ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.23 by dholmes, Wed Aug 6 01:57:53 2003 UTC vs.
Revision 1.69 by jsr166, Sun May 18 23:59:57 2008 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24 > */
25 >
26 > package java.util;
27  
28   /**
29 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
30 < * This queue orders
31 < * elements according to an order specified at construction time, which is
32 < * specified in the same manner as {@link java.util.TreeSet} and
33 < * {@link java.util.TreeMap}: elements are ordered
34 < * either according to their <i>natural order</i> (see {@link Comparable}), or
35 < * according to a {@link java.util.Comparator}, depending on which
36 < * constructor is used.
37 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
38 < * respect to the specified ordering.
39 < * If multiple elements are tied for least value, the
40 < * head is one of those elements. A priority queue does not permit
41 < * <tt>null</tt> elements.
42 < *
43 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
44 < * return the head of the queue.
45 < *
46 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
47 < * not delete, the head of the queue.
48 < *
49 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
50 < * size of the array used internally to store the elements on the
51 < * queue.
52 < * It is always at least as large as the queue size.  As
53 < * elements are added to a priority queue, its capacity grows
54 < * automatically.  The details of the growth policy are not specified.
55 < *
56 < * <p>Implementation note: this implementation provides O(log(n)) time
57 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
58 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
59 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
60 < * constant time for the retrieval methods (<tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <    implements Queue<E>, java.io.Serializable {
81 >    implements java.io.Serializable {
82 >
83 >    private static final long serialVersionUID = -7720805057305804111L;
84  
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap and each descendant d
92 <     * of n, n <= d.
93 <     *
56 <     * The element with the lowest value is in queue[1], assuming the queue is
57 <     * nonempty.  (A one-based array is used in preference to the traditional
58 <     * zero-based array to simplify parent and child calculations.)
59 <     *
60 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95      private transient Object[] queue;
96  
# Line 79 | Line 112 | public class PriorityQueue<E> extends Ab
112      private transient int modCount = 0;
113  
114      /**
115 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
116 <     * (11) that orders its elements according to their natural
117 <     * ordering (using <tt>Comparable</tt>.)
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120          this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
125 <     * that orders its elements according to their natural ordering
126 <     * (using <tt>Comparable</tt>.)
127 <     *
128 <     * @param initialCapacity the initial capacity for this priority queue.
129 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
130 <     * than 1
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     * If <tt>null</tt> then the order depends on the elements' natural
143 <     * ordering.
144 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
145 <     * than 1
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146       */
147 <    public PriorityQueue(int initialCapacity,
147 >    public PriorityQueue(int initialCapacity,
148                           Comparator<? super E> comparator) {
149 +        // Note: This restriction of at least one is not actually needed,
150 +        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152              throw new IllegalArgumentException();
153 <        this.queue = new Object[initialCapacity + 1];
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Common code to initialize underlying queue array across
159 <     * constructors below.
160 <     */
161 <    private void initializeArray(Collection<? extends E> c) {
162 <        int sz = c.size();
163 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
129 <                                            Integer.MAX_VALUE - 1);
130 <        if (initialCapacity < 1)
131 <            initialCapacity = 1;
132 <
133 <        this.queue = new Object[initialCapacity + 1];
134 <    }
135 <
136 <    /**
137 <     * Initially fill elements of the queue array under the
138 <     * knowledge that it is sorted or is another PQ, in which
139 <     * case we can just place the elements without fixups.
140 <     */
141 <    private void fillFromSorted(Collection<? extends E> c) {
142 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
143 <            queue[++size] = i.next();
144 <    }
145 <
146 <
147 <    /**
148 <     * Initially fill elements of the queue array that is
149 <     * not to our knowledge sorted, so we must add them
150 <     * one by one.
151 <     */
152 <    private void fillFromUnsorted(Collection<? extends E> c) {
153 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 <            add(i.next());
155 <    }
156 <
157 <    /**
158 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
159 <     * specified collection.  The priority queue has an initial
160 <     * capacity of 110% of the size of the specified collection or 1
161 <     * if the collection is empty.  If the specified collection is an
162 <     * instance of a {@link SortedSet} or is another
163 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
164 <     * according to the same comparator, or according to its elements'
165 <     * natural order if the collection is sorted according to its
166 <     * elements' natural order.  Otherwise, the priority queue is
167 <     * ordered according to its elements' natural order.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164       *
165 <     * @param c the collection whose elements are to be placed
166 <     *        into this priority queue.
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167       * @throws ClassCastException if elements of the specified collection
168       *         cannot be compared to one another according to the priority
169 <     *         queue's ordering.
170 <     * @throws NullPointerException if <tt>c</tt> or any element within it
171 <     * is <tt>null</tt>
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172       */
173      public PriorityQueue(Collection<? extends E> c) {
174 <        initializeArray(c);
175 <        if (c instanceof SortedSet<? extends E>) {
176 <            SortedSet<? extends E> s = (SortedSet<? extends E>) c;
177 <            comparator = (Comparator<? super E>)s.comparator();
178 <            fillFromSorted(s);
179 <        }
180 <        else if (c instanceof PriorityQueue<? extends E>) {
185 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
186 <            comparator = (Comparator<? super E>)s.comparator();
187 <            fillFromSorted(s);
188 <        }
174 >        initFromCollection(c);
175 >        if (c instanceof SortedSet)
176 >            comparator = (Comparator<? super E>)
177 >                ((SortedSet<? extends E>)c).comparator();
178 >        else if (c instanceof PriorityQueue)
179 >            comparator = (Comparator<? super E>)
180 >                ((PriorityQueue<? extends E>)c).comparator();
181          else {
182              comparator = null;
183 <            fillFromUnsorted(c);
183 >            heapify();
184          }
185      }
186  
187      /**
188 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
189 <     * specified collection.  The priority queue has an initial
190 <     * capacity of 110% of the size of the specified collection or 1
191 <     * if the collection is empty.  This priority queue will be sorted
200 <     * according to the same comparator as the given collection, or
201 <     * according to its elements' natural order if the collection is
202 <     * sorted according to its elements' natural order.
188 >     * Creates a {@code PriorityQueue} containing the elements in the
189 >     * specified priority queue.  This priority queue will be
190 >     * ordered according to the same ordering as the given priority
191 >     * queue.
192       *
193 <     * @param c the collection whose elements are to be placed
194 <     *        into this priority queue.
195 <     * @throws ClassCastException if elements of the specified collection
196 <     *         cannot be compared to one another according to the priority
197 <     *         queue's ordering.
198 <     * @throws NullPointerException if <tt>c</tt> or any element within it
199 <     * is <tt>null</tt>
193 >     * @param  c the priority queue whose elements are to be placed
194 >     *         into this priority queue
195 >     * @throws ClassCastException if elements of {@code c} cannot be
196 >     *         compared to one another according to {@code c}'s
197 >     *         ordering
198 >     * @throws NullPointerException if the specified priority queue or any
199 >     *         of its elements are null
200       */
201      public PriorityQueue(PriorityQueue<? extends E> c) {
213        initializeArray(c);
202          comparator = (Comparator<? super E>)c.comparator();
203 <        fillFromSorted(c);
203 >        initFromCollection(c);
204      }
205  
206      /**
207 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
208 <     * specified collection.  The priority queue has an initial
209 <     * capacity of 110% of the size of the specified collection or 1
222 <     * if the collection is empty.  This priority queue will be sorted
223 <     * according to the same comparator as the given collection, or
224 <     * according to its elements' natural order if the collection is
225 <     * sorted according to its elements' natural order.
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified sorted set.   This priority queue will be ordered
209 >     * according to the same ordering as the given sorted set.
210       *
211 <     * @param c the collection whose elements are to be placed
212 <     *        into this priority queue.
213 <     * @throws ClassCastException if elements of the specified collection
214 <     *         cannot be compared to one another according to the priority
215 <     *         queue's ordering.
216 <     * @throws NullPointerException if <tt>c</tt> or any element within it
217 <     * is <tt>null</tt>
211 >     * @param  c the sorted set whose elements are to be placed
212 >     *         into this priority queue
213 >     * @throws ClassCastException if elements of the specified sorted
214 >     *         set cannot be compared to one another according to the
215 >     *         sorted set's ordering
216 >     * @throws NullPointerException if the specified sorted set or any
217 >     *         of its elements are null
218       */
219      public PriorityQueue(SortedSet<? extends E> c) {
236        initializeArray(c);
220          comparator = (Comparator<? super E>)c.comparator();
221 <        fillFromSorted(c);
221 >        initFromCollection(c);
222      }
223  
224      /**
225 <     * Resize array, if necessary, to be able to hold given index
225 >     * Initializes queue array with elements from the given Collection.
226 >     *
227 >     * @param c the collection
228       */
229 <    private void grow(int index) {
230 <        int newlen = queue.length;
231 <        if (index < newlen) // don't need to grow
232 <            return;
233 <        if (index == Integer.MAX_VALUE)
234 <            throw new OutOfMemoryError();
235 <        while (newlen <= index) {
251 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
252 <                newlen = Integer.MAX_VALUE;
253 <            else
254 <                newlen <<= 2;
255 <        }
256 <        Object[] newQueue = new Object[newlen];
257 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
258 <        queue = newQueue;
229 >    private void initFromCollection(Collection<? extends E> c) {
230 >        Object[] a = c.toArray();
231 >        // If c.toArray incorrectly doesn't return Object[], copy it.
232 >        if (a.getClass() != Object[].class)
233 >            a = Arrays.copyOf(a, a.length, Object[].class);
234 >        queue = a;
235 >        size = a.length;
236      }
260            
261    // Queue Methods
237  
238 +    /**
239 +     * Increases the capacity of the array.
240 +     *
241 +     * @param minCapacity the desired minimum capacity
242 +     */
243 +    private void grow(int minCapacity) {
244 +        if (minCapacity < 0) // overflow
245 +            throw new OutOfMemoryError();
246 +        int oldCapacity = queue.length;
247 +        // Double size if small; else grow by 50%
248 +        int newCapacity = ((oldCapacity < 64)?
249 +                           ((oldCapacity + 1) * 2):
250 +                           ((oldCapacity / 2) * 3));
251 +        if (newCapacity < 0) // overflow
252 +            newCapacity = Integer.MAX_VALUE;
253 +        if (newCapacity < minCapacity)
254 +            newCapacity = minCapacity;
255 +        queue = Arrays.copyOf(queue, newCapacity);
256 +    }
257  
258 +    /**
259 +     * Inserts the specified element into this priority queue.
260 +     *
261 +     * @return {@code true} (as specified by {@link Collection#add})
262 +     * @throws ClassCastException if the specified element cannot be
263 +     *         compared with elements currently in this priority queue
264 +     *         according to the priority queue's ordering
265 +     * @throws NullPointerException if the specified element is null
266 +     */
267 +    public boolean add(E e) {
268 +        return offer(e);
269 +    }
270  
271      /**
272 <     * Add the specified element to this priority queue.
272 >     * Inserts the specified element into this priority queue.
273       *
274 <     * @return <tt>true</tt>
275 <     * @throws ClassCastException if the specified element cannot be compared
276 <     * with elements currently in the priority queue according
277 <     * to the priority queue's ordering.
278 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
274 >     * @return {@code true} (as specified by {@link Queue#offer})
275 >     * @throws ClassCastException if the specified element cannot be
276 >     *         compared with elements currently in this priority queue
277 >     *         according to the priority queue's ordering
278 >     * @throws NullPointerException if the specified element is null
279       */
280 <    public boolean offer(E o) {
281 <        if (o == null)
280 >    public boolean offer(E e) {
281 >        if (e == null)
282              throw new NullPointerException();
283          modCount++;
284 <        ++size;
285 <
286 <        // Grow backing store if necessary
287 <        if (size >= queue.length)
288 <            grow(size);
289 <
290 <        queue[size] = o;
291 <        fixUp(size);
284 >        int i = size;
285 >        if (i >= queue.length)
286 >            grow(i + 1);
287 >        size = i + 1;
288 >        if (i == 0)
289 >            queue[0] = e;
290 >        else
291 >            siftUp(i, e);
292          return true;
293      }
294  
295 <    public E poll() {
295 >    public E peek() {
296          if (size == 0)
297              return null;
298 <        return (E) remove(1);
298 >        return (E) queue[0];
299      }
300  
301 <    public E peek() {
302 <        return (E) queue[1];
301 >    private int indexOf(Object o) {
302 >        if (o != null) {
303 >            for (int i = 0; i < size; i++)
304 >                if (o.equals(queue[i]))
305 >                    return i;
306 >        }
307 >        return -1;
308      }
309  
299    // Collection Methods - the first two override to update docs
300
310      /**
311 <     * Adds the specified element to this queue.
312 <     * @return <tt>true</tt> (as per the general contract of
313 <     * <tt>Collection.add</tt>).
311 >     * Removes a single instance of the specified element from this queue,
312 >     * if it is present.  More formally, removes an element {@code e} such
313 >     * that {@code o.equals(e)}, if this queue contains one or more such
314 >     * elements.  Returns {@code true} if and only if this queue contained
315 >     * the specified element (or equivalently, if this queue changed as a
316 >     * result of the call).
317       *
318 <     * @throws NullPointerException {@inheritDoc}
319 <     * @throws ClassCastException if the specified element cannot be compared
308 <     * with elements currently in the priority queue according
309 <     * to the priority queue's ordering.
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if this queue changed as a result of the call
320       */
321 <    public boolean add(E o) {
322 <        return super.add(o);
321 >    public boolean remove(Object o) {
322 >        int i = indexOf(o);
323 >        if (i == -1)
324 >            return false;
325 >        else {
326 >            removeAt(i);
327 >            return true;
328 >        }
329      }
330  
315  
331      /**
332 <     * Adds all of the elements in the specified collection to this queue.
333 <     * The behavior of this operation is undefined if
334 <     * the specified collection is modified while the operation is in
335 <     * progress.  (This implies that the behavior of this call is undefined if
336 <     * the specified collection is this queue, and this queue is nonempty.)
322 <     * <p>
323 <     * This implementation iterates over the specified collection, and adds
324 <     * each object returned by the iterator to this collection, in turn.
325 <     * @throws NullPointerException {@inheritDoc}
326 <     * @throws ClassCastException if any element cannot be compared
327 <     * with elements currently in the priority queue according
328 <     * to the priority queue's ordering.
332 >     * Version of remove using reference equality, not equals.
333 >     * Needed by iterator.remove.
334 >     *
335 >     * @param o element to be removed from this queue, if present
336 >     * @return {@code true} if removed
337       */
338 <    public boolean addAll(Collection<? extends E> c) {
339 <        return super.addAll(c);
338 >    boolean removeEq(Object o) {
339 >        for (int i = 0; i < size; i++) {
340 >            if (o == queue[i]) {
341 >                removeAt(i);
342 >                return true;
343 >            }
344 >        }
345 >        return false;
346      }
347  
348 +    /**
349 +     * Returns {@code true} if this queue contains the specified element.
350 +     * More formally, returns {@code true} if and only if this queue contains
351 +     * at least one element {@code e} such that {@code o.equals(e)}.
352 +     *
353 +     * @param o object to be checked for containment in this queue
354 +     * @return {@code true} if this queue contains the specified element
355 +     */
356 +    public boolean contains(Object o) {
357 +        return indexOf(o) != -1;
358 +    }
359  
360 < /**
361 <     * Removes a single instance of the specified element from this
362 <     * queue, if it is present.  More formally,
338 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
339 <     * o.equals(e))</tt>, if the queue contains one or more such
340 <     * elements.  Returns <tt>true</tt> if the queue contained the
341 <     * specified element (or equivalently, if the queue changed as a
342 <     * result of the call).
360 >    /**
361 >     * Returns an array containing all of the elements in this queue.
362 >     * The elements are in no particular order.
363       *
364 <     * <p>This implementation iterates over the queue looking for the
365 <     * specified element.  If it finds the element, it removes the element
366 <     * from the queue using the iterator's remove method.<p>
364 >     * <p>The returned array will be "safe" in that no references to it are
365 >     * maintained by this queue.  (In other words, this method must allocate
366 >     * a new array).  The caller is thus free to modify the returned array.
367       *
368 +     * <p>This method acts as bridge between array-based and collection-based
369 +     * APIs.
370 +     *
371 +     * @return an array containing all of the elements in this queue
372       */
373 <    public boolean remove(Object o) {
374 <        if (o == null)
375 <            return false;
373 >    public Object[] toArray() {
374 >        return Arrays.copyOf(queue, size);
375 >    }
376  
377 <        if (comparator == null) {
378 <            for (int i = 1; i <= size; i++) {
379 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
380 <                    remove(i);
381 <                    return true;
382 <                }
383 <            }
384 <        } else {
385 <            for (int i = 1; i <= size; i++) {
386 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
387 <                    remove(i);
388 <                    return true;
389 <                }
390 <            }
391 <        }
392 <        return false;
377 >    /**
378 >     * Returns an array containing all of the elements in this queue; the
379 >     * runtime type of the returned array is that of the specified array.
380 >     * The returned array elements are in no particular order.
381 >     * If the queue fits in the specified array, it is returned therein.
382 >     * Otherwise, a new array is allocated with the runtime type of the
383 >     * specified array and the size of this queue.
384 >     *
385 >     * <p>If the queue fits in the specified array with room to spare
386 >     * (i.e., the array has more elements than the queue), the element in
387 >     * the array immediately following the end of the collection is set to
388 >     * {@code null}.
389 >     *
390 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
391 >     * array-based and collection-based APIs.  Further, this method allows
392 >     * precise control over the runtime type of the output array, and may,
393 >     * under certain circumstances, be used to save allocation costs.
394 >     *
395 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
396 >     * The following code can be used to dump the queue into a newly
397 >     * allocated array of <tt>String</tt>:
398 >     *
399 >     * <pre>
400 >     *     String[] y = x.toArray(new String[0]);</pre>
401 >     *
402 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
403 >     * <tt>toArray()</tt>.
404 >     *
405 >     * @param a the array into which the elements of the queue are to
406 >     *          be stored, if it is big enough; otherwise, a new array of the
407 >     *          same runtime type is allocated for this purpose.
408 >     * @return an array containing all of the elements in this queue
409 >     * @throws ArrayStoreException if the runtime type of the specified array
410 >     *         is not a supertype of the runtime type of every element in
411 >     *         this queue
412 >     * @throws NullPointerException if the specified array is null
413 >     */
414 >    public <T> T[] toArray(T[] a) {
415 >        if (a.length < size)
416 >            // Make a new array of a's runtime type, but my contents:
417 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
418 >        System.arraycopy(queue, 0, a, 0, size);
419 >        if (a.length > size)
420 >            a[size] = null;
421 >        return a;
422      }
423  
424      /**
425       * Returns an iterator over the elements in this queue. The iterator
426       * does not return the elements in any particular order.
427       *
428 <     * @return an iterator over the elements in this queue.
428 >     * @return an iterator over the elements in this queue
429       */
430      public Iterator<E> iterator() {
431          return new Itr();
432      }
433  
434 <    private class Itr implements Iterator<E> {
434 >    private final class Itr implements Iterator<E> {
435          /**
436           * Index (into queue array) of element to be returned by
437           * subsequent call to next.
438           */
439 <        private int cursor = 1;
439 >        private int cursor = 0;
440 >
441 >        /**
442 >         * Index of element returned by most recent call to next,
443 >         * unless that element came from the forgetMeNot list.
444 >         * Set to -1 if element is deleted by a call to remove.
445 >         */
446 >        private int lastRet = -1;
447 >
448 >        /**
449 >         * A queue of elements that were moved from the unvisited portion of
450 >         * the heap into the visited portion as a result of "unlucky" element
451 >         * removals during the iteration.  (Unlucky element removals are those
452 >         * that require a siftup instead of a siftdown.)  We must visit all of
453 >         * the elements in this list to complete the iteration.  We do this
454 >         * after we've completed the "normal" iteration.
455 >         *
456 >         * We expect that most iterations, even those involving removals,
457 >         * will not need to store elements in this field.
458 >         */
459 >        private ArrayDeque<E> forgetMeNot = null;
460  
461          /**
462 <         * Index of element returned by most recent call to next or
463 <         * previous.  Reset to 0 if this element is deleted by a call
391 <         * to remove.
462 >         * Element returned by the most recent call to next iff that
463 >         * element was drawn from the forgetMeNot list.
464           */
465 <        private int lastRet = 0;
465 >        private E lastRetElt = null;
466  
467          /**
468           * The modCount value that the iterator believes that the backing
469 <         * List should have.  If this expectation is violated, the iterator
469 >         * Queue should have.  If this expectation is violated, the iterator
470           * has detected concurrent modification.
471           */
472          private int expectedModCount = modCount;
473  
474          public boolean hasNext() {
475 <            return cursor <= size;
475 >            return cursor < size ||
476 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
477          }
478  
479          public E next() {
480 <            checkForComodification();
481 <            if (cursor > size)
482 <                throw new NoSuchElementException();
483 <            E result = (E) queue[cursor];
484 <            lastRet = cursor++;
485 <            return result;
480 >            if (expectedModCount != modCount)
481 >                throw new ConcurrentModificationException();
482 >            if (cursor < size)
483 >                return (E) queue[lastRet = cursor++];
484 >            if (forgetMeNot != null) {
485 >                lastRet = -1;
486 >                lastRetElt = forgetMeNot.poll();
487 >                if (lastRetElt != null)
488 >                    return lastRetElt;
489 >            }
490 >            throw new NoSuchElementException();
491          }
492  
493          public void remove() {
494 <            if (lastRet == 0)
494 >            if (expectedModCount != modCount)
495 >                throw new ConcurrentModificationException();
496 >            if (lastRet != -1) {
497 >                E moved = PriorityQueue.this.removeAt(lastRet);
498 >                lastRet = -1;
499 >                if (moved == null)
500 >                    cursor--;
501 >                else {
502 >                    if (forgetMeNot == null)
503 >                        forgetMeNot = new ArrayDeque<E>();
504 >                    forgetMeNot.add(moved);
505 >                }
506 >            } else if (lastRetElt != null) {
507 >                PriorityQueue.this.removeEq(lastRetElt);
508 >                lastRetElt = null;
509 >            } else {
510                  throw new IllegalStateException();
511 <            checkForComodification();
419 <
420 <            PriorityQueue.this.remove(lastRet);
421 <            if (lastRet < cursor)
422 <                cursor--;
423 <            lastRet = 0;
511 >            }
512              expectedModCount = modCount;
513          }
426
427        final void checkForComodification() {
428            if (modCount != expectedModCount)
429                throw new ConcurrentModificationException();
430        }
514      }
515  
516      public int size() {
# Line 435 | Line 518 | public class PriorityQueue<E> extends Ab
518      }
519  
520      /**
521 <     * Remove all elements from the priority queue.
521 >     * Removes all of the elements from this priority queue.
522 >     * The queue will be empty after this call returns.
523       */
524      public void clear() {
525          modCount++;
526 <
443 <        // Null out element references to prevent memory leak
444 <        for (int i=1; i<=size; i++)
526 >        for (int i = 0; i < size; i++)
527              queue[i] = null;
446
528          size = 0;
529      }
530  
531 +    public E poll() {
532 +        if (size == 0)
533 +            return null;
534 +        int s = --size;
535 +        modCount++;
536 +        E result = (E) queue[0];
537 +        E x = (E) queue[s];
538 +        queue[s] = null;
539 +        if (s != 0)
540 +            siftDown(0, x);
541 +        return result;
542 +    }
543 +
544      /**
545 <     * Removes and returns the ith element from queue.  Recall
452 <     * that queue is one-based, so 1 <= i <= size.
545 >     * Removes the ith element from queue.
546       *
547 <     * XXX: Could further special-case i==size, but is it worth it?
548 <     * XXX: Could special-case i==0, but is it worth it?
547 >     * Normally this method leaves the elements at up to i-1,
548 >     * inclusive, untouched.  Under these circumstances, it returns
549 >     * null.  Occasionally, in order to maintain the heap invariant,
550 >     * it must swap a later element of the list with one earlier than
551 >     * i.  Under these circumstances, this method returns the element
552 >     * that was previously at the end of the list and is now at some
553 >     * position before i. This fact is used by iterator.remove so as to
554 >     * avoid missing traversing elements.
555       */
556 <    private E remove(int i) {
557 <        assert i <= size;
556 >    private E removeAt(int i) {
557 >        assert i >= 0 && i < size;
558          modCount++;
559 <
560 <        E result = (E) queue[i];
561 <        queue[i] = queue[size];
562 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
563 <        if (i <= size)
564 <            fixDown(i);
565 <        return result;
559 >        int s = --size;
560 >        if (s == i) // removed last element
561 >            queue[i] = null;
562 >        else {
563 >            E moved = (E) queue[s];
564 >            queue[s] = null;
565 >            siftDown(i, moved);
566 >            if (queue[i] == moved) {
567 >                siftUp(i, moved);
568 >                if (queue[i] != moved)
569 >                    return moved;
570 >            }
571 >        }
572 >        return null;
573      }
574  
575      /**
576 <     * Establishes the heap invariant (described above) assuming the heap
577 <     * satisfies the invariant except possibly for the leaf-node indexed by k
578 <     * (which may have a nextExecutionTime less than its parent's).
579 <     *
580 <     * This method functions by "promoting" queue[k] up the hierarchy
581 <     * (by swapping it with its parent) repeatedly until queue[k]
582 <     * is greater than or equal to its parent.
583 <     */
584 <    private void fixUp(int k) {
585 <        if (comparator == null) {
586 <            while (k > 1) {
587 <                int j = k >> 1;
588 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
589 <                    break;
590 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
591 <                k = j;
592 <            }
593 <        } else {
594 <            while (k > 1) {
595 <                int j = k >> 1;
596 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
597 <                    break;
598 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
599 <                k = j;
600 <            }
576 >     * Inserts item x at position k, maintaining heap invariant by
577 >     * promoting x up the tree until it is greater than or equal to
578 >     * its parent, or is the root.
579 >     *
580 >     * To simplify and speed up coercions and comparisons. the
581 >     * Comparable and Comparator versions are separated into different
582 >     * methods that are otherwise identical. (Similarly for siftDown.)
583 >     *
584 >     * @param k the position to fill
585 >     * @param x the item to insert
586 >     */
587 >    private void siftUp(int k, E x) {
588 >        if (comparator != null)
589 >            siftUpUsingComparator(k, x);
590 >        else
591 >            siftUpComparable(k, x);
592 >    }
593 >
594 >    private void siftUpComparable(int k, E x) {
595 >        Comparable<? super E> key = (Comparable<? super E>) x;
596 >        while (k > 0) {
597 >            int parent = (k - 1) >>> 1;
598 >            Object e = queue[parent];
599 >            if (key.compareTo((E) e) >= 0)
600 >                break;
601 >            queue[k] = e;
602 >            k = parent;
603 >        }
604 >        queue[k] = key;
605 >    }
606 >
607 >    private void siftUpUsingComparator(int k, E x) {
608 >        while (k > 0) {
609 >            int parent = (k - 1) >>> 1;
610 >            Object e = queue[parent];
611 >            if (comparator.compare(x, (E) e) >= 0)
612 >                break;
613 >            queue[k] = e;
614 >            k = parent;
615          }
616 +        queue[k] = x;
617      }
618  
619      /**
620 <     * Establishes the heap invariant (described above) in the subtree
621 <     * rooted at k, which is assumed to satisfy the heap invariant except
622 <     * possibly for node k itself (which may be greater than its children).
623 <     *
624 <     * This method functions by "demoting" queue[k] down the hierarchy
625 <     * (by swapping it with its smaller child) repeatedly until queue[k]
626 <     * is less than or equal to its children.
627 <     */
628 <    private void fixDown(int k) {
629 <        int j;
630 <        if (comparator == null) {
631 <            while ((j = k << 1) <= size) {
632 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
633 <                    j++; // j indexes smallest kid
634 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
635 <                    break;
636 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
637 <                k = j;
638 <            }
639 <        } else {
640 <            while ((j = k << 1) <= size) {
641 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
642 <                    j++; // j indexes smallest kid
643 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
644 <                    break;
645 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
620 >     * Inserts item x at position k, maintaining heap invariant by
621 >     * demoting x down the tree repeatedly until it is less than or
622 >     * equal to its children or is a leaf.
623 >     *
624 >     * @param k the position to fill
625 >     * @param x the item to insert
626 >     */
627 >    private void siftDown(int k, E x) {
628 >        if (comparator != null)
629 >            siftDownUsingComparator(k, x);
630 >        else
631 >            siftDownComparable(k, x);
632 >    }
633 >
634 >    private void siftDownComparable(int k, E x) {
635 >        Comparable<? super E> key = (Comparable<? super E>)x;
636 >        int half = size >>> 1;        // loop while a non-leaf
637 >        while (k < half) {
638 >            int child = (k << 1) + 1; // assume left child is least
639 >            Object c = queue[child];
640 >            int right = child + 1;
641 >            if (right < size &&
642 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
643 >                c = queue[child = right];
644 >            if (key.compareTo((E) c) <= 0)
645 >                break;
646 >            queue[k] = c;
647 >            k = child;
648          }
649 +        queue[k] = key;
650      }
651  
652 +    private void siftDownUsingComparator(int k, E x) {
653 +        int half = size >>> 1;
654 +        while (k < half) {
655 +            int child = (k << 1) + 1;
656 +            Object c = queue[child];
657 +            int right = child + 1;
658 +            if (right < size &&
659 +                comparator.compare((E) c, (E) queue[right]) > 0)
660 +                c = queue[child = right];
661 +            if (comparator.compare(x, (E) c) <= 0)
662 +                break;
663 +            queue[k] = c;
664 +            k = child;
665 +        }
666 +        queue[k] = x;
667 +    }
668  
669      /**
670 <     * Returns the comparator used to order this collection, or <tt>null</tt>
671 <     * if this collection is sorted according to its elements natural ordering
672 <     * (using <tt>Comparable</tt>.)
670 >     * Establishes the heap invariant (described above) in the entire tree,
671 >     * assuming nothing about the order of the elements prior to the call.
672 >     */
673 >    private void heapify() {
674 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
675 >            siftDown(i, (E) queue[i]);
676 >    }
677 >
678 >    /**
679 >     * Returns the comparator used to order the elements in this
680 >     * queue, or {@code null} if this queue is sorted according to
681 >     * the {@linkplain Comparable natural ordering} of its elements.
682       *
683 <     * @return the comparator used to order this collection, or <tt>null</tt>
684 <     * if this collection is sorted according to its elements natural ordering.
683 >     * @return the comparator used to order this queue, or
684 >     *         {@code null} if this queue is sorted according to the
685 >     *         natural ordering of its elements
686       */
687      public Comparator<? super E> comparator() {
688          return comparator;
689      }
690  
691      /**
692 <     * Save the state of the instance to a stream (that
693 <     * is, serialize it).
692 >     * Saves the state of the instance to a stream (that
693 >     * is, serializes it).
694       *
695       * @serialData The length of the array backing the instance is
696 <     * emitted (int), followed by all of its elements (each an
697 <     * <tt>Object</tt>) in the proper order.
696 >     *             emitted (int), followed by all of its elements
697 >     *             (each an {@code Object}) in the proper order.
698       * @param s the stream
699       */
700      private void writeObject(java.io.ObjectOutputStream s)
# Line 554 | Line 702 | public class PriorityQueue<E> extends Ab
702          // Write out element count, and any hidden stuff
703          s.defaultWriteObject();
704  
705 <        // Write out array length
706 <        s.writeInt(queue.length);
705 >        // Write out array length, for compatibility with 1.5 version
706 >        s.writeInt(Math.max(2, size + 1));
707  
708 <        // Write out all elements in the proper order.
709 <        for (int i=0; i<size; i++)
708 >        // Write out all elements in the "proper order".
709 >        for (int i = 0; i < size; i++)
710              s.writeObject(queue[i]);
711      }
712  
713      /**
714 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
715 <     * deserialize it).
714 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
715 >     * (that is, deserializes it).
716 >     *
717       * @param s the stream
718       */
719      private void readObject(java.io.ObjectInputStream s)
# Line 572 | Line 721 | public class PriorityQueue<E> extends Ab
721          // Read in size, and any hidden stuff
722          s.defaultReadObject();
723  
724 <        // Read in array length and allocate array
725 <        int arrayLength = s.readInt();
577 <        queue = new Object[arrayLength];
724 >        // Read in (and discard) array length
725 >        s.readInt();
726  
727 <        // Read in all elements in the proper order.
728 <        for (int i=0; i<size; i++)
727 >        queue = new Object[size];
728 >
729 >        // Read in all elements.
730 >        for (int i = 0; i < size; i++)
731              queue[i] = s.readObject();
582    }
732  
733 +        // Elements are guaranteed to be in "proper order", but the
734 +        // spec has never explained what that might be.
735 +        heapify();
736 +    }
737   }
585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines