ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.69 by jsr166, Sun May 18 23:59:57 2008 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24 > */
25  
26 < import java.util.*;
26 > package java.util;
27  
28   /**
29 < * An unbounded (resizable) priority queue based on a priority
30 < * heap.The take operation returns the least element with respect to
31 < * the given ordering. (If more than one element is tied for least
32 < * value, one of them is arbitrarily chosen to be returned -- no
33 < * guarantees are made for ordering across ties.) Ordering follows the
34 < * java.util.Collection conventions: Either the elements must be
35 < * Comparable, or a Comparator must be supplied. Comparison failures
36 < * throw ClassCastExceptions during insertions and extractions.
37 < **/
38 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
39 <    public PriorityQueue(int initialCapacity) {}
40 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71 > *
72 > * <p>This class is a member of the
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 > * Java Collections Framework</a>.
75 > *
76 > * @since 1.5
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79 > */
80 > public class PriorityQueue<E> extends AbstractQueue<E>
81 >    implements java.io.Serializable {
82  
83 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
83 >    private static final long serialVersionUID = -7720805057305804111L;
84  
85 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
85 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87 <    public boolean add(E x) {
88 <        return false;
87 >    /**
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94 >     */
95 >    private transient Object[] queue;
96 >
97 >    /**
98 >     * The number of elements in the priority queue.
99 >     */
100 >    private int size = 0;
101 >
102 >    /**
103 >     * The comparator, or null if priority queue uses elements'
104 >     * natural ordering.
105 >     */
106 >    private final Comparator<? super E> comparator;
107 >
108 >    /**
109 >     * The number of times this priority queue has been
110 >     * <i>structurally modified</i>.  See AbstractList for gory details.
111 >     */
112 >    private transient int modCount = 0;
113 >
114 >    /**
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118 >     */
119 >    public PriorityQueue() {
120 >        this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122 <    public boolean offer(E x) {
123 <        return false;
122 >
123 >    /**
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131 >     */
132 >    public PriorityQueue(int initialCapacity) {
133 >        this(initialCapacity, null);
134      }
135 <    public boolean remove(Object x) {
136 <        return false;
135 >
136 >    /**
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138 >     * that orders its elements according to the specified comparator.
139 >     *
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151 >        if (initialCapacity < 1)
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154 >        this.comparator = comparator;
155      }
156  
157 <    public E remove() {
158 <        return null;
157 >    /**
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164 >     *
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167 >     * @throws ClassCastException if elements of the specified collection
168 >     *         cannot be compared to one another according to the priority
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    public PriorityQueue(Collection<? extends E> c) {
174 >        initFromCollection(c);
175 >        if (c instanceof SortedSet)
176 >            comparator = (Comparator<? super E>)
177 >                ((SortedSet<? extends E>)c).comparator();
178 >        else if (c instanceof PriorityQueue)
179 >            comparator = (Comparator<? super E>)
180 >                ((PriorityQueue<? extends E>)c).comparator();
181 >        else {
182 >            comparator = null;
183 >            heapify();
184 >        }
185      }
186 <    public Iterator<E> iterator() {
187 <      return null;
186 >
187 >    /**
188 >     * Creates a {@code PriorityQueue} containing the elements in the
189 >     * specified priority queue.  This priority queue will be
190 >     * ordered according to the same ordering as the given priority
191 >     * queue.
192 >     *
193 >     * @param  c the priority queue whose elements are to be placed
194 >     *         into this priority queue
195 >     * @throws ClassCastException if elements of {@code c} cannot be
196 >     *         compared to one another according to {@code c}'s
197 >     *         ordering
198 >     * @throws NullPointerException if the specified priority queue or any
199 >     *         of its elements are null
200 >     */
201 >    public PriorityQueue(PriorityQueue<? extends E> c) {
202 >        comparator = (Comparator<? super E>)c.comparator();
203 >        initFromCollection(c);
204      }
205  
206 <    public E element() {
207 <        return null;
206 >    /**
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified sorted set.   This priority queue will be ordered
209 >     * according to the same ordering as the given sorted set.
210 >     *
211 >     * @param  c the sorted set whose elements are to be placed
212 >     *         into this priority queue
213 >     * @throws ClassCastException if elements of the specified sorted
214 >     *         set cannot be compared to one another according to the
215 >     *         sorted set's ordering
216 >     * @throws NullPointerException if the specified sorted set or any
217 >     *         of its elements are null
218 >     */
219 >    public PriorityQueue(SortedSet<? extends E> c) {
220 >        comparator = (Comparator<? super E>)c.comparator();
221 >        initFromCollection(c);
222      }
223 <    public E poll() {
224 <        return null;
223 >
224 >    /**
225 >     * Initializes queue array with elements from the given Collection.
226 >     *
227 >     * @param c the collection
228 >     */
229 >    private void initFromCollection(Collection<? extends E> c) {
230 >        Object[] a = c.toArray();
231 >        // If c.toArray incorrectly doesn't return Object[], copy it.
232 >        if (a.getClass() != Object[].class)
233 >            a = Arrays.copyOf(a, a.length, Object[].class);
234 >        queue = a;
235 >        size = a.length;
236      }
237 +
238 +    /**
239 +     * Increases the capacity of the array.
240 +     *
241 +     * @param minCapacity the desired minimum capacity
242 +     */
243 +    private void grow(int minCapacity) {
244 +        if (minCapacity < 0) // overflow
245 +            throw new OutOfMemoryError();
246 +        int oldCapacity = queue.length;
247 +        // Double size if small; else grow by 50%
248 +        int newCapacity = ((oldCapacity < 64)?
249 +                           ((oldCapacity + 1) * 2):
250 +                           ((oldCapacity / 2) * 3));
251 +        if (newCapacity < 0) // overflow
252 +            newCapacity = Integer.MAX_VALUE;
253 +        if (newCapacity < minCapacity)
254 +            newCapacity = minCapacity;
255 +        queue = Arrays.copyOf(queue, newCapacity);
256 +    }
257 +
258 +    /**
259 +     * Inserts the specified element into this priority queue.
260 +     *
261 +     * @return {@code true} (as specified by {@link Collection#add})
262 +     * @throws ClassCastException if the specified element cannot be
263 +     *         compared with elements currently in this priority queue
264 +     *         according to the priority queue's ordering
265 +     * @throws NullPointerException if the specified element is null
266 +     */
267 +    public boolean add(E e) {
268 +        return offer(e);
269 +    }
270 +
271 +    /**
272 +     * Inserts the specified element into this priority queue.
273 +     *
274 +     * @return {@code true} (as specified by {@link Queue#offer})
275 +     * @throws ClassCastException if the specified element cannot be
276 +     *         compared with elements currently in this priority queue
277 +     *         according to the priority queue's ordering
278 +     * @throws NullPointerException if the specified element is null
279 +     */
280 +    public boolean offer(E e) {
281 +        if (e == null)
282 +            throw new NullPointerException();
283 +        modCount++;
284 +        int i = size;
285 +        if (i >= queue.length)
286 +            grow(i + 1);
287 +        size = i + 1;
288 +        if (i == 0)
289 +            queue[0] = e;
290 +        else
291 +            siftUp(i, e);
292 +        return true;
293 +    }
294 +
295      public E peek() {
296 <        return null;
296 >        if (size == 0)
297 >            return null;
298 >        return (E) queue[0];
299      }
300  
301 <    public boolean isEmpty() {
301 >    private int indexOf(Object o) {
302 >        if (o != null) {
303 >            for (int i = 0; i < size; i++)
304 >                if (o.equals(queue[i]))
305 >                    return i;
306 >        }
307 >        return -1;
308 >    }
309 >
310 >    /**
311 >     * Removes a single instance of the specified element from this queue,
312 >     * if it is present.  More formally, removes an element {@code e} such
313 >     * that {@code o.equals(e)}, if this queue contains one or more such
314 >     * elements.  Returns {@code true} if and only if this queue contained
315 >     * the specified element (or equivalently, if this queue changed as a
316 >     * result of the call).
317 >     *
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if this queue changed as a result of the call
320 >     */
321 >    public boolean remove(Object o) {
322 >        int i = indexOf(o);
323 >        if (i == -1)
324 >            return false;
325 >        else {
326 >            removeAt(i);
327 >            return true;
328 >        }
329 >    }
330 >
331 >    /**
332 >     * Version of remove using reference equality, not equals.
333 >     * Needed by iterator.remove.
334 >     *
335 >     * @param o element to be removed from this queue, if present
336 >     * @return {@code true} if removed
337 >     */
338 >    boolean removeEq(Object o) {
339 >        for (int i = 0; i < size; i++) {
340 >            if (o == queue[i]) {
341 >                removeAt(i);
342 >                return true;
343 >            }
344 >        }
345          return false;
346      }
347 <    public int size() {
348 <        return 0;
347 >
348 >    /**
349 >     * Returns {@code true} if this queue contains the specified element.
350 >     * More formally, returns {@code true} if and only if this queue contains
351 >     * at least one element {@code e} such that {@code o.equals(e)}.
352 >     *
353 >     * @param o object to be checked for containment in this queue
354 >     * @return {@code true} if this queue contains the specified element
355 >     */
356 >    public boolean contains(Object o) {
357 >        return indexOf(o) != -1;
358      }
359 +
360 +    /**
361 +     * Returns an array containing all of the elements in this queue.
362 +     * The elements are in no particular order.
363 +     *
364 +     * <p>The returned array will be "safe" in that no references to it are
365 +     * maintained by this queue.  (In other words, this method must allocate
366 +     * a new array).  The caller is thus free to modify the returned array.
367 +     *
368 +     * <p>This method acts as bridge between array-based and collection-based
369 +     * APIs.
370 +     *
371 +     * @return an array containing all of the elements in this queue
372 +     */
373      public Object[] toArray() {
374 <        return null;
374 >        return Arrays.copyOf(queue, size);
375 >    }
376 >
377 >    /**
378 >     * Returns an array containing all of the elements in this queue; the
379 >     * runtime type of the returned array is that of the specified array.
380 >     * The returned array elements are in no particular order.
381 >     * If the queue fits in the specified array, it is returned therein.
382 >     * Otherwise, a new array is allocated with the runtime type of the
383 >     * specified array and the size of this queue.
384 >     *
385 >     * <p>If the queue fits in the specified array with room to spare
386 >     * (i.e., the array has more elements than the queue), the element in
387 >     * the array immediately following the end of the collection is set to
388 >     * {@code null}.
389 >     *
390 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
391 >     * array-based and collection-based APIs.  Further, this method allows
392 >     * precise control over the runtime type of the output array, and may,
393 >     * under certain circumstances, be used to save allocation costs.
394 >     *
395 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
396 >     * The following code can be used to dump the queue into a newly
397 >     * allocated array of <tt>String</tt>:
398 >     *
399 >     * <pre>
400 >     *     String[] y = x.toArray(new String[0]);</pre>
401 >     *
402 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
403 >     * <tt>toArray()</tt>.
404 >     *
405 >     * @param a the array into which the elements of the queue are to
406 >     *          be stored, if it is big enough; otherwise, a new array of the
407 >     *          same runtime type is allocated for this purpose.
408 >     * @return an array containing all of the elements in this queue
409 >     * @throws ArrayStoreException if the runtime type of the specified array
410 >     *         is not a supertype of the runtime type of every element in
411 >     *         this queue
412 >     * @throws NullPointerException if the specified array is null
413 >     */
414 >    public <T> T[] toArray(T[] a) {
415 >        if (a.length < size)
416 >            // Make a new array of a's runtime type, but my contents:
417 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
418 >        System.arraycopy(queue, 0, a, 0, size);
419 >        if (a.length > size)
420 >            a[size] = null;
421 >        return a;
422      }
423  
424 <    public <T> T[] toArray(T[] array) {
424 >    /**
425 >     * Returns an iterator over the elements in this queue. The iterator
426 >     * does not return the elements in any particular order.
427 >     *
428 >     * @return an iterator over the elements in this queue
429 >     */
430 >    public Iterator<E> iterator() {
431 >        return new Itr();
432 >    }
433 >
434 >    private final class Itr implements Iterator<E> {
435 >        /**
436 >         * Index (into queue array) of element to be returned by
437 >         * subsequent call to next.
438 >         */
439 >        private int cursor = 0;
440 >
441 >        /**
442 >         * Index of element returned by most recent call to next,
443 >         * unless that element came from the forgetMeNot list.
444 >         * Set to -1 if element is deleted by a call to remove.
445 >         */
446 >        private int lastRet = -1;
447 >
448 >        /**
449 >         * A queue of elements that were moved from the unvisited portion of
450 >         * the heap into the visited portion as a result of "unlucky" element
451 >         * removals during the iteration.  (Unlucky element removals are those
452 >         * that require a siftup instead of a siftdown.)  We must visit all of
453 >         * the elements in this list to complete the iteration.  We do this
454 >         * after we've completed the "normal" iteration.
455 >         *
456 >         * We expect that most iterations, even those involving removals,
457 >         * will not need to store elements in this field.
458 >         */
459 >        private ArrayDeque<E> forgetMeNot = null;
460 >
461 >        /**
462 >         * Element returned by the most recent call to next iff that
463 >         * element was drawn from the forgetMeNot list.
464 >         */
465 >        private E lastRetElt = null;
466 >
467 >        /**
468 >         * The modCount value that the iterator believes that the backing
469 >         * Queue should have.  If this expectation is violated, the iterator
470 >         * has detected concurrent modification.
471 >         */
472 >        private int expectedModCount = modCount;
473 >
474 >        public boolean hasNext() {
475 >            return cursor < size ||
476 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
477 >        }
478 >
479 >        public E next() {
480 >            if (expectedModCount != modCount)
481 >                throw new ConcurrentModificationException();
482 >            if (cursor < size)
483 >                return (E) queue[lastRet = cursor++];
484 >            if (forgetMeNot != null) {
485 >                lastRet = -1;
486 >                lastRetElt = forgetMeNot.poll();
487 >                if (lastRetElt != null)
488 >                    return lastRetElt;
489 >            }
490 >            throw new NoSuchElementException();
491 >        }
492 >
493 >        public void remove() {
494 >            if (expectedModCount != modCount)
495 >                throw new ConcurrentModificationException();
496 >            if (lastRet != -1) {
497 >                E moved = PriorityQueue.this.removeAt(lastRet);
498 >                lastRet = -1;
499 >                if (moved == null)
500 >                    cursor--;
501 >                else {
502 >                    if (forgetMeNot == null)
503 >                        forgetMeNot = new ArrayDeque<E>();
504 >                    forgetMeNot.add(moved);
505 >                }
506 >            } else if (lastRetElt != null) {
507 >                PriorityQueue.this.removeEq(lastRetElt);
508 >                lastRetElt = null;
509 >            } else {
510 >                throw new IllegalStateException();
511 >            }
512 >            expectedModCount = modCount;
513 >        }
514 >    }
515 >
516 >    public int size() {
517 >        return size;
518 >    }
519 >
520 >    /**
521 >     * Removes all of the elements from this priority queue.
522 >     * The queue will be empty after this call returns.
523 >     */
524 >    public void clear() {
525 >        modCount++;
526 >        for (int i = 0; i < size; i++)
527 >            queue[i] = null;
528 >        size = 0;
529 >    }
530 >
531 >    public E poll() {
532 >        if (size == 0)
533 >            return null;
534 >        int s = --size;
535 >        modCount++;
536 >        E result = (E) queue[0];
537 >        E x = (E) queue[s];
538 >        queue[s] = null;
539 >        if (s != 0)
540 >            siftDown(0, x);
541 >        return result;
542 >    }
543 >
544 >    /**
545 >     * Removes the ith element from queue.
546 >     *
547 >     * Normally this method leaves the elements at up to i-1,
548 >     * inclusive, untouched.  Under these circumstances, it returns
549 >     * null.  Occasionally, in order to maintain the heap invariant,
550 >     * it must swap a later element of the list with one earlier than
551 >     * i.  Under these circumstances, this method returns the element
552 >     * that was previously at the end of the list and is now at some
553 >     * position before i. This fact is used by iterator.remove so as to
554 >     * avoid missing traversing elements.
555 >     */
556 >    private E removeAt(int i) {
557 >        assert i >= 0 && i < size;
558 >        modCount++;
559 >        int s = --size;
560 >        if (s == i) // removed last element
561 >            queue[i] = null;
562 >        else {
563 >            E moved = (E) queue[s];
564 >            queue[s] = null;
565 >            siftDown(i, moved);
566 >            if (queue[i] == moved) {
567 >                siftUp(i, moved);
568 >                if (queue[i] != moved)
569 >                    return moved;
570 >            }
571 >        }
572          return null;
573      }
574  
575 +    /**
576 +     * Inserts item x at position k, maintaining heap invariant by
577 +     * promoting x up the tree until it is greater than or equal to
578 +     * its parent, or is the root.
579 +     *
580 +     * To simplify and speed up coercions and comparisons. the
581 +     * Comparable and Comparator versions are separated into different
582 +     * methods that are otherwise identical. (Similarly for siftDown.)
583 +     *
584 +     * @param k the position to fill
585 +     * @param x the item to insert
586 +     */
587 +    private void siftUp(int k, E x) {
588 +        if (comparator != null)
589 +            siftUpUsingComparator(k, x);
590 +        else
591 +            siftUpComparable(k, x);
592 +    }
593 +
594 +    private void siftUpComparable(int k, E x) {
595 +        Comparable<? super E> key = (Comparable<? super E>) x;
596 +        while (k > 0) {
597 +            int parent = (k - 1) >>> 1;
598 +            Object e = queue[parent];
599 +            if (key.compareTo((E) e) >= 0)
600 +                break;
601 +            queue[k] = e;
602 +            k = parent;
603 +        }
604 +        queue[k] = key;
605 +    }
606 +
607 +    private void siftUpUsingComparator(int k, E x) {
608 +        while (k > 0) {
609 +            int parent = (k - 1) >>> 1;
610 +            Object e = queue[parent];
611 +            if (comparator.compare(x, (E) e) >= 0)
612 +                break;
613 +            queue[k] = e;
614 +            k = parent;
615 +        }
616 +        queue[k] = x;
617 +    }
618 +
619 +    /**
620 +     * Inserts item x at position k, maintaining heap invariant by
621 +     * demoting x down the tree repeatedly until it is less than or
622 +     * equal to its children or is a leaf.
623 +     *
624 +     * @param k the position to fill
625 +     * @param x the item to insert
626 +     */
627 +    private void siftDown(int k, E x) {
628 +        if (comparator != null)
629 +            siftDownUsingComparator(k, x);
630 +        else
631 +            siftDownComparable(k, x);
632 +    }
633 +
634 +    private void siftDownComparable(int k, E x) {
635 +        Comparable<? super E> key = (Comparable<? super E>)x;
636 +        int half = size >>> 1;        // loop while a non-leaf
637 +        while (k < half) {
638 +            int child = (k << 1) + 1; // assume left child is least
639 +            Object c = queue[child];
640 +            int right = child + 1;
641 +            if (right < size &&
642 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
643 +                c = queue[child = right];
644 +            if (key.compareTo((E) c) <= 0)
645 +                break;
646 +            queue[k] = c;
647 +            k = child;
648 +        }
649 +        queue[k] = key;
650 +    }
651 +
652 +    private void siftDownUsingComparator(int k, E x) {
653 +        int half = size >>> 1;
654 +        while (k < half) {
655 +            int child = (k << 1) + 1;
656 +            Object c = queue[child];
657 +            int right = child + 1;
658 +            if (right < size &&
659 +                comparator.compare((E) c, (E) queue[right]) > 0)
660 +                c = queue[child = right];
661 +            if (comparator.compare(x, (E) c) <= 0)
662 +                break;
663 +            queue[k] = c;
664 +            k = child;
665 +        }
666 +        queue[k] = x;
667 +    }
668 +
669 +    /**
670 +     * Establishes the heap invariant (described above) in the entire tree,
671 +     * assuming nothing about the order of the elements prior to the call.
672 +     */
673 +    private void heapify() {
674 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
675 +            siftDown(i, (E) queue[i]);
676 +    }
677 +
678 +    /**
679 +     * Returns the comparator used to order the elements in this
680 +     * queue, or {@code null} if this queue is sorted according to
681 +     * the {@linkplain Comparable natural ordering} of its elements.
682 +     *
683 +     * @return the comparator used to order this queue, or
684 +     *         {@code null} if this queue is sorted according to the
685 +     *         natural ordering of its elements
686 +     */
687 +    public Comparator<? super E> comparator() {
688 +        return comparator;
689 +    }
690 +
691 +    /**
692 +     * Saves the state of the instance to a stream (that
693 +     * is, serializes it).
694 +     *
695 +     * @serialData The length of the array backing the instance is
696 +     *             emitted (int), followed by all of its elements
697 +     *             (each an {@code Object}) in the proper order.
698 +     * @param s the stream
699 +     */
700 +    private void writeObject(java.io.ObjectOutputStream s)
701 +        throws java.io.IOException{
702 +        // Write out element count, and any hidden stuff
703 +        s.defaultWriteObject();
704 +
705 +        // Write out array length, for compatibility with 1.5 version
706 +        s.writeInt(Math.max(2, size + 1));
707 +
708 +        // Write out all elements in the "proper order".
709 +        for (int i = 0; i < size; i++)
710 +            s.writeObject(queue[i]);
711 +    }
712 +
713 +    /**
714 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
715 +     * (that is, deserializes it).
716 +     *
717 +     * @param s the stream
718 +     */
719 +    private void readObject(java.io.ObjectInputStream s)
720 +        throws java.io.IOException, ClassNotFoundException {
721 +        // Read in size, and any hidden stuff
722 +        s.defaultReadObject();
723 +
724 +        // Read in (and discard) array length
725 +        s.readInt();
726 +
727 +        queue = new Object[size];
728 +
729 +        // Read in all elements.
730 +        for (int i = 0; i < size; i++)
731 +            queue[i] = s.readObject();
732 +
733 +        // Elements are guaranteed to be in "proper order", but the
734 +        // spec has never explained what that might be.
735 +        heapify();
736 +    }
737   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines