276 >     * @throws ClassCastException if the specified element cannot be
277 >     *         compared with elements currently in this priority queue
278 >     *         according to the priority queue's ordering
279 >     * @throws NullPointerException if the specified element is null
280       */
281 <    public boolean offer(E o) {
282 <        if (o == null)
281 >    public boolean offer(E e) {
282 >        if (e == null)
283              throw new NullPointerException();
284          modCount++;
285 <        ++size;
286 <
287 <        // Grow backing store if necessary
288 <        if (size >= queue.length)
289 <            grow(size);
290 <
291 <        queue[size] = o;
292 <        fixUp(size);
285 >        int i = size;
286 >        if (i >= queue.length)
287 >            grow(i + 1);
288 >        size = i + 1;
289 >        if (i == 0)
290 >            queue[0] = e;
291 >        else
292 >            siftUp(i, e);
293          return true;
294      }
295  
296 <    public E poll() {
296 >    public E peek() {
297          if (size == 0)
298              return null;
299 <        return (E) remove(1);
299 >        return (E) queue[0];
300      }
301  
302 <    public E peek() {
303 <        return (E) queue[1];
302 >    private int indexOf(Object o) {
303 >        if (o != null) {
304 >            for (int i = 0; i < size; i++)
305 >                if (o.equals(queue[i]))
306 >                    return i;
307 >        }
308 >        return -1;
309      }
310  
312    // Collection Methods - the first two override to update docs
313
311      /**
312 <     * Adds the specified element to this queue.
313 <     * @return <tt>true</tt> (as per the general contract of
314 <     * <tt>Collection.add</tt>).
312 >     * Removes a single instance of the specified element from this queue,
313 >     * if it is present.  More formally, removes an element {@code e} such
314 >     * that {@code o.equals(e)}, if this queue contains one or more such
315 >     * elements.  Returns {@code true} if and only if this queue contained
316 >     * the specified element (or equivalently, if this queue changed as a
317 >     * result of the call).
318       *
319 <     * @throws NullPointerException {@inheritDoc}
320 <     * @throws ClassCastException if the specified element cannot be compared
321 <     * with elements currently in the priority queue according
322 <     * to the priority queue's ordering.
319 >     * @param o element to be removed from this queue, if present
320 >     * @return {@code true} if this queue changed as a result of the call
321       */
322 <    public boolean add(E o) {
323 <        return super.add(o);
322 >    public boolean remove(Object o) {
323 >        int i = indexOf(o);
324 >        if (i == -1)
325 >            return false;
326 >        else {
327 >            removeAt(i);
328 >            return true;
329 >        }
330      }
331  
328  
332      /**
333 <     * Adds all of the elements in the specified collection to this queue.
334 <     * The behavior of this operation is undefined if
335 <     * the specified collection is modified while the operation is in
336 <     * progress.  (This implies that the behavior of this call is undefined if
337 <     * the specified collection is this queue, and this queue is nonempty.)
335 <     * <p>
336 <     * This implementation iterates over the specified collection, and adds
337 <     * each object returned by the iterator to this collection, in turn.
338 <     * @throws NullPointerException {@inheritDoc}
339 <     * @throws ClassCastException if any element cannot be compared
340 <     * with elements currently in the priority queue according
341 <     * to the priority queue's ordering.
333 >     * Version of remove using reference equality, not equals.
334 >     * Needed by iterator.remove.
335 >     *
336 >     * @param o element to be removed from this queue, if present
337 >     * @return {@code true} if removed
338       */
339 <    public boolean addAll(Collection<? extends E> c) {
340 <        return super.addAll(c);
339 >    boolean removeEq(Object o) {
340 >        for (int i = 0; i < size; i++) {
341 >            if (o == queue[i]) {
342 >                removeAt(i);
343 >                return true;
344 >            }
345 >        }
346 >        return false;
347      }
348  
349 +    /**
350 +     * Returns {@code true} if this queue contains the specified element.
351 +     * More formally, returns {@code true} if and only if this queue contains
352 +     * at least one element {@code e} such that {@code o.equals(e)}.
353 +     *
354 +     * @param o object to be checked for containment in this queue
355 +     * @return {@code true} if this queue contains the specified element
356 +     */
357 +    public boolean contains(Object o) {
358 +        return indexOf(o) != -1;
359 +    }
360  
361 < /**
362 <     * Removes a single instance of the specified element from this
363 <     * queue, if it is present.  More formally,
364 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
365 <     * o.equals(e))</tt>, if the queue contains one or more such
366 <     * elements.  Returns <tt>true</tt> if the queue contained the
367 <     * specified element (or equivalently, if the queue changed as a
355 <     * result of the call).
361 >    /**
362 >     * Returns an array containing all of the elements in this queue.
363 >     * The elements are in no particular order.
364 >     *
365 >     * <p>The returned array will be "safe" in that no references to it are
366 >     * maintained by this queue.  (In other words, this method must allocate
367 >     * a new array).  The caller is thus free to modify the returned array.
368       *
369 <     * <p>This implementation iterates over the queue looking for the
370 <     * specified element.  If it finds the element, it removes the element
359 <     * from the queue using the iterator's remove method.<p>
369 >     * <p>This method acts as bridge between array-based and collection-based
370 >     * APIs.
371       *
372 +     * @return an array containing all of the elements in this queue
373       */
374 <    public boolean remove(Object o) {
375 <        if (o == null)
376 <            return false;
374 >    public Object[] toArray() {
375 >        return Arrays.copyOf(queue, size);
376 >    }
377  
378 <        if (comparator == null) {
379 <            for (int i = 1; i <= size; i++) {
380 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
381 <                    remove(i);
382 <                    return true;
383 <                }
384 <            }
385 <        } else {
386 <            for (int i = 1; i <= size; i++) {
387 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
388 <                    remove(i);
389 <                    return true;
390 <                }
391 <            }
392 <        }
393 <        return false;
378 >    /**
379 >     * Returns an array containing all of the elements in this queue; the
380 >     * runtime type of the returned array is that of the specified array.
381 >     * The returned array elements are in no particular order.
382 >     * If the queue fits in the specified array, it is returned therein.
383 >     * Otherwise, a new array is allocated with the runtime type of the
384 >     * specified array and the size of this queue.
385 >     *
386 >     * <p>If the queue fits in the specified array with room to spare
387 >     * (i.e., the array has more elements than the queue), the element in
388 >     * the array immediately following the end of the collection is set to
389 >     * {@code null}.
390 >     *
391 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
392 >     * array-based and collection-based APIs.  Further, this method allows
393 >     * precise control over the runtime type of the output array, and may,
394 >     * under certain circumstances, be used to save allocation costs.
395 >     *
396 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
397 >     * The following code can be used to dump the queue into a newly
398 >     * allocated array of <tt>String</tt>:
399 >     *
400 >     * <pre>
401 >     *     String[] y = x.toArray(new String[0]);</pre>
402 >     *
403 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
404 >     * <tt>toArray()</tt>.
405 >     *
406 >     * @param a the array into which the elements of the queue are to
407 >     *          be stored, if it is big enough; otherwise, a new array of the
408 >     *          same runtime type is allocated for this purpose.
409 >     * @return an array containing all of the elements in this queue
410 >     * @throws ArrayStoreException if the runtime type of the specified array
411 >     *         is not a supertype of the runtime type of every element in
412 >     *         this queue
413 >     * @throws NullPointerException if the specified array is null
414 >     */
415 >    public <T> T[] toArray(T[] a) {
416 >        if (a.length < size)
417 >            // Make a new array of a's runtime type, but my contents:
418 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
419 >        System.arraycopy(queue, 0, a, 0, size);
420 >        if (a.length > size)
421 >            a[size] = null;
422 >        return a;
423      }
424  
425      /**
426       * Returns an iterator over the elements in this queue. The iterator
427       * does not return the elements in any particular order.
428       *
429 <     * @return an iterator over the elements in this queue.
429 >     * @return an iterator over the elements in this queue
430       */
431      public Iterator<E> iterator() {
432          return new Itr();
433      }
434  
435 <    private class Itr implements Iterator<E> {
435 >    private final class Itr implements Iterator<E> {
436          /**
437           * Index (into queue array) of element to be returned by
438           * subsequent call to next.
439           */
440 <        private int cursor = 1;
440 >        private int cursor = 0;
441 >
442 >        /**
443 >         * Index of element returned by most recent call to next,
444 >         * unless that element came from the forgetMeNot list.
445 >         * Set to -1 if element is deleted by a call to remove.
446 >         */
447 >        private int lastRet = -1;
448  
449          /**
450 <         * Index of element returned by most recent call to next or
451 <         * previous.  Reset to 0 if this element is deleted by a call
452 <         * to remove.
450 >         * A queue of elements that were moved from the unvisited portion of
451 >         * the heap into the visited portion as a result of "unlucky" element
452 >         * removals during the iteration.  (Unlucky element removals are those
453 >         * that require a siftup instead of a siftdown.)  We must visit all of
454 >         * the elements in this list to complete the iteration.  We do this
455 >         * after we've completed the "normal" iteration.
456 >         *
457 >         * We expect that most iterations, even those involving removals,
458 >         * will not need to store elements in this field.
459           */
460 <        private int lastRet = 0;
460 >        private ArrayDeque<E> forgetMeNot = null;
461 >
462 >        /**
463 >         * Element returned by the most recent call to next iff that
464 >         * element was drawn from the forgetMeNot list.
465 >         */
466 >        private E lastRetElt = null;
467  
468          /**
469           * The modCount value that the iterator believes that the backing
470 <         * List should have.  If this expectation is violated, the iterator
470 >         * Queue should have.  If this expectation is violated, the iterator
471           * has detected concurrent modification.
472           */
473          private int expectedModCount = modCount;
474  
475          public boolean hasNext() {
476 <            return cursor <= size;
476 >            return cursor < size ||
477 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
478          }
479  
480          public E next() {
481 <            checkForComodification();
482 <            if (cursor > size)
483 <                throw new NoSuchElementException();
484 <            E result = (E) queue[cursor];
485 <            lastRet = cursor++;
486 <            return result;
481 >            if (expectedModCount != modCount)
482 >                throw new ConcurrentModificationException();
483 >            if (cursor < size)
484 >                return (E) queue[lastRet = cursor++];
485 >            if (forgetMeNot != null) {
486 >                lastRet = -1;
487 >                lastRetElt = forgetMeNot.poll();
488 >                if (lastRetElt != null)
489 >                    return lastRetElt;
490 >            }
491 >            throw new NoSuchElementException();
492          }
493  
494          public void remove() {
495 <            if (lastRet == 0)
495 >            if (expectedModCount != modCount)
496 >                throw new ConcurrentModificationException();
497 >            if (lastRet != -1) {
498 >                E moved = PriorityQueue.this.removeAt(lastRet);
499 >                lastRet = -1;
500 >                if (moved == null)
501 >                    cursor--;
502 >                else {
503 >                    if (forgetMeNot == null)
504 >                        forgetMeNot = new ArrayDeque<E>();
505 >                    forgetMeNot.add(moved);
506 >                }
507 >            } else if (lastRetElt != null) {
508 >                PriorityQueue.this.removeEq(lastRetElt);
509 >                lastRetElt = null;
510 >            } else {
511                  throw new IllegalStateException();
512 <            checkForComodification();
432 <
433 <            PriorityQueue.this.remove(lastRet);
434 <            cursor--;
435 <            lastRet = 0;
512 >            }
513              expectedModCount = modCount;
514          }
438
439        final void checkForComodification() {
440            if (modCount != expectedModCount)
441                throw new ConcurrentModificationException();
442        }
515      }
516  
517      public int size() {
# Line 447 | Line 519 | public class PriorityQueue<E> extends Ab
519      }
520  
521      /**
522 <     * Remove all elements from the priority queue.
522 >     * Removes all of the elements from this priority queue.
523 >     * The queue will be empty after this call returns.
524       */
525      public void clear() {
526          modCount++;
527 <
455 <        // Null out element references to prevent memory leak
456 <        for (int i=1; i<=size; i++)
527 >        for (int i = 0; i < size; i++)
528              queue[i] = null;
458
529          size = 0;
530      }
531  
532 +    public E poll() {
533 +        if (size == 0)
534 +            return null;
535 +        int s = --size;
536 +        modCount++;
537 +        E result = (E) queue[0];
538 +        E x = (E) queue[s];
539 +        queue[s] = null;
540 +        if (s != 0)
541 +            siftDown(0, x);
542 +        return result;
543 +    }
544 +
545      /**
546 <     * Removes and returns the ith element from queue.  Recall
464 <     * that queue is one-based, so 1 <= i <= size.
546 >     * Removes the ith element from queue.
547       *
548 +     * Normally this method leaves the elements at up to i-1,
549 +     * inclusive, untouched.  Under these circumstances, it returns
550 +     * null.  Occasionally, in order to maintain the heap invariant,
551 +     * it must swap a later element of the list with one earlier than
552 +     * i.  Under these circumstances, this method returns the element
553 +     * that was previously at the end of the list and is now at some
554 +     * position before i. This fact is used by iterator.remove so as to
555 +     * avoid missing traversing elements.
556       */
557 <    private E remove(int i) {
558 <        assert i <= size;
557 >    private E removeAt(int i) {
558 >        assert i >= 0 && i < size;
559          modCount++;
560 <
561 <        E result = (E) queue[i];
562 <        queue[i] = queue[size];
563 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
564 <        if (i <= size)
565 <            fixDown(i);
566 <        return result;
560 >        int s = --size;
561 >        if (s == i) // removed last element
562 >            queue[i] = null;
563 >        else {
564 >            E moved = (E) queue[s];
565 >            queue[s] = null;
566 >            siftDown(i, moved);
567 >            if (queue[i] == moved) {
568 >                siftUp(i, moved);
569 >                if (queue[i] != moved)
570 >                    return moved;
571 >            }
572 >        }
573 >        return null;
574      }
575  
576      /**
577 <     * Establishes the heap invariant (described above) assuming the heap
578 <     * satisfies the invariant except possibly for the leaf-node indexed by k
579 <     * (which may have a nextExecutionTime less than its parent's).
580 <     *
581 <     * This method functions by "promoting" queue[k] up the hierarchy
582 <     * (by swapping it with its parent) repeatedly until queue[k]
583 <     * is greater than or equal to its parent.
584 <     */
585 <    private void fixUp(int k) {
586 <        if (comparator == null) {
587 <            while (k > 1) {
588 <                int j = k >> 1;
589 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
590 <                    break;
591 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
592 <                k = j;
593 <            }
594 <        } else {
595 <            while (k > 1) {
596 <                int j = k >> 1;
597 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
598 <                    break;
599 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
600 <                k = j;
601 <            }
577 >     * Inserts item x at position k, maintaining heap invariant by
578 >     * promoting x up the tree until it is greater than or equal to
579 >     * its parent, or is the root.
580 >     *
581 >     * To simplify and speed up coercions and comparisons. the
582 >     * Comparable and Comparator versions are separated into different
583 >     * methods that are otherwise identical. (Similarly for siftDown.)
584 >     *
585 >     * @param k the position to fill
586 >     * @param x the item to insert
587 >     */
588 >    private void siftUp(int k, E x) {
589 >        if (comparator != null)
590 >            siftUpUsingComparator(k, x);
591 >        else
592 >            siftUpComparable(k, x);
593 >    }
594 >
595 >    private void siftUpComparable(int k, E x) {
596 >        Comparable<? super E> key = (Comparable<? super E>) x;
597 >        while (k > 0) {
598 >            int parent = (k - 1) >>> 1;
599 >            Object e = queue[parent];
600 >            if (key.compareTo((E) e) >= 0)
601 >                break;
602 >            queue[k] = e;
603 >            k = parent;
604          }
605 +        queue[k] = key;
606 +    }
607 +
608 +    private void siftUpUsingComparator(int k, E x) {
609 +        while (k > 0) {
610 +            int parent = (k - 1) >>> 1;
611 +            Object e = queue[parent];
612 +            if (comparator.compare(x, (E) e) >= 0)
613 +                break;
614 +            queue[k] = e;
615 +            k = parent;
616 +        }
617 +        queue[k] = x;
618      }
619  
620      /**
621 <     * Establishes the heap invariant (described above) in the subtree
622 <     * rooted at k, which is assumed to satisfy the heap invariant except
623 <     * possibly for node k itself (which may be greater than its children).
624 <     *
625 <     * This method functions by "demoting" queue[k] down the hierarchy
626 <     * (by swapping it with its smaller child) repeatedly until queue[k]
627 <     * is less than or equal to its children.
628 <     */
629 <    private void fixDown(int k) {
630 <        int j;
631 <        if (comparator == null) {
632 <            while ((j = k << 1) <= size && j > 0) {
633 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
634 <                    j++; // j indexes smallest kid
635 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
636 <                    break;
637 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
638 <                k = j;
639 <            }
640 <        } else {
641 <            while ((j = k << 1) <= size && j > 0) {
642 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
643 <                    j++; // j indexes smallest kid
644 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
645 <                    break;
646 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
647 <                k = j;
648 <            }
621 >     * Inserts item x at position k, maintaining heap invariant by
622 >     * demoting x down the tree repeatedly until it is less than or
623 >     * equal to its children or is a leaf.
624 >     *
625 >     * @param k the position to fill
626 >     * @param x the item to insert
627 >     */
628 >    private void siftDown(int k, E x) {
629 >        if (comparator != null)
630 >            siftDownUsingComparator(k, x);
631 >        else
632 >            siftDownComparable(k, x);
633 >    }
634 >
635 >    private void siftDownComparable(int k, E x) {
636 >        Comparable<? super E> key = (Comparable<? super E>)x;
637 >        int half = size >>> 1;        // loop while a non-leaf
638 >        while (k < half) {
639 >            int child = (k << 1) + 1; // assume left child is least
640 >            Object c = queue[child];
641 >            int right = child + 1;
642 >            if (right < size &&
643 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
644 >                c = queue[child = right];
645 >            if (key.compareTo((E) c) <= 0)
646 >                break;
647 >            queue[k] = c;
648 >            k = child;
649 >        }
650 >        queue[k] = key;
651 >    }
652 >
653 >    private void siftDownUsingComparator(int k, E x) {
654 >        int half = size >>> 1;
655 >        while (k < half) {
656 >            int child = (k << 1) + 1;
657 >            Object c = queue[child];
658 >            int right = child + 1;
659 >            if (right < size &&
660 >                comparator.compare((E) c, (E) queue[right]) > 0)
661 >                c = queue[child = right];
662 >            if (comparator.compare(x, (E) c) <= 0)
663 >                break;
664 >            queue[k] = c;
665 >            k = child;
666          }
667 +        queue[k] = x;
668      }
669  
670 +    /**
671 +     * Establishes the heap invariant (described above) in the entire tree,
672 +     * assuming nothing about the order of the elements prior to the call.
673 +     */
674 +    private void heapify() {
675 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
676 +            siftDown(i, (E) queue[i]);
677 +    }
678  
679      /**
680 <     * Returns the comparator used to order this collection, or <tt>null</tt>
681 <     * if this collection is sorted according to its elements natural ordering
682 <     * (using <tt>Comparable</tt>).
680 >     * Returns the comparator used to order the elements in this
681 >     * queue, or {@code null} if this queue is sorted according to
682 >     * the {@linkplain Comparable natural ordering} of its elements.
683       *
684 <     * @return the comparator used to order this collection, or <tt>null</tt>
685 <     * if this collection is sorted according to its elements natural ordering.
684 >     * @return the comparator used to order this queue, or
685 >     *         {@code null} if this queue is sorted according to the
686 >     *         natural ordering of its elements
687       */
688      public Comparator<? super E> comparator() {
689          return comparator;
690      }
691  
692      /**
693 <     * Save the state of the instance to a stream (that
694 <     * is, serialize it).
693 >     * Saves the state of the instance to a stream (that
694 >     * is, serializes it).
695       *
696       * @serialData The length of the array backing the instance is
697 <     * emitted (int), followed by all of its elements (each an
698 <     * <tt>Object</tt>) in the proper order.
697 >     *             emitted (int), followed by all of its elements
698 >     *             (each an {@code Object}) in the proper order.
699       * @param s the stream
700       */
701      private void writeObject(java.io.ObjectOutputStream s)
# Line 564 | Line 703 | public class PriorityQueue<E> extends Ab
703          // Write out element count, and any hidden stuff
704          s.defaultWriteObject();
705  
706 <        // Write out array length
707 <        s.writeInt(queue.length);
706 >        // Write out array length, for compatibility with 1.5 version
707 >        s.writeInt(Math.max(2, size + 1));
708  
709 <        // Write out all elements in the proper order.
710 <        for (int i=0; i<size; i++)
709 >        // Write out all elements in the "proper order".
710 >        for (int i = 0; i < size; i++)
711              s.writeObject(queue[i]);
712      }
713  
714      /**
715 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
716 <     * deserialize it).
715 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
716 >     * (that is, deserializes it).
717 >     *
718       * @param s the stream
719       */
720      private void readObject(java.io.ObjectInputStream s)
# Line 582 | Line 722 | public class PriorityQueue<E> extends Ab
722          // Read in size, and any hidden stuff
723          s.defaultReadObject();
724  
725 <        // Read in array length and allocate array
726 <        int arrayLength = s.readInt();
587 <        queue = new Object[arrayLength];
725 >        // Read in (and discard) array length
726 >        s.readInt();
727  
728 <        // Read in all elements in the proper order.
729 <        for (int i=0; i<size; i++)
728 >        queue = new Object[size];
729 >
730 >        // Read in all elements.
731 >        for (int i = 0; i < size; i++)
732              queue[i] = s.readObject();
592    }
733  
734 +        // Elements are guaranteed to be in "proper order", but the
735 +        // spec has never explained what that might be.
736 +        heapify();
737 +    }
738   }
595

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines