ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.2 by tim, Sun May 18 18:10:02 2003 UTC vs.
Revision 1.70 by jsr166, Mon May 10 20:11:01 2010 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16   *
17 < *   1) Make it serializable.
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26 + package java.util;
27 +
28   /**
29 < * An unbounded priority queue based on a priority heap.  This queue orders
30 < * elements according to the order specified at creation time.  This order is
31 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
32 < * either according to their <i>natural order</i> (see {@link Comparable}), or
33 < * according to a {@link Comparator}, depending on which constructor is used.
34 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
35 < * minimal element with respect to the specified ordering.  If multiple
36 < * these elements are tied for least value, no guarantees are made as to
37 < * which of elements is returned.
38 < *
39 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
40 < * the array used to store the elements on the queue.  It is always at least
41 < * as large as the queue size.  As elements are added to a priority list,
42 < * its capacity grows automatically.  The details of the growth policy are not
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50   * specified.
51   *
52 < *<p>Implementation note: this implementation provides O(log(n)) time for
53 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
54 < * methods; linear time for the <tt>remove(Object)</tt> and
55 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
56 < * <tt>element</tt>, and <tt>size</tt> methods.
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76 + * @since 1.5
77 + * @author Josh Bloch, Doug Lea
78 + * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <                              implements Queue<E>
82 < {
81 >    implements java.io.Serializable {
82 >
83 >    private static final long serialVersionUID = -7720805057305804111L;
84 >
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap, and each descendant
92 <     * of n, d, n <= d.
93 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95 <    private E[] queue;
95 >    private transient Object[] queue;
96  
97      /**
98       * The number of elements in the priority queue.
# Line 62 | Line 103 | public class PriorityQueue<E> extends Ab
103       * The comparator, or null if priority queue uses elements'
104       * natural ordering.
105       */
106 <    private final Comparator<E> comparator;
106 >    private final Comparator<? super E> comparator;
107  
108      /**
109       * The number of times this priority queue has been
110       * <i>structurally modified</i>.  See AbstractList for gory details.
111       */
112 <    private int modCount = 0;
112 >    private transient int modCount = 0;
113  
114      /**
115 <     * Create a new priority queue with the default initial capacity (11)
116 <     * that orders its elements according to their natural ordering.
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120 <        this(DEFAULT_INITIAL_CAPACITY);
120 >        this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Create a new priority queue with the specified initial capacity
125 <     * that orders its elements according to their natural ordering.
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127       *
128 <     * @param initialCapacity the initial capacity for this priority queue.
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Create a new priority queue with the specified initial capacity (11)
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     */
143 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <        queue = new E[initialCapacity + 1];
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Create a new priority queue containing the elements in the specified
159 <     * collection.  The priority queue has an initial capacity of 110% of the
160 <     * size of the specified collection. If the specified collection
161 <     * implements the {@link Sorted} interface, the priority queue will be
162 <     * sorted according to the same comparator, or according to its elements'
163 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164       *
165 <     * @param initialElements the collection whose elements are to be placed
166 <     *        into this priority queue.
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167       * @throws ClassCastException if elements of the specified collection
168       *         cannot be compared to one another according to the priority
169 <     *         queue's ordering.
170 <     * @throws NullPointerException if the specified collection or an
171 <     *         element of the specified collection is <tt>null</tt>.
172 <     */
173 <    public PriorityQueue(Collection<E> initialElements) {
174 <        int sz = initialElements.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <        queue = new E[initialCapacity + 1];
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189 >    }
190  
191 <        /* Commented out to compile with generics compiler
191 >    /**
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204 >     */
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209 >    }
210  
211 <        if (initialElements instanceof Sorted) {
212 <            comparator = ((Sorted)initialElements).comparator();
213 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
214 <                queue[++size] = i.next();
211 >    /**
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223 >     */
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228 >    }
229 >
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234          } else {
235 <        */
140 <        {
141 <            comparator = null;
142 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 <                add(i.next());
235 >            initFromCollection(c);
236          }
237      }
238  
239 <    // Queue Methods
239 >    private void initElementsFromCollection(Collection<? extends E> c) {
240 >        Object[] a = c.toArray();
241 >        // If c.toArray incorrectly doesn't return Object[], copy it.
242 >        if (a.getClass() != Object[].class)
243 >            a = Arrays.copyOf(a, a.length, Object[].class);
244 >        int len = a.length;
245 >        if (len == 1 || this.comparator != null)
246 >            for (int i = 0; i < len; i++)
247 >                if (a[i] == null)
248 >                    throw new NullPointerException();
249 >        this.queue = a;
250 >        this.size = a.length;
251 >    }
252  
253      /**
254 <     * Remove and return the minimal element from this priority queue if
151 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
152 <     * <i>minimal</i> is defined according to this priority queue's order.
254 >     * Initializes queue array with elements from the given Collection.
255       *
256 <     * @return the minimal element from this priority queue if it contains
155 <     *         one or more elements, otherwise <tt>null</tt>.
256 >     * @param c the collection
257       */
258 <    public E poll() {
259 <        if (size == 0)
260 <            return null;
261 <        return remove(1);
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261 >    }
262 >
263 >    /**
264 >     * The maximum size of array to allocate.
265 >     * Some VMs reserve some header words in an array.
266 >     * Attempts to allocate larger arrays may result in
267 >     * OutOfMemoryError: Requested array size exceeds VM limit
268 >     */
269 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270 >
271 >    /**
272 >     * Increases the capacity of the array.
273 >     *
274 >     * @param minCapacity the desired minimum capacity
275 >     */
276 >    private void grow(int minCapacity) {
277 >        int oldCapacity = queue.length;
278 >        // Double size if small; else grow by 50%
279 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 >                                         (oldCapacity + 2) :
281 >                                         (oldCapacity >> 1));
282 >        // overflow-conscious code
283 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 >            newCapacity = hugeCapacity(minCapacity);
285 >        queue = Arrays.copyOf(queue, newCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294 >    }
295 >
296 >    /**
297 >     * Inserts the specified element into this priority queue.
298 >     *
299 >     * @return {@code true} (as specified by {@link Collection#add})
300 >     * @throws ClassCastException if the specified element cannot be
301 >     *         compared with elements currently in this priority queue
302 >     *         according to the priority queue's ordering
303 >     * @throws NullPointerException if the specified element is null
304 >     */
305 >    public boolean add(E e) {
306 >        return offer(e);
307      }
308  
309      /**
310 <     * Return, but do not remove, the minimal element from the priority queue,
165 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
166 <     * defined according to this priority queue's order.  This method returns
167 <     * the same object reference that would be returned by by the
168 <     * <tt>poll</tt> method.  The two methods differ in that this method
169 <     * does not remove the element from the priority queue.
310 >     * Inserts the specified element into this priority queue.
311       *
312 <     * @return the minimal element from this priority queue if it contains
313 <     *         one or more elements, otherwise <tt>null</tt>.
312 >     * @return {@code true} (as specified by {@link Queue#offer})
313 >     * @throws ClassCastException if the specified element cannot be
314 >     *         compared with elements currently in this priority queue
315 >     *         according to the priority queue's ordering
316 >     * @throws NullPointerException if the specified element is null
317       */
318 +    public boolean offer(E e) {
319 +        if (e == null)
320 +            throw new NullPointerException();
321 +        modCount++;
322 +        int i = size;
323 +        if (i >= queue.length)
324 +            grow(i + 1);
325 +        size = i + 1;
326 +        if (i == 0)
327 +            queue[0] = e;
328 +        else
329 +            siftUp(i, e);
330 +        return true;
331 +    }
332 +
333      public E peek() {
334 <        return queue[1];
334 >        if (size == 0)
335 >            return null;
336 >        return (E) queue[0];
337      }
338  
339 <    // Collection Methods
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            for (int i = 0; i < size; i++)
342 >                if (o.equals(queue[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346 >    }
347  
348      /**
349 <     * Removes a single instance of the specified element from this priority
350 <     * queue, if it is present.  Returns true if this collection contained the
351 <     * specified element (or equivalently, if this collection changed as a
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354       * result of the call).
355       *
356 <     * @param o element to be removed from this collection, if present.
357 <     * @return <tt>true</tt> if this collection changed as a result of the
188 <     *         call
189 <     * @throws ClassCastException if the specified element cannot be compared
190 <     *            with elements currently in the priority queue according
191 <     *            to the priority queue's ordering.
192 <     * @throws NullPointerException if the specified element is null.
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358       */
359 <    public boolean remove(Object element) {
360 <        if (element == null)
361 <            throw new NullPointerException();
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367 >    }
368  
369 <        if (comparator == null) {
370 <            for (int i = 1; i <= size; i++) {
371 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
372 <                    remove(i);
373 <                    return true;
374 <                }
375 <            }
376 <        } else {
377 <            for (int i = 1; i <= size; i++) {
378 <                if (comparator.compare(queue[i], (E) element) == 0) {
379 <                    remove(i);
380 <                    return true;
210 <                }
369 >    /**
370 >     * Version of remove using reference equality, not equals.
371 >     * Needed by iterator.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if removed
375 >     */
376 >    boolean removeEq(Object o) {
377 >        for (int i = 0; i < size; i++) {
378 >            if (o == queue[i]) {
379 >                removeAt(i);
380 >                return true;
381              }
382          }
383          return false;
384      }
385  
386      /**
387 <     * Returns an iterator over the elements in this priority queue.  The
388 <     * first element returned by this iterator is the same element that
389 <     * would be returned by a call to <tt>peek</tt>.
387 >     * Returns {@code true} if this queue contains the specified element.
388 >     * More formally, returns {@code true} if and only if this queue contains
389 >     * at least one element {@code e} such that {@code o.equals(e)}.
390 >     *
391 >     * @param o object to be checked for containment in this queue
392 >     * @return {@code true} if this queue contains the specified element
393 >     */
394 >    public boolean contains(Object o) {
395 >        return indexOf(o) != -1;
396 >    }
397 >
398 >    /**
399 >     * Returns an array containing all of the elements in this queue.
400 >     * The elements are in no particular order.
401 >     *
402 >     * <p>The returned array will be "safe" in that no references to it are
403 >     * maintained by this queue.  (In other words, this method must allocate
404 >     * a new array).  The caller is thus free to modify the returned array.
405 >     *
406 >     * <p>This method acts as bridge between array-based and collection-based
407 >     * APIs.
408 >     *
409 >     * @return an array containing all of the elements in this queue
410 >     */
411 >    public Object[] toArray() {
412 >        return Arrays.copyOf(queue, size);
413 >    }
414 >
415 >    /**
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422 >     *
423 >     * <p>If the queue fits in the specified array with room to spare
424 >     * (i.e., the array has more elements than the queue), the element in
425 >     * the array immediately following the end of the collection is set to
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of <tt>String</tt>:
436 >     *
437 >     * <pre>
438 >     *     String[] y = x.toArray(new String[0]);</pre>
439 >     *
440 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
441 >     * <tt>toArray()</tt>.
442 >     *
443 >     * @param a the array into which the elements of the queue are to
444 >     *          be stored, if it is big enough; otherwise, a new array of the
445 >     *          same runtime type is allocated for this purpose.
446 >     * @return an array containing all of the elements in this queue
447 >     * @throws ArrayStoreException if the runtime type of the specified array
448 >     *         is not a supertype of the runtime type of every element in
449 >     *         this queue
450 >     * @throws NullPointerException if the specified array is null
451 >     */
452 >    public <T> T[] toArray(T[] a) {
453 >        if (a.length < size)
454 >            // Make a new array of a's runtime type, but my contents:
455 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 >        System.arraycopy(queue, 0, a, 0, size);
457 >        if (a.length > size)
458 >            a[size] = null;
459 >        return a;
460 >    }
461 >
462 >    /**
463 >     * Returns an iterator over the elements in this queue. The iterator
464 >     * does not return the elements in any particular order.
465       *
466 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
466 >     * @return an iterator over the elements in this queue
467       */
468      public Iterator<E> iterator() {
469          return new Itr();
470      }
471  
472 <    private class Itr implements Iterator<E> {
472 >    private final class Itr implements Iterator<E> {
473          /**
474           * Index (into queue array) of element to be returned by
475           * subsequent call to next.
476           */
477 <        int cursor = 1;
477 >        private int cursor = 0;
478 >
479 >        /**
480 >         * Index of element returned by most recent call to next,
481 >         * unless that element came from the forgetMeNot list.
482 >         * Set to -1 if element is deleted by a call to remove.
483 >         */
484 >        private int lastRet = -1;
485 >
486 >        /**
487 >         * A queue of elements that were moved from the unvisited portion of
488 >         * the heap into the visited portion as a result of "unlucky" element
489 >         * removals during the iteration.  (Unlucky element removals are those
490 >         * that require a siftup instead of a siftdown.)  We must visit all of
491 >         * the elements in this list to complete the iteration.  We do this
492 >         * after we've completed the "normal" iteration.
493 >         *
494 >         * We expect that most iterations, even those involving removals,
495 >         * will not need to store elements in this field.
496 >         */
497 >        private ArrayDeque<E> forgetMeNot = null;
498  
499          /**
500 <         * Index of element returned by most recent call to next or
501 <         * previous.  Reset to 0 if this element is deleted by a call
237 <         * to remove.
500 >         * Element returned by the most recent call to next iff that
501 >         * element was drawn from the forgetMeNot list.
502           */
503 <        int lastRet = 0;
503 >        private E lastRetElt = null;
504  
505          /**
506           * The modCount value that the iterator believes that the backing
507 <         * List should have.  If this expectation is violated, the iterator
507 >         * Queue should have.  If this expectation is violated, the iterator
508           * has detected concurrent modification.
509           */
510 <        int expectedModCount = modCount;
510 >        private int expectedModCount = modCount;
511  
512          public boolean hasNext() {
513 <            return cursor <= size;
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515          }
516  
517          public E next() {
518 <            checkForComodification();
519 <            if (cursor > size)
520 <                throw new NoSuchElementException();
521 <            E result = queue[cursor];
522 <            lastRet = cursor++;
523 <            return result;
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529          }
530  
531          public void remove() {
532 <            if (lastRet == 0)
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<E>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548                  throw new IllegalStateException();
549 <            checkForComodification();
265 <
266 <            PriorityQueue.this.remove(lastRet);
267 <            if (lastRet < cursor)
268 <                cursor--;
269 <            lastRet = 0;
549 >            }
550              expectedModCount = modCount;
551          }
272
273        final void checkForComodification() {
274            if (modCount != expectedModCount)
275                throw new ConcurrentModificationException();
276        }
552      }
553  
279    /**
280     * Returns the number of elements in this priority queue.
281     *
282     * @return the number of elements in this priority queue.
283     */
554      public int size() {
555          return size;
556      }
557  
558      /**
559 <     * Add the specified element to this priority queue.
560 <     *
291 <     * @param element the element to add.
292 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561       */
562 <    public boolean offer(E element) {
299 <        if (element == null)
300 <            throw new NullPointerException();
562 >    public void clear() {
563          modCount++;
564 +        for (int i = 0; i < size; i++)
565 +            queue[i] = null;
566 +        size = 0;
567 +    }
568  
569 <        // Grow backing store if necessary
570 <        if (++size == queue.length) {
571 <            E[] newQueue = new E[2 * queue.length];
572 <            System.arraycopy(queue, 0, newQueue, 0, size);
573 <            queue = newQueue;
574 <        }
575 <
576 <        queue[size] = element;
577 <        fixUp(size);
578 <        return true;
569 >    public E poll() {
570 >        if (size == 0)
571 >            return null;
572 >        int s = --size;
573 >        modCount++;
574 >        E result = (E) queue[0];
575 >        E x = (E) queue[s];
576 >        queue[s] = null;
577 >        if (s != 0)
578 >            siftDown(0, x);
579 >        return result;
580      }
581  
582      /**
583 <     * Remove all elements from the priority queue.
583 >     * Removes the ith element from queue.
584 >     *
585 >     * Normally this method leaves the elements at up to i-1,
586 >     * inclusive, untouched.  Under these circumstances, it returns
587 >     * null.  Occasionally, in order to maintain the heap invariant,
588 >     * it must swap a later element of the list with one earlier than
589 >     * i.  Under these circumstances, this method returns the element
590 >     * that was previously at the end of the list and is now at some
591 >     * position before i. This fact is used by iterator.remove so as to
592 >     * avoid missing traversing elements.
593       */
594 <    public void clear() {
594 >    private E removeAt(int i) {
595 >        assert i >= 0 && i < size;
596          modCount++;
597 <
598 <        // Null out element references to prevent memory leak
322 <        for (int i=1; i<=size; i++)
597 >        int s = --size;
598 >        if (s == i) // removed last element
599              queue[i] = null;
600 <
601 <        size = 0;
600 >        else {
601 >            E moved = (E) queue[s];
602 >            queue[s] = null;
603 >            siftDown(i, moved);
604 >            if (queue[i] == moved) {
605 >                siftUp(i, moved);
606 >                if (queue[i] != moved)
607 >                    return moved;
608 >            }
609 >        }
610 >        return null;
611      }
612  
613      /**
614 <     * Removes and returns the ith element from queue.  Recall
615 <     * that queue is one-based, so 1 <= i <= size.
614 >     * Inserts item x at position k, maintaining heap invariant by
615 >     * promoting x up the tree until it is greater than or equal to
616 >     * its parent, or is the root.
617 >     *
618 >     * To simplify and speed up coercions and comparisons. the
619 >     * Comparable and Comparator versions are separated into different
620 >     * methods that are otherwise identical. (Similarly for siftDown.)
621       *
622 <     * XXX: Could further special-case i==size, but is it worth it?
623 <     * XXX: Could special-case i==0, but is it worth it?
622 >     * @param k the position to fill
623 >     * @param x the item to insert
624       */
625 <    private E remove(int i) {
626 <        assert i <= size;
627 <        modCount++;
625 >    private void siftUp(int k, E x) {
626 >        if (comparator != null)
627 >            siftUpUsingComparator(k, x);
628 >        else
629 >            siftUpComparable(k, x);
630 >    }
631  
632 <        E result = queue[i];
633 <        queue[i] = queue[size];
634 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
635 <        if (i <= size)
636 <            fixDown(i);
637 <        return result;
632 >    private void siftUpComparable(int k, E x) {
633 >        Comparable<? super E> key = (Comparable<? super E>) x;
634 >        while (k > 0) {
635 >            int parent = (k - 1) >>> 1;
636 >            Object e = queue[parent];
637 >            if (key.compareTo((E) e) >= 0)
638 >                break;
639 >            queue[k] = e;
640 >            k = parent;
641 >        }
642 >        queue[k] = key;
643      }
644  
645 <    /**
646 <     * Establishes the heap invariant (described above) assuming the heap
647 <     * satisfies the invariant except possibly for the leaf-node indexed by k
648 <     * (which may have a nextExecutionTime less than its parent's).
649 <     *
650 <     * This method functions by "promoting" queue[k] up the hierarchy
651 <     * (by swapping it with its parent) repeatedly until queue[k]
652 <     * is greater than or equal to its parent.
355 <     */
356 <    private void fixUp(int k) {
357 <        if (comparator == null) {
358 <            while (k > 1) {
359 <                int j = k >> 1;
360 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
361 <                    break;
362 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
363 <                k = j;
364 <            }
365 <        } else {
366 <            while (k > 1) {
367 <                int j = k >> 1;
368 <                if (comparator.compare(queue[j], queue[k]) <= 0)
369 <                    break;
370 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
371 <                k = j;
372 <            }
645 >    private void siftUpUsingComparator(int k, E x) {
646 >        while (k > 0) {
647 >            int parent = (k - 1) >>> 1;
648 >            Object e = queue[parent];
649 >            if (comparator.compare(x, (E) e) >= 0)
650 >                break;
651 >            queue[k] = e;
652 >            k = parent;
653          }
654 +        queue[k] = x;
655      }
656  
657      /**
658 <     * Establishes the heap invariant (described above) in the subtree
659 <     * rooted at k, which is assumed to satisfy the heap invariant except
660 <     * possibly for node k itself (which may be greater than its children).
661 <     *
662 <     * This method functions by "demoting" queue[k] down the hierarchy
663 <     * (by swapping it with its smaller child) repeatedly until queue[k]
664 <     * is less than or equal to its children.
665 <     */
666 <    private void fixDown(int k) {
667 <        int j;
668 <        if (comparator == null) {
669 <            while ((j = k << 1) <= size) {
670 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
671 <                    j++; // j indexes smallest kid
672 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
673 <                    break;
674 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
675 <                k = j;
676 <            }
677 <        } else {
678 <            while ((j = k << 1) <= size) {
679 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
680 <                    j++; // j indexes smallest kid
681 <                if (comparator.compare(queue[k], queue[j]) <= 0)
682 <                    break;
683 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
684 <                k = j;
685 <            }
658 >     * Inserts item x at position k, maintaining heap invariant by
659 >     * demoting x down the tree repeatedly until it is less than or
660 >     * equal to its children or is a leaf.
661 >     *
662 >     * @param k the position to fill
663 >     * @param x the item to insert
664 >     */
665 >    private void siftDown(int k, E x) {
666 >        if (comparator != null)
667 >            siftDownUsingComparator(k, x);
668 >        else
669 >            siftDownComparable(k, x);
670 >    }
671 >
672 >    private void siftDownComparable(int k, E x) {
673 >        Comparable<? super E> key = (Comparable<? super E>)x;
674 >        int half = size >>> 1;        // loop while a non-leaf
675 >        while (k < half) {
676 >            int child = (k << 1) + 1; // assume left child is least
677 >            Object c = queue[child];
678 >            int right = child + 1;
679 >            if (right < size &&
680 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
681 >                c = queue[child = right];
682 >            if (key.compareTo((E) c) <= 0)
683 >                break;
684 >            queue[k] = c;
685 >            k = child;
686          }
687 +        queue[k] = key;
688 +    }
689 +
690 +    private void siftDownUsingComparator(int k, E x) {
691 +        int half = size >>> 1;
692 +        while (k < half) {
693 +            int child = (k << 1) + 1;
694 +            Object c = queue[child];
695 +            int right = child + 1;
696 +            if (right < size &&
697 +                comparator.compare((E) c, (E) queue[right]) > 0)
698 +                c = queue[child = right];
699 +            if (comparator.compare(x, (E) c) <= 0)
700 +                break;
701 +            queue[k] = c;
702 +            k = child;
703 +        }
704 +        queue[k] = x;
705      }
706  
707      /**
708 <     * Returns the comparator associated with this priority queue, or
709 <     * <tt>null</tt> if it uses its elements' natural ordering.
708 >     * Establishes the heap invariant (described above) in the entire tree,
709 >     * assuming nothing about the order of the elements prior to the call.
710 >     */
711 >    private void heapify() {
712 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
713 >            siftDown(i, (E) queue[i]);
714 >    }
715 >
716 >    /**
717 >     * Returns the comparator used to order the elements in this
718 >     * queue, or {@code null} if this queue is sorted according to
719 >     * the {@linkplain Comparable natural ordering} of its elements.
720       *
721 <     * @return the comparator associated with this priority queue, or
722 <     *         <tt>null</tt> if it uses its elements' natural ordering.
721 >     * @return the comparator used to order this queue, or
722 >     *         {@code null} if this queue is sorted according to the
723 >     *         natural ordering of its elements
724       */
725 <    Comparator comparator() {
725 >    public Comparator<? super E> comparator() {
726          return comparator;
727      }
728 +
729 +    /**
730 +     * Saves the state of the instance to a stream (that
731 +     * is, serializes it).
732 +     *
733 +     * @serialData The length of the array backing the instance is
734 +     *             emitted (int), followed by all of its elements
735 +     *             (each an {@code Object}) in the proper order.
736 +     * @param s the stream
737 +     */
738 +    private void writeObject(java.io.ObjectOutputStream s)
739 +        throws java.io.IOException{
740 +        // Write out element count, and any hidden stuff
741 +        s.defaultWriteObject();
742 +
743 +        // Write out array length, for compatibility with 1.5 version
744 +        s.writeInt(Math.max(2, size + 1));
745 +
746 +        // Write out all elements in the "proper order".
747 +        for (int i = 0; i < size; i++)
748 +            s.writeObject(queue[i]);
749 +    }
750 +
751 +    /**
752 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
753 +     * (that is, deserializes it).
754 +     *
755 +     * @param s the stream
756 +     */
757 +    private void readObject(java.io.ObjectInputStream s)
758 +        throws java.io.IOException, ClassNotFoundException {
759 +        // Read in size, and any hidden stuff
760 +        s.defaultReadObject();
761 +
762 +        // Read in (and discard) array length
763 +        s.readInt();
764 +
765 +        queue = new Object[size];
766 +
767 +        // Read in all elements.
768 +        for (int i = 0; i < size; i++)
769 +            queue[i] = s.readObject();
770 +
771 +        // Elements are guaranteed to be in "proper order", but the
772 +        // spec has never explained what that might be.
773 +        heapify();
774 +    }
775   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines