ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.4 by tim, Mon May 19 02:45:07 2003 UTC vs.
Revision 1.69 by jsr166, Sun May 18 23:59:57 2008 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16   *
17 < *   1) Make it serializable.
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26 + package java.util;
27 +
28   /**
29 < * An unbounded priority queue based on a priority heap.  This queue orders
30 < * elements according to the order specified at creation time.  This order is
31 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
32 < * either according to their <i>natural order</i> (see {@link Comparable}), or
33 < * according to a {@link Comparator}, depending on which constructor is used.
34 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
35 < * minimal element with respect to the specified ordering.  If multiple
36 < * these elements are tied for least value, no guarantees are made as to
37 < * which of elements is returned.
38 < *
39 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
40 < * the array used to store the elements on the queue.  It is always at least
41 < * as large as the queue size.  As elements are added to a priority list,
42 < * its capacity grows automatically.  The details of the growth policy are not
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50   * specified.
51   *
52 < *<p>Implementation note: this implementation provides O(log(n)) time for
53 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
54 < * methods; linear time for the <tt>remove(Object)</tt> and
55 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
56 < * <tt>element</tt>, and <tt>size</tt> methods.
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76 + * @since 1.5
77 + * @author Josh Bloch, Doug Lea
78 + * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <                              implements Queue<E>
82 < {
81 >    implements java.io.Serializable {
82 >
83 >    private static final long serialVersionUID = -7720805057305804111L;
84 >
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap, and each descendant
92 <     * of n, d, n <= d.
93 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95 <    private E[] queue;
95 >    private transient Object[] queue;
96  
97      /**
98       * The number of elements in the priority queue.
# Line 62 | Line 103 | public class PriorityQueue<E> extends Ab
103       * The comparator, or null if priority queue uses elements'
104       * natural ordering.
105       */
106 <    private final Comparator<E> comparator;
106 >    private final Comparator<? super E> comparator;
107  
108      /**
109       * The number of times this priority queue has been
110       * <i>structurally modified</i>.  See AbstractList for gory details.
111       */
112 <    private int modCount = 0;
112 >    private transient int modCount = 0;
113  
114      /**
115 <     * Create a new priority queue with the default initial capacity (11)
116 <     * that orders its elements according to their natural ordering.
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120 <        this(DEFAULT_INITIAL_CAPACITY);
120 >        this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Create a new priority queue with the specified initial capacity
125 <     * that orders its elements according to their natural ordering.
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127       *
128 <     * @param initialCapacity the initial capacity for this priority queue.
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Create a new priority queue with the specified initial capacity (11)
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     */
143 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <        queue = new E[initialCapacity + 1];
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Create a new priority queue containing the elements in the specified
159 <     * collection.  The priority queue has an initial capacity of 110% of the
160 <     * size of the specified collection. If the specified collection
161 <     * implements the {@link Sorted} interface, the priority queue will be
162 <     * sorted according to the same comparator, or according to its elements'
163 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164       *
165 <     * @param initialElements the collection whose elements are to be placed
166 <     *        into this priority queue.
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167       * @throws ClassCastException if elements of the specified collection
168       *         cannot be compared to one another according to the priority
169 <     *         queue's ordering.
170 <     * @throws NullPointerException if the specified collection or an
171 <     *         element of the specified collection is <tt>null</tt>.
172 <     */
173 <    public PriorityQueue(Collection<E> initialElements) {
174 <        int sz = initialElements.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <        queue = new E[initialCapacity + 1];
180 <
181 <        if (initialElements instanceof Sorted) {
133 <            comparator = ((Sorted)initialElements).comparator();
134 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135 <                queue[++size] = i.next();
136 <        } else {
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    public PriorityQueue(Collection<? extends E> c) {
174 >        initFromCollection(c);
175 >        if (c instanceof SortedSet)
176 >            comparator = (Comparator<? super E>)
177 >                ((SortedSet<? extends E>)c).comparator();
178 >        else if (c instanceof PriorityQueue)
179 >            comparator = (Comparator<? super E>)
180 >                ((PriorityQueue<? extends E>)c).comparator();
181 >        else {
182              comparator = null;
183 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 <                add(i.next());
183 >            heapify();
184          }
185      }
186  
187 <    // Queue Methods
187 >    /**
188 >     * Creates a {@code PriorityQueue} containing the elements in the
189 >     * specified priority queue.  This priority queue will be
190 >     * ordered according to the same ordering as the given priority
191 >     * queue.
192 >     *
193 >     * @param  c the priority queue whose elements are to be placed
194 >     *         into this priority queue
195 >     * @throws ClassCastException if elements of {@code c} cannot be
196 >     *         compared to one another according to {@code c}'s
197 >     *         ordering
198 >     * @throws NullPointerException if the specified priority queue or any
199 >     *         of its elements are null
200 >     */
201 >    public PriorityQueue(PriorityQueue<? extends E> c) {
202 >        comparator = (Comparator<? super E>)c.comparator();
203 >        initFromCollection(c);
204 >    }
205 >
206 >    /**
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified sorted set.   This priority queue will be ordered
209 >     * according to the same ordering as the given sorted set.
210 >     *
211 >     * @param  c the sorted set whose elements are to be placed
212 >     *         into this priority queue
213 >     * @throws ClassCastException if elements of the specified sorted
214 >     *         set cannot be compared to one another according to the
215 >     *         sorted set's ordering
216 >     * @throws NullPointerException if the specified sorted set or any
217 >     *         of its elements are null
218 >     */
219 >    public PriorityQueue(SortedSet<? extends E> c) {
220 >        comparator = (Comparator<? super E>)c.comparator();
221 >        initFromCollection(c);
222 >    }
223  
224      /**
225 <     * Remove and return the minimal element from this priority queue if
147 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
148 <     * <i>minimal</i> is defined according to this priority queue's order.
225 >     * Initializes queue array with elements from the given Collection.
226       *
227 <     * @return the minimal element from this priority queue if it contains
151 <     *         one or more elements, otherwise <tt>null</tt>.
227 >     * @param c the collection
228       */
229 <    public E poll() {
230 <        if (size == 0)
231 <            return null;
232 <        return remove(1);
229 >    private void initFromCollection(Collection<? extends E> c) {
230 >        Object[] a = c.toArray();
231 >        // If c.toArray incorrectly doesn't return Object[], copy it.
232 >        if (a.getClass() != Object[].class)
233 >            a = Arrays.copyOf(a, a.length, Object[].class);
234 >        queue = a;
235 >        size = a.length;
236 >    }
237 >
238 >    /**
239 >     * Increases the capacity of the array.
240 >     *
241 >     * @param minCapacity the desired minimum capacity
242 >     */
243 >    private void grow(int minCapacity) {
244 >        if (minCapacity < 0) // overflow
245 >            throw new OutOfMemoryError();
246 >        int oldCapacity = queue.length;
247 >        // Double size if small; else grow by 50%
248 >        int newCapacity = ((oldCapacity < 64)?
249 >                           ((oldCapacity + 1) * 2):
250 >                           ((oldCapacity / 2) * 3));
251 >        if (newCapacity < 0) // overflow
252 >            newCapacity = Integer.MAX_VALUE;
253 >        if (newCapacity < minCapacity)
254 >            newCapacity = minCapacity;
255 >        queue = Arrays.copyOf(queue, newCapacity);
256 >    }
257 >
258 >    /**
259 >     * Inserts the specified element into this priority queue.
260 >     *
261 >     * @return {@code true} (as specified by {@link Collection#add})
262 >     * @throws ClassCastException if the specified element cannot be
263 >     *         compared with elements currently in this priority queue
264 >     *         according to the priority queue's ordering
265 >     * @throws NullPointerException if the specified element is null
266 >     */
267 >    public boolean add(E e) {
268 >        return offer(e);
269      }
270  
271      /**
272 <     * Return, but do not remove, the minimal element from the priority queue,
161 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
162 <     * defined according to this priority queue's order.  This method returns
163 <     * the same object reference that would be returned by by the
164 <     * <tt>poll</tt> method.  The two methods differ in that this method
165 <     * does not remove the element from the priority queue.
272 >     * Inserts the specified element into this priority queue.
273       *
274 <     * @return the minimal element from this priority queue if it contains
275 <     *         one or more elements, otherwise <tt>null</tt>.
274 >     * @return {@code true} (as specified by {@link Queue#offer})
275 >     * @throws ClassCastException if the specified element cannot be
276 >     *         compared with elements currently in this priority queue
277 >     *         according to the priority queue's ordering
278 >     * @throws NullPointerException if the specified element is null
279       */
280 +    public boolean offer(E e) {
281 +        if (e == null)
282 +            throw new NullPointerException();
283 +        modCount++;
284 +        int i = size;
285 +        if (i >= queue.length)
286 +            grow(i + 1);
287 +        size = i + 1;
288 +        if (i == 0)
289 +            queue[0] = e;
290 +        else
291 +            siftUp(i, e);
292 +        return true;
293 +    }
294 +
295      public E peek() {
296 <        return queue[1];
296 >        if (size == 0)
297 >            return null;
298 >        return (E) queue[0];
299      }
300  
301 <    // Collection Methods
301 >    private int indexOf(Object o) {
302 >        if (o != null) {
303 >            for (int i = 0; i < size; i++)
304 >                if (o.equals(queue[i]))
305 >                    return i;
306 >        }
307 >        return -1;
308 >    }
309  
310      /**
311 <     * Removes a single instance of the specified element from this priority
312 <     * queue, if it is present.  Returns true if this collection contained the
313 <     * specified element (or equivalently, if this collection changed as a
311 >     * Removes a single instance of the specified element from this queue,
312 >     * if it is present.  More formally, removes an element {@code e} such
313 >     * that {@code o.equals(e)}, if this queue contains one or more such
314 >     * elements.  Returns {@code true} if and only if this queue contained
315 >     * the specified element (or equivalently, if this queue changed as a
316       * result of the call).
317       *
318 <     * @param o element to be removed from this collection, if present.
319 <     * @return <tt>true</tt> if this collection changed as a result of the
184 <     *         call
185 <     * @throws ClassCastException if the specified element cannot be compared
186 <     *            with elements currently in the priority queue according
187 <     *            to the priority queue's ordering.
188 <     * @throws NullPointerException if the specified element is null.
318 >     * @param o element to be removed from this queue, if present
319 >     * @return {@code true} if this queue changed as a result of the call
320       */
321 <    public boolean remove(Object element) {
322 <        if (element == null)
323 <            throw new NullPointerException();
321 >    public boolean remove(Object o) {
322 >        int i = indexOf(o);
323 >        if (i == -1)
324 >            return false;
325 >        else {
326 >            removeAt(i);
327 >            return true;
328 >        }
329 >    }
330  
331 <        if (comparator == null) {
332 <            for (int i = 1; i <= size; i++) {
333 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
334 <                    remove(i);
335 <                    return true;
336 <                }
337 <            }
338 <        } else {
339 <            for (int i = 1; i <= size; i++) {
340 <                if (comparator.compare(queue[i], (E) element) == 0) {
341 <                    remove(i);
342 <                    return true;
206 <                }
331 >    /**
332 >     * Version of remove using reference equality, not equals.
333 >     * Needed by iterator.remove.
334 >     *
335 >     * @param o element to be removed from this queue, if present
336 >     * @return {@code true} if removed
337 >     */
338 >    boolean removeEq(Object o) {
339 >        for (int i = 0; i < size; i++) {
340 >            if (o == queue[i]) {
341 >                removeAt(i);
342 >                return true;
343              }
344          }
345          return false;
346      }
347  
348      /**
349 <     * Returns an iterator over the elements in this priority queue.  The
350 <     * first element returned by this iterator is the same element that
351 <     * would be returned by a call to <tt>peek</tt>.
349 >     * Returns {@code true} if this queue contains the specified element.
350 >     * More formally, returns {@code true} if and only if this queue contains
351 >     * at least one element {@code e} such that {@code o.equals(e)}.
352 >     *
353 >     * @param o object to be checked for containment in this queue
354 >     * @return {@code true} if this queue contains the specified element
355 >     */
356 >    public boolean contains(Object o) {
357 >        return indexOf(o) != -1;
358 >    }
359 >
360 >    /**
361 >     * Returns an array containing all of the elements in this queue.
362 >     * The elements are in no particular order.
363 >     *
364 >     * <p>The returned array will be "safe" in that no references to it are
365 >     * maintained by this queue.  (In other words, this method must allocate
366 >     * a new array).  The caller is thus free to modify the returned array.
367 >     *
368 >     * <p>This method acts as bridge between array-based and collection-based
369 >     * APIs.
370 >     *
371 >     * @return an array containing all of the elements in this queue
372 >     */
373 >    public Object[] toArray() {
374 >        return Arrays.copyOf(queue, size);
375 >    }
376 >
377 >    /**
378 >     * Returns an array containing all of the elements in this queue; the
379 >     * runtime type of the returned array is that of the specified array.
380 >     * The returned array elements are in no particular order.
381 >     * If the queue fits in the specified array, it is returned therein.
382 >     * Otherwise, a new array is allocated with the runtime type of the
383 >     * specified array and the size of this queue.
384 >     *
385 >     * <p>If the queue fits in the specified array with room to spare
386 >     * (i.e., the array has more elements than the queue), the element in
387 >     * the array immediately following the end of the collection is set to
388 >     * {@code null}.
389 >     *
390 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
391 >     * array-based and collection-based APIs.  Further, this method allows
392 >     * precise control over the runtime type of the output array, and may,
393 >     * under certain circumstances, be used to save allocation costs.
394 >     *
395 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
396 >     * The following code can be used to dump the queue into a newly
397 >     * allocated array of <tt>String</tt>:
398 >     *
399 >     * <pre>
400 >     *     String[] y = x.toArray(new String[0]);</pre>
401 >     *
402 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
403 >     * <tt>toArray()</tt>.
404 >     *
405 >     * @param a the array into which the elements of the queue are to
406 >     *          be stored, if it is big enough; otherwise, a new array of the
407 >     *          same runtime type is allocated for this purpose.
408 >     * @return an array containing all of the elements in this queue
409 >     * @throws ArrayStoreException if the runtime type of the specified array
410 >     *         is not a supertype of the runtime type of every element in
411 >     *         this queue
412 >     * @throws NullPointerException if the specified array is null
413 >     */
414 >    public <T> T[] toArray(T[] a) {
415 >        if (a.length < size)
416 >            // Make a new array of a's runtime type, but my contents:
417 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
418 >        System.arraycopy(queue, 0, a, 0, size);
419 >        if (a.length > size)
420 >            a[size] = null;
421 >        return a;
422 >    }
423 >
424 >    /**
425 >     * Returns an iterator over the elements in this queue. The iterator
426 >     * does not return the elements in any particular order.
427       *
428 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
428 >     * @return an iterator over the elements in this queue
429       */
430      public Iterator<E> iterator() {
431          return new Itr();
432      }
433  
434 <    private class Itr implements Iterator<E> {
434 >    private final class Itr implements Iterator<E> {
435          /**
436           * Index (into queue array) of element to be returned by
437           * subsequent call to next.
438           */
439 <        int cursor = 1;
439 >        private int cursor = 0;
440 >
441 >        /**
442 >         * Index of element returned by most recent call to next,
443 >         * unless that element came from the forgetMeNot list.
444 >         * Set to -1 if element is deleted by a call to remove.
445 >         */
446 >        private int lastRet = -1;
447  
448          /**
449 <         * Index of element returned by most recent call to next or
450 <         * previous.  Reset to 0 if this element is deleted by a call
451 <         * to remove.
449 >         * A queue of elements that were moved from the unvisited portion of
450 >         * the heap into the visited portion as a result of "unlucky" element
451 >         * removals during the iteration.  (Unlucky element removals are those
452 >         * that require a siftup instead of a siftdown.)  We must visit all of
453 >         * the elements in this list to complete the iteration.  We do this
454 >         * after we've completed the "normal" iteration.
455 >         *
456 >         * We expect that most iterations, even those involving removals,
457 >         * will not need to store elements in this field.
458           */
459 <        int lastRet = 0;
459 >        private ArrayDeque<E> forgetMeNot = null;
460 >
461 >        /**
462 >         * Element returned by the most recent call to next iff that
463 >         * element was drawn from the forgetMeNot list.
464 >         */
465 >        private E lastRetElt = null;
466  
467          /**
468           * The modCount value that the iterator believes that the backing
469 <         * List should have.  If this expectation is violated, the iterator
469 >         * Queue should have.  If this expectation is violated, the iterator
470           * has detected concurrent modification.
471           */
472 <        int expectedModCount = modCount;
472 >        private int expectedModCount = modCount;
473  
474          public boolean hasNext() {
475 <            return cursor <= size;
475 >            return cursor < size ||
476 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
477          }
478  
479          public E next() {
480 <            checkForComodification();
481 <            if (cursor > size)
482 <                throw new NoSuchElementException();
483 <            E result = queue[cursor];
484 <            lastRet = cursor++;
485 <            return result;
480 >            if (expectedModCount != modCount)
481 >                throw new ConcurrentModificationException();
482 >            if (cursor < size)
483 >                return (E) queue[lastRet = cursor++];
484 >            if (forgetMeNot != null) {
485 >                lastRet = -1;
486 >                lastRetElt = forgetMeNot.poll();
487 >                if (lastRetElt != null)
488 >                    return lastRetElt;
489 >            }
490 >            throw new NoSuchElementException();
491          }
492  
493          public void remove() {
494 <            if (lastRet == 0)
494 >            if (expectedModCount != modCount)
495 >                throw new ConcurrentModificationException();
496 >            if (lastRet != -1) {
497 >                E moved = PriorityQueue.this.removeAt(lastRet);
498 >                lastRet = -1;
499 >                if (moved == null)
500 >                    cursor--;
501 >                else {
502 >                    if (forgetMeNot == null)
503 >                        forgetMeNot = new ArrayDeque<E>();
504 >                    forgetMeNot.add(moved);
505 >                }
506 >            } else if (lastRetElt != null) {
507 >                PriorityQueue.this.removeEq(lastRetElt);
508 >                lastRetElt = null;
509 >            } else {
510                  throw new IllegalStateException();
511 <            checkForComodification();
261 <
262 <            PriorityQueue.this.remove(lastRet);
263 <            if (lastRet < cursor)
264 <                cursor--;
265 <            lastRet = 0;
511 >            }
512              expectedModCount = modCount;
513          }
268
269        final void checkForComodification() {
270            if (modCount != expectedModCount)
271                throw new ConcurrentModificationException();
272        }
514      }
515  
275    /**
276     * Returns the number of elements in this priority queue.
277     *
278     * @return the number of elements in this priority queue.
279     */
516      public int size() {
517          return size;
518      }
519  
520      /**
521 <     * Add the specified element to this priority queue.
522 <     *
287 <     * @param element the element to add.
288 <     * @return true
289 <     * @throws ClassCastException if the specified element cannot be compared
290 <     *            with elements currently in the priority queue according
291 <     *            to the priority queue's ordering.
292 <     * @throws NullPointerException if the specified element is null.
521 >     * Removes all of the elements from this priority queue.
522 >     * The queue will be empty after this call returns.
523       */
524 <    public boolean offer(E element) {
295 <        if (element == null)
296 <            throw new NullPointerException();
524 >    public void clear() {
525          modCount++;
526 +        for (int i = 0; i < size; i++)
527 +            queue[i] = null;
528 +        size = 0;
529 +    }
530  
531 <        // Grow backing store if necessary
532 <        if (++size == queue.length) {
533 <            E[] newQueue = new E[2 * queue.length];
534 <            System.arraycopy(queue, 0, newQueue, 0, size);
535 <            queue = newQueue;
536 <        }
537 <
538 <        queue[size] = element;
539 <        fixUp(size);
540 <        return true;
531 >    public E poll() {
532 >        if (size == 0)
533 >            return null;
534 >        int s = --size;
535 >        modCount++;
536 >        E result = (E) queue[0];
537 >        E x = (E) queue[s];
538 >        queue[s] = null;
539 >        if (s != 0)
540 >            siftDown(0, x);
541 >        return result;
542      }
543  
544      /**
545 <     * Remove all elements from the priority queue.
545 >     * Removes the ith element from queue.
546 >     *
547 >     * Normally this method leaves the elements at up to i-1,
548 >     * inclusive, untouched.  Under these circumstances, it returns
549 >     * null.  Occasionally, in order to maintain the heap invariant,
550 >     * it must swap a later element of the list with one earlier than
551 >     * i.  Under these circumstances, this method returns the element
552 >     * that was previously at the end of the list and is now at some
553 >     * position before i. This fact is used by iterator.remove so as to
554 >     * avoid missing traversing elements.
555       */
556 <    public void clear() {
556 >    private E removeAt(int i) {
557 >        assert i >= 0 && i < size;
558          modCount++;
559 <
560 <        // Null out element references to prevent memory leak
318 <        for (int i=1; i<=size; i++)
559 >        int s = --size;
560 >        if (s == i) // removed last element
561              queue[i] = null;
562 <
563 <        size = 0;
562 >        else {
563 >            E moved = (E) queue[s];
564 >            queue[s] = null;
565 >            siftDown(i, moved);
566 >            if (queue[i] == moved) {
567 >                siftUp(i, moved);
568 >                if (queue[i] != moved)
569 >                    return moved;
570 >            }
571 >        }
572 >        return null;
573      }
574  
575      /**
576 <     * Removes and returns the ith element from queue.  Recall
577 <     * that queue is one-based, so 1 <= i <= size.
576 >     * Inserts item x at position k, maintaining heap invariant by
577 >     * promoting x up the tree until it is greater than or equal to
578 >     * its parent, or is the root.
579 >     *
580 >     * To simplify and speed up coercions and comparisons. the
581 >     * Comparable and Comparator versions are separated into different
582 >     * methods that are otherwise identical. (Similarly for siftDown.)
583       *
584 <     * XXX: Could further special-case i==size, but is it worth it?
585 <     * XXX: Could special-case i==0, but is it worth it?
584 >     * @param k the position to fill
585 >     * @param x the item to insert
586       */
587 <    private E remove(int i) {
588 <        assert i <= size;
589 <        modCount++;
587 >    private void siftUp(int k, E x) {
588 >        if (comparator != null)
589 >            siftUpUsingComparator(k, x);
590 >        else
591 >            siftUpComparable(k, x);
592 >    }
593  
594 <        E result = queue[i];
595 <        queue[i] = queue[size];
596 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
597 <        if (i <= size)
598 <            fixDown(i);
599 <        return result;
594 >    private void siftUpComparable(int k, E x) {
595 >        Comparable<? super E> key = (Comparable<? super E>) x;
596 >        while (k > 0) {
597 >            int parent = (k - 1) >>> 1;
598 >            Object e = queue[parent];
599 >            if (key.compareTo((E) e) >= 0)
600 >                break;
601 >            queue[k] = e;
602 >            k = parent;
603 >        }
604 >        queue[k] = key;
605      }
606  
607 <    /**
608 <     * Establishes the heap invariant (described above) assuming the heap
609 <     * satisfies the invariant except possibly for the leaf-node indexed by k
610 <     * (which may have a nextExecutionTime less than its parent's).
611 <     *
612 <     * This method functions by "promoting" queue[k] up the hierarchy
613 <     * (by swapping it with its parent) repeatedly until queue[k]
614 <     * is greater than or equal to its parent.
351 <     */
352 <    private void fixUp(int k) {
353 <        if (comparator == null) {
354 <            while (k > 1) {
355 <                int j = k >> 1;
356 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
357 <                    break;
358 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
359 <                k = j;
360 <            }
361 <        } else {
362 <            while (k > 1) {
363 <                int j = k >> 1;
364 <                if (comparator.compare(queue[j], queue[k]) <= 0)
365 <                    break;
366 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
367 <                k = j;
368 <            }
607 >    private void siftUpUsingComparator(int k, E x) {
608 >        while (k > 0) {
609 >            int parent = (k - 1) >>> 1;
610 >            Object e = queue[parent];
611 >            if (comparator.compare(x, (E) e) >= 0)
612 >                break;
613 >            queue[k] = e;
614 >            k = parent;
615          }
616 +        queue[k] = x;
617      }
618  
619      /**
620 <     * Establishes the heap invariant (described above) in the subtree
621 <     * rooted at k, which is assumed to satisfy the heap invariant except
622 <     * possibly for node k itself (which may be greater than its children).
623 <     *
624 <     * This method functions by "demoting" queue[k] down the hierarchy
625 <     * (by swapping it with its smaller child) repeatedly until queue[k]
626 <     * is less than or equal to its children.
627 <     */
628 <    private void fixDown(int k) {
629 <        int j;
630 <        if (comparator == null) {
631 <            while ((j = k << 1) <= size) {
632 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
633 <                    j++; // j indexes smallest kid
634 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
635 <                    break;
636 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
637 <                k = j;
638 <            }
639 <        } else {
640 <            while ((j = k << 1) <= size) {
641 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
642 <                    j++; // j indexes smallest kid
643 <                if (comparator.compare(queue[k], queue[j]) <= 0)
644 <                    break;
645 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
620 >     * Inserts item x at position k, maintaining heap invariant by
621 >     * demoting x down the tree repeatedly until it is less than or
622 >     * equal to its children or is a leaf.
623 >     *
624 >     * @param k the position to fill
625 >     * @param x the item to insert
626 >     */
627 >    private void siftDown(int k, E x) {
628 >        if (comparator != null)
629 >            siftDownUsingComparator(k, x);
630 >        else
631 >            siftDownComparable(k, x);
632 >    }
633 >
634 >    private void siftDownComparable(int k, E x) {
635 >        Comparable<? super E> key = (Comparable<? super E>)x;
636 >        int half = size >>> 1;        // loop while a non-leaf
637 >        while (k < half) {
638 >            int child = (k << 1) + 1; // assume left child is least
639 >            Object c = queue[child];
640 >            int right = child + 1;
641 >            if (right < size &&
642 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
643 >                c = queue[child = right];
644 >            if (key.compareTo((E) c) <= 0)
645 >                break;
646 >            queue[k] = c;
647 >            k = child;
648          }
649 +        queue[k] = key;
650 +    }
651 +
652 +    private void siftDownUsingComparator(int k, E x) {
653 +        int half = size >>> 1;
654 +        while (k < half) {
655 +            int child = (k << 1) + 1;
656 +            Object c = queue[child];
657 +            int right = child + 1;
658 +            if (right < size &&
659 +                comparator.compare((E) c, (E) queue[right]) > 0)
660 +                c = queue[child = right];
661 +            if (comparator.compare(x, (E) c) <= 0)
662 +                break;
663 +            queue[k] = c;
664 +            k = child;
665 +        }
666 +        queue[k] = x;
667      }
668  
669      /**
670 <     * Returns the comparator associated with this priority queue, or
671 <     * <tt>null</tt> if it uses its elements' natural ordering.
670 >     * Establishes the heap invariant (described above) in the entire tree,
671 >     * assuming nothing about the order of the elements prior to the call.
672 >     */
673 >    private void heapify() {
674 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
675 >            siftDown(i, (E) queue[i]);
676 >    }
677 >
678 >    /**
679 >     * Returns the comparator used to order the elements in this
680 >     * queue, or {@code null} if this queue is sorted according to
681 >     * the {@linkplain Comparable natural ordering} of its elements.
682       *
683 <     * @return the comparator associated with this priority queue, or
684 <     *         <tt>null</tt> if it uses its elements' natural ordering.
683 >     * @return the comparator used to order this queue, or
684 >     *         {@code null} if this queue is sorted according to the
685 >     *         natural ordering of its elements
686       */
687 <    Comparator<E> comparator() {
687 >    public Comparator<? super E> comparator() {
688          return comparator;
689      }
690 +
691 +    /**
692 +     * Saves the state of the instance to a stream (that
693 +     * is, serializes it).
694 +     *
695 +     * @serialData The length of the array backing the instance is
696 +     *             emitted (int), followed by all of its elements
697 +     *             (each an {@code Object}) in the proper order.
698 +     * @param s the stream
699 +     */
700 +    private void writeObject(java.io.ObjectOutputStream s)
701 +        throws java.io.IOException{
702 +        // Write out element count, and any hidden stuff
703 +        s.defaultWriteObject();
704 +
705 +        // Write out array length, for compatibility with 1.5 version
706 +        s.writeInt(Math.max(2, size + 1));
707 +
708 +        // Write out all elements in the "proper order".
709 +        for (int i = 0; i < size; i++)
710 +            s.writeObject(queue[i]);
711 +    }
712 +
713 +    /**
714 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
715 +     * (that is, deserializes it).
716 +     *
717 +     * @param s the stream
718 +     */
719 +    private void readObject(java.io.ObjectInputStream s)
720 +        throws java.io.IOException, ClassNotFoundException {
721 +        // Read in size, and any hidden stuff
722 +        s.defaultReadObject();
723 +
724 +        // Read in (and discard) array length
725 +        s.readInt();
726 +
727 +        queue = new Object[size];
728 +
729 +        // Read in all elements.
730 +        for (int i = 0; i < size; i++)
731 +            queue[i] = s.readObject();
732 +
733 +        // Elements are guaranteed to be in "proper order", but the
734 +        // spec has never explained what that might be.
735 +        heapify();
736 +    }
737   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines