ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.7 by dl, Tue Jun 24 14:34:30 2003 UTC vs.
Revision 1.75 by jsr166, Tue Oct 25 20:29:12 2011 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27  
28   /**
29 < * An unbounded priority queue based on a priority heap.  This queue orders
30 < * elements according to an order specified at construction time, which is
31 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
32 < * either according to their <i>natural order</i> (see {@link Comparable}), or
33 < * according to a {@link Comparator}, depending on which constructor is used.
34 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
35 < * minimal element with respect to the specified ordering.  If multiple
36 < * elements are tied for least value, no guarantees are made as to
37 < * which of these elements is returned.
38 < *
39 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
40 < * size of the array used internally to store the elements on the
41 < * queue.  It is always at least as large as the queue size.  As
42 < * elements are added to a priority queue, its capacity grows
43 < * automatically.  The details of the growth policy are not specified.
44 < *
45 < *<p>Implementation note: this implementation provides O(log(n)) time
46 < *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
47 < *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
48 < *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
49 < *constant time for the retrieval methods (<tt>peek</tt>,
50 < *<tt>element</tt>, and <tt>size</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @author Josh Bloch
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <                              implements Queue<E> {
81 >    implements java.io.Serializable {
82 >
83 >    private static final long serialVersionUID = -7720805057305804111L;
84 >
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap and each descendant d
92 <     * of n, n <= d.
93 <     *
44 <     * The element with the lowest value is in queue[1], assuming the queue is
45 <     * nonempty.  (A one-based array is used in preference to the traditional
46 <     * zero-based array to simplify parent and child calculations.)
47 <     *
48 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95 <    private transient E[] queue;
95 >    private transient Object[] queue;
96  
97      /**
98       * The number of elements in the priority queue.
# Line 58 | Line 103 | public class PriorityQueue<E> extends Ab
103       * The comparator, or null if priority queue uses elements'
104       * natural ordering.
105       */
106 <    private final Comparator<E> comparator;
106 >    private final Comparator<? super E> comparator;
107  
108      /**
109       * The number of times this priority queue has been
# Line 67 | Line 112 | public class PriorityQueue<E> extends Ab
112      private transient int modCount = 0;
113  
114      /**
115 <     * Create a new priority queue with the default initial capacity
116 <     * (11) that orders its elements according to their natural
117 <     * ordering (using <tt>Comparable</tt>.)
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120 <        this(DEFAULT_INITIAL_CAPACITY);
120 >        this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Create a new priority queue with the specified initial capacity
125 <     * that orders its elements according to their natural ordering
126 <     * (using <tt>Comparable</tt>.)
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127       *
128 <     * @param initialCapacity the initial capacity for this priority queue.
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Create a new priority queue with the specified initial capacity (11)
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     */
143 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <        queue = new E[initialCapacity + 1];
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Create a new priority queue containing the elements in the specified
159 <     * collection.  The priority queue has an initial capacity of 110% of the
160 <     * size of the specified collection. If the specified collection
161 <     * implements the {@link Sorted} interface, the priority queue will be
162 <     * sorted according to the same comparator, or according to its elements'
163 <     * natural order if the collection is sorted according to its elements'
110 <     * natural order.  If the specified collection does not implement
111 <     * <tt>Sorted</tt>, the priority queue is ordered according to
112 <     * its elements' natural order.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164       *
165 <     * @param initialElements the collection whose elements are to be placed
166 <     *        into this priority queue.
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167       * @throws ClassCastException if elements of the specified collection
168       *         cannot be compared to one another according to the priority
169 <     *         queue's ordering.
170 <     * @throws NullPointerException if the specified collection or an
171 <     *         element of the specified collection is <tt>null</tt>.
172 <     */
173 <    public PriorityQueue(Collection<E> initialElements) {
174 <        int sz = initialElements.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <        queue = new E[initialCapacity + 1];
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189 >    }
190  
191 <        /* Commented out to compile with generics compiler
191 >    /**
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204 >     */
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209 >    }
210  
211 <        if (initialElements instanceof Sorted) {
212 <            comparator = ((Sorted)initialElements).comparator();
213 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
214 <                queue[++size] = i.next();
211 >    /**
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223 >     */
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228 >    }
229 >
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234          } else {
235 <        */
138 <        {
139 <            comparator = null;
140 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
141 <                add(i.next());
235 >            initFromCollection(c);
236          }
237      }
238  
239 <    // Queue Methods
239 >    private void initElementsFromCollection(Collection<? extends E> c) {
240 >        Object[] a = c.toArray();
241 >        // If c.toArray incorrectly doesn't return Object[], copy it.
242 >        if (a.getClass() != Object[].class)
243 >            a = Arrays.copyOf(a, a.length, Object[].class);
244 >        int len = a.length;
245 >        if (len == 1 || this.comparator != null)
246 >            for (int i = 0; i < len; i++)
247 >                if (a[i] == null)
248 >                    throw new NullPointerException();
249 >        this.queue = a;
250 >        this.size = a.length;
251 >    }
252  
253      /**
254 <     * Remove and return the minimal element from this priority queue
149 <     * if it contains one or more elements, otherwise return
150 <     * <tt>null</tt>.  The term <i>minimal</i> is defined according to
151 <     * this priority queue's order.
254 >     * Initializes queue array with elements from the given Collection.
255       *
256 <     * @return the minimal element from this priority queue if it contains
154 <     *         one or more elements, otherwise <tt>null</tt>.
256 >     * @param c the collection
257       */
258 <    public E poll() {
259 <        if (size == 0)
260 <            return null;
261 <        return remove(1);
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261 >    }
262 >
263 >    /**
264 >     * The maximum size of array to allocate.
265 >     * Some VMs reserve some header words in an array.
266 >     * Attempts to allocate larger arrays may result in
267 >     * OutOfMemoryError: Requested array size exceeds VM limit
268 >     */
269 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270 >
271 >    /**
272 >     * Increases the capacity of the array.
273 >     *
274 >     * @param minCapacity the desired minimum capacity
275 >     */
276 >    private void grow(int minCapacity) {
277 >        int oldCapacity = queue.length;
278 >        // Double size if small; else grow by 50%
279 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 >                                         (oldCapacity + 2) :
281 >                                         (oldCapacity >> 1));
282 >        // overflow-conscious code
283 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 >            newCapacity = hugeCapacity(minCapacity);
285 >        queue = Arrays.copyOf(queue, newCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294      }
295  
296      /**
297 <     * Return, but do not remove, the minimal element from the
164 <     * priority queue, or return <tt>null</tt> if the queue is empty.
165 <     * The term <i>minimal</i> is defined according to this priority
166 <     * queue's order.  This method returns the same object reference
167 <     * that would be returned by by the <tt>poll</tt> method.  The two
168 <     * methods differ in that this method does not remove the element
169 <     * from the priority queue.
297 >     * Inserts the specified element into this priority queue.
298       *
299 <     * @return the minimal element from this priority queue if it contains
300 <     *         one or more elements, otherwise <tt>null</tt>.
299 >     * @return {@code true} (as specified by {@link Collection#add})
300 >     * @throws ClassCastException if the specified element cannot be
301 >     *         compared with elements currently in this priority queue
302 >     *         according to the priority queue's ordering
303 >     * @throws NullPointerException if the specified element is null
304       */
305 +    public boolean add(E e) {
306 +        return offer(e);
307 +    }
308 +
309 +    /**
310 +     * Inserts the specified element into this priority queue.
311 +     *
312 +     * @return {@code true} (as specified by {@link Queue#offer})
313 +     * @throws ClassCastException if the specified element cannot be
314 +     *         compared with elements currently in this priority queue
315 +     *         according to the priority queue's ordering
316 +     * @throws NullPointerException if the specified element is null
317 +     */
318 +    public boolean offer(E e) {
319 +        if (e == null)
320 +            throw new NullPointerException();
321 +        modCount++;
322 +        int i = size;
323 +        if (i >= queue.length)
324 +            grow(i + 1);
325 +        size = i + 1;
326 +        if (i == 0)
327 +            queue[0] = e;
328 +        else
329 +            siftUp(i, e);
330 +        return true;
331 +    }
332 +
333      public E peek() {
334 <        return queue[1];
334 >        return (size == 0) ? null : (E) queue[0];
335      }
336  
337 <    // Collection Methods
337 >    private int indexOf(Object o) {
338 >        if (o != null) {
339 >            for (int i = 0; i < size; i++)
340 >                if (o.equals(queue[i]))
341 >                    return i;
342 >        }
343 >        return -1;
344 >    }
345  
346      /**
347 <     * Removes a single instance of the specified element from this priority
348 <     * queue, if it is present.  Returns true if this collection contained the
349 <     * specified element (or equivalently, if this collection changed as a
347 >     * Removes a single instance of the specified element from this queue,
348 >     * if it is present.  More formally, removes an element {@code e} such
349 >     * that {@code o.equals(e)}, if this queue contains one or more such
350 >     * elements.  Returns {@code true} if and only if this queue contained
351 >     * the specified element (or equivalently, if this queue changed as a
352       * result of the call).
353       *
354 <     * @param element the element to be removed from this collection,
355 <     * if present.
188 <     * @return <tt>true</tt> if this collection changed as a result of the
189 <     *         call
190 <     * @throws ClassCastException if the specified element cannot be compared
191 <     *            with elements currently in the priority queue according
192 <     *            to the priority queue's ordering.
193 <     * @throws NullPointerException if the specified element is null.
354 >     * @param o element to be removed from this queue, if present
355 >     * @return {@code true} if this queue changed as a result of the call
356       */
357 <    public boolean remove(Object element) {
358 <        if (element == null)
359 <            throw new NullPointerException();
357 >    public boolean remove(Object o) {
358 >        int i = indexOf(o);
359 >        if (i == -1)
360 >            return false;
361 >        else {
362 >            removeAt(i);
363 >            return true;
364 >        }
365 >    }
366  
367 <        if (comparator == null) {
368 <            for (int i = 1; i <= size; i++) {
369 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
370 <                    remove(i);
371 <                    return true;
372 <                }
373 <            }
374 <        } else {
375 <            for (int i = 1; i <= size; i++) {
376 <                if (comparator.compare(queue[i], (E) element) == 0) {
377 <                    remove(i);
378 <                    return true;
211 <                }
367 >    /**
368 >     * Version of remove using reference equality, not equals.
369 >     * Needed by iterator.remove.
370 >     *
371 >     * @param o element to be removed from this queue, if present
372 >     * @return {@code true} if removed
373 >     */
374 >    boolean removeEq(Object o) {
375 >        for (int i = 0; i < size; i++) {
376 >            if (o == queue[i]) {
377 >                removeAt(i);
378 >                return true;
379              }
380          }
381          return false;
382      }
383  
384      /**
385 <     * Returns an iterator over the elements in this priority queue.  The
386 <     * elements of the priority queue will be returned by this iterator in the
387 <     * order specified by the queue, which is to say the order they would be
388 <     * returned by repeated calls to <tt>poll</tt>.
389 <     *
390 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
385 >     * Returns {@code true} if this queue contains the specified element.
386 >     * More formally, returns {@code true} if and only if this queue contains
387 >     * at least one element {@code e} such that {@code o.equals(e)}.
388 >     *
389 >     * @param o object to be checked for containment in this queue
390 >     * @return {@code true} if this queue contains the specified element
391 >     */
392 >    public boolean contains(Object o) {
393 >        return indexOf(o) != -1;
394 >    }
395 >
396 >    /**
397 >     * Returns an array containing all of the elements in this queue.
398 >     * The elements are in no particular order.
399 >     *
400 >     * <p>The returned array will be "safe" in that no references to it are
401 >     * maintained by this queue.  (In other words, this method must allocate
402 >     * a new array).  The caller is thus free to modify the returned array.
403 >     *
404 >     * <p>This method acts as bridge between array-based and collection-based
405 >     * APIs.
406 >     *
407 >     * @return an array containing all of the elements in this queue
408 >     */
409 >    public Object[] toArray() {
410 >        return Arrays.copyOf(queue, size);
411 >    }
412 >
413 >    /**
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420 >     *
421 >     * <p>If the queue fits in the specified array with room to spare
422 >     * (i.e., the array has more elements than the queue), the element in
423 >     * the array immediately following the end of the collection is set to
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of <tt>String</tt>:
434 >     *
435 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
438 >     * <tt>toArray()</tt>.
439 >     *
440 >     * @param a the array into which the elements of the queue are to
441 >     *          be stored, if it is big enough; otherwise, a new array of the
442 >     *          same runtime type is allocated for this purpose.
443 >     * @return an array containing all of the elements in this queue
444 >     * @throws ArrayStoreException if the runtime type of the specified array
445 >     *         is not a supertype of the runtime type of every element in
446 >     *         this queue
447 >     * @throws NullPointerException if the specified array is null
448 >     */
449 >    public <T> T[] toArray(T[] a) {
450 >        if (a.length < size)
451 >            // Make a new array of a's runtime type, but my contents:
452 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
453 >        System.arraycopy(queue, 0, a, 0, size);
454 >        if (a.length > size)
455 >            a[size] = null;
456 >        return a;
457 >    }
458 >
459 >    /**
460 >     * Returns an iterator over the elements in this queue. The iterator
461 >     * does not return the elements in any particular order.
462 >     *
463 >     * @return an iterator over the elements in this queue
464       */
465      public Iterator<E> iterator() {
466          return new Itr();
467      }
468  
469 <    private class Itr implements Iterator<E> {
469 >    private final class Itr implements Iterator<E> {
470          /**
471           * Index (into queue array) of element to be returned by
472           * subsequent call to next.
473           */
474 <        private int cursor = 1;
474 >        private int cursor = 0;
475 >
476 >        /**
477 >         * Index of element returned by most recent call to next,
478 >         * unless that element came from the forgetMeNot list.
479 >         * Set to -1 if element is deleted by a call to remove.
480 >         */
481 >        private int lastRet = -1;
482  
483          /**
484 <         * Index of element returned by most recent call to next or
485 <         * previous.  Reset to 0 if this element is deleted by a call
486 <         * to remove.
484 >         * A queue of elements that were moved from the unvisited portion of
485 >         * the heap into the visited portion as a result of "unlucky" element
486 >         * removals during the iteration.  (Unlucky element removals are those
487 >         * that require a siftup instead of a siftdown.)  We must visit all of
488 >         * the elements in this list to complete the iteration.  We do this
489 >         * after we've completed the "normal" iteration.
490 >         *
491 >         * We expect that most iterations, even those involving removals,
492 >         * will not need to store elements in this field.
493           */
494 <        private int lastRet = 0;
494 >        private ArrayDeque<E> forgetMeNot = null;
495 >
496 >        /**
497 >         * Element returned by the most recent call to next iff that
498 >         * element was drawn from the forgetMeNot list.
499 >         */
500 >        private E lastRetElt = null;
501  
502          /**
503           * The modCount value that the iterator believes that the backing
504 <         * List should have.  If this expectation is violated, the iterator
504 >         * Queue should have.  If this expectation is violated, the iterator
505           * has detected concurrent modification.
506           */
507          private int expectedModCount = modCount;
508  
509          public boolean hasNext() {
510 <            return cursor <= size;
510 >            return cursor < size ||
511 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
512          }
513  
514          public E next() {
515 <            checkForComodification();
516 <            if (cursor > size)
517 <                throw new NoSuchElementException();
518 <            E result = queue[cursor];
519 <            lastRet = cursor++;
520 <            return result;
515 >            if (expectedModCount != modCount)
516 >                throw new ConcurrentModificationException();
517 >            if (cursor < size)
518 >                return (E) queue[lastRet = cursor++];
519 >            if (forgetMeNot != null) {
520 >                lastRet = -1;
521 >                lastRetElt = forgetMeNot.poll();
522 >                if (lastRetElt != null)
523 >                    return lastRetElt;
524 >            }
525 >            throw new NoSuchElementException();
526          }
527  
528          public void remove() {
529 <            if (lastRet == 0)
529 >            if (expectedModCount != modCount)
530 >                throw new ConcurrentModificationException();
531 >            if (lastRet != -1) {
532 >                E moved = PriorityQueue.this.removeAt(lastRet);
533 >                lastRet = -1;
534 >                if (moved == null)
535 >                    cursor--;
536 >                else {
537 >                    if (forgetMeNot == null)
538 >                        forgetMeNot = new ArrayDeque<E>();
539 >                    forgetMeNot.add(moved);
540 >                }
541 >            } else if (lastRetElt != null) {
542 >                PriorityQueue.this.removeEq(lastRetElt);
543 >                lastRetElt = null;
544 >            } else {
545                  throw new IllegalStateException();
546 <            checkForComodification();
267 <
268 <            PriorityQueue.this.remove(lastRet);
269 <            if (lastRet < cursor)
270 <                cursor--;
271 <            lastRet = 0;
546 >            }
547              expectedModCount = modCount;
548          }
274
275        final void checkForComodification() {
276            if (modCount != expectedModCount)
277                throw new ConcurrentModificationException();
278        }
549      }
550  
281    /**
282     * Returns the number of elements in this priority queue.
283     *
284     * @return the number of elements in this priority queue.
285     */
551      public int size() {
552          return size;
553      }
554  
555      /**
556 <     * Add the specified element to this priority queue.
557 <     *
293 <     * @param element the element to add.
294 <     * @return true
295 <     * @throws ClassCastException if the specified element cannot be compared
296 <     *            with elements currently in the priority queue according
297 <     *            to the priority queue's ordering.
298 <     * @throws NullPointerException if the specified element is null.
556 >     * Removes all of the elements from this priority queue.
557 >     * The queue will be empty after this call returns.
558       */
559 <    public boolean offer(E element) {
301 <        if (element == null)
302 <            throw new NullPointerException();
559 >    public void clear() {
560          modCount++;
561 +        for (int i = 0; i < size; i++)
562 +            queue[i] = null;
563 +        size = 0;
564 +    }
565  
566 <        // Grow backing store if necessary
567 <        if (++size == queue.length) {
568 <            E[] newQueue = new E[2 * queue.length];
569 <            System.arraycopy(queue, 0, newQueue, 0, size);
570 <            queue = newQueue;
571 <        }
572 <
573 <        queue[size] = element;
574 <        fixUp(size);
575 <        return true;
566 >    public E poll() {
567 >        if (size == 0)
568 >            return null;
569 >        int s = --size;
570 >        modCount++;
571 >        E result = (E) queue[0];
572 >        E x = (E) queue[s];
573 >        queue[s] = null;
574 >        if (s != 0)
575 >            siftDown(0, x);
576 >        return result;
577      }
578  
579      /**
580 <     * Remove all elements from the priority queue.
580 >     * Removes the ith element from queue.
581 >     *
582 >     * Normally this method leaves the elements at up to i-1,
583 >     * inclusive, untouched.  Under these circumstances, it returns
584 >     * null.  Occasionally, in order to maintain the heap invariant,
585 >     * it must swap a later element of the list with one earlier than
586 >     * i.  Under these circumstances, this method returns the element
587 >     * that was previously at the end of the list and is now at some
588 >     * position before i. This fact is used by iterator.remove so as to
589 >     * avoid missing traversing elements.
590       */
591 <    public void clear() {
591 >    private E removeAt(int i) {
592 >        // assert i >= 0 && i < size;
593          modCount++;
594 <
595 <        // Null out element references to prevent memory leak
324 <        for (int i=1; i<=size; i++)
594 >        int s = --size;
595 >        if (s == i) // removed last element
596              queue[i] = null;
597 <
598 <        size = 0;
597 >        else {
598 >            E moved = (E) queue[s];
599 >            queue[s] = null;
600 >            siftDown(i, moved);
601 >            if (queue[i] == moved) {
602 >                siftUp(i, moved);
603 >                if (queue[i] != moved)
604 >                    return moved;
605 >            }
606 >        }
607 >        return null;
608      }
609  
610      /**
611 <     * Removes and returns the ith element from queue.  Recall
612 <     * that queue is one-based, so 1 <= i <= size.
611 >     * Inserts item x at position k, maintaining heap invariant by
612 >     * promoting x up the tree until it is greater than or equal to
613 >     * its parent, or is the root.
614 >     *
615 >     * To simplify and speed up coercions and comparisons. the
616 >     * Comparable and Comparator versions are separated into different
617 >     * methods that are otherwise identical. (Similarly for siftDown.)
618       *
619 <     * XXX: Could further special-case i==size, but is it worth it?
620 <     * XXX: Could special-case i==0, but is it worth it?
619 >     * @param k the position to fill
620 >     * @param x the item to insert
621       */
622 <    private E remove(int i) {
623 <        assert i <= size;
624 <        modCount++;
622 >    private void siftUp(int k, E x) {
623 >        if (comparator != null)
624 >            siftUpUsingComparator(k, x);
625 >        else
626 >            siftUpComparable(k, x);
627 >    }
628  
629 <        E result = queue[i];
630 <        queue[i] = queue[size];
631 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
632 <        if (i <= size)
633 <            fixDown(i);
634 <        return result;
629 >    private void siftUpComparable(int k, E x) {
630 >        Comparable<? super E> key = (Comparable<? super E>) x;
631 >        while (k > 0) {
632 >            int parent = (k - 1) >>> 1;
633 >            Object e = queue[parent];
634 >            if (key.compareTo((E) e) >= 0)
635 >                break;
636 >            queue[k] = e;
637 >            k = parent;
638 >        }
639 >        queue[k] = key;
640      }
641  
642 <    /**
643 <     * Establishes the heap invariant (described above) assuming the heap
644 <     * satisfies the invariant except possibly for the leaf-node indexed by k
645 <     * (which may have a nextExecutionTime less than its parent's).
646 <     *
647 <     * This method functions by "promoting" queue[k] up the hierarchy
648 <     * (by swapping it with its parent) repeatedly until queue[k]
649 <     * is greater than or equal to its parent.
357 <     */
358 <    private void fixUp(int k) {
359 <        if (comparator == null) {
360 <            while (k > 1) {
361 <                int j = k >> 1;
362 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
363 <                    break;
364 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
365 <                k = j;
366 <            }
367 <        } else {
368 <            while (k > 1) {
369 <                int j = k >> 1;
370 <                if (comparator.compare(queue[j], queue[k]) <= 0)
371 <                    break;
372 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
373 <                k = j;
374 <            }
642 >    private void siftUpUsingComparator(int k, E x) {
643 >        while (k > 0) {
644 >            int parent = (k - 1) >>> 1;
645 >            Object e = queue[parent];
646 >            if (comparator.compare(x, (E) e) >= 0)
647 >                break;
648 >            queue[k] = e;
649 >            k = parent;
650          }
651 +        queue[k] = x;
652      }
653  
654      /**
655 <     * Establishes the heap invariant (described above) in the subtree
656 <     * rooted at k, which is assumed to satisfy the heap invariant except
657 <     * possibly for node k itself (which may be greater than its children).
658 <     *
659 <     * This method functions by "demoting" queue[k] down the hierarchy
660 <     * (by swapping it with its smaller child) repeatedly until queue[k]
661 <     * is less than or equal to its children.
662 <     */
663 <    private void fixDown(int k) {
664 <        int j;
665 <        if (comparator == null) {
666 <            while ((j = k << 1) <= size) {
667 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
668 <                    j++; // j indexes smallest kid
669 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
670 <                    break;
671 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
672 <                k = j;
673 <            }
674 <        } else {
675 <            while ((j = k << 1) <= size) {
676 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
677 <                    j++; // j indexes smallest kid
678 <                if (comparator.compare(queue[k], queue[j]) <= 0)
679 <                    break;
680 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
681 <                k = j;
682 <            }
655 >     * Inserts item x at position k, maintaining heap invariant by
656 >     * demoting x down the tree repeatedly until it is less than or
657 >     * equal to its children or is a leaf.
658 >     *
659 >     * @param k the position to fill
660 >     * @param x the item to insert
661 >     */
662 >    private void siftDown(int k, E x) {
663 >        if (comparator != null)
664 >            siftDownUsingComparator(k, x);
665 >        else
666 >            siftDownComparable(k, x);
667 >    }
668 >
669 >    private void siftDownComparable(int k, E x) {
670 >        Comparable<? super E> key = (Comparable<? super E>)x;
671 >        int half = size >>> 1;        // loop while a non-leaf
672 >        while (k < half) {
673 >            int child = (k << 1) + 1; // assume left child is least
674 >            Object c = queue[child];
675 >            int right = child + 1;
676 >            if (right < size &&
677 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
678 >                c = queue[child = right];
679 >            if (key.compareTo((E) c) <= 0)
680 >                break;
681 >            queue[k] = c;
682 >            k = child;
683 >        }
684 >        queue[k] = key;
685 >    }
686 >
687 >    private void siftDownUsingComparator(int k, E x) {
688 >        int half = size >>> 1;
689 >        while (k < half) {
690 >            int child = (k << 1) + 1;
691 >            Object c = queue[child];
692 >            int right = child + 1;
693 >            if (right < size &&
694 >                comparator.compare((E) c, (E) queue[right]) > 0)
695 >                c = queue[child = right];
696 >            if (comparator.compare(x, (E) c) <= 0)
697 >                break;
698 >            queue[k] = c;
699 >            k = child;
700          }
701 +        queue[k] = x;
702 +    }
703 +
704 +    /**
705 +     * Establishes the heap invariant (described above) in the entire tree,
706 +     * assuming nothing about the order of the elements prior to the call.
707 +     */
708 +    private void heapify() {
709 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
710 +            siftDown(i, (E) queue[i]);
711      }
712  
713      /**
714 <     * Returns the comparator associated with this priority queue, or
715 <     * <tt>null</tt> if it uses its elements' natural ordering.
714 >     * Returns the comparator used to order the elements in this
715 >     * queue, or {@code null} if this queue is sorted according to
716 >     * the {@linkplain Comparable natural ordering} of its elements.
717       *
718 <     * @return the comparator associated with this priority queue, or
719 <     *         <tt>null</tt> if it uses its elements' natural ordering.
718 >     * @return the comparator used to order this queue, or
719 >     *         {@code null} if this queue is sorted according to the
720 >     *         natural ordering of its elements
721       */
722 <    Comparator comparator() {
722 >    public Comparator<? super E> comparator() {
723          return comparator;
724      }
725  
726      /**
727 <     * Save the state of the instance to a stream (that
728 <     * is, serialize it).
727 >     * Saves the state of the instance to a stream (that
728 >     * is, serializes it).
729       *
730       * @serialData The length of the array backing the instance is
731 <     * emitted (int), followed by all of its elements (each an
732 <     * <tt>Object</tt>) in the proper order.
731 >     *             emitted (int), followed by all of its elements
732 >     *             (each an {@code Object}) in the proper order.
733       * @param s the stream
734       */
735 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
736 <        throws java.io.IOException{
735 >    private void writeObject(java.io.ObjectOutputStream s)
736 >        throws java.io.IOException {
737          // Write out element count, and any hidden stuff
738          s.defaultWriteObject();
739  
740 <        // Write out array length
741 <        s.writeInt(queue.length);
740 >        // Write out array length, for compatibility with 1.5 version
741 >        s.writeInt(Math.max(2, size + 1));
742  
743 <        // Write out all elements in the proper order.
744 <        for (int i=0; i<size; i++)
743 >        // Write out all elements in the "proper order".
744 >        for (int i = 0; i < size; i++)
745              s.writeObject(queue[i]);
746      }
747  
748      /**
749 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
750 <     * deserialize it).
749 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
750 >     * (that is, deserializes it).
751 >     *
752       * @param s the stream
753       */
754 <    private synchronized void readObject(java.io.ObjectInputStream s)
754 >    private void readObject(java.io.ObjectInputStream s)
755          throws java.io.IOException, ClassNotFoundException {
756          // Read in size, and any hidden stuff
757          s.defaultReadObject();
758  
759 <        // Read in array length and allocate array
760 <        int arrayLength = s.readInt();
455 <        queue = new E[arrayLength];
456 <
457 <        // Read in all elements in the proper order.
458 <        for (int i=0; i<size; i++)
459 <            queue[i] = (E)s.readObject();
460 <    }
759 >        // Read in (and discard) array length
760 >        s.readInt();
761  
762 +        queue = new Object[size];
763 +
764 +        // Read in all elements.
765 +        for (int i = 0; i < size; i++)
766 +            queue[i] = s.readObject();
767 +
768 +        // Elements are guaranteed to be in "proper order", but the
769 +        // spec has never explained what that might be.
770 +        heapify();
771 +    }
772   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines