ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.44 by dl, Sat Oct 18 12:29:27 2003 UTC vs.
Revision 1.72 by jsr166, Fri Jun 10 00:20:44 2011 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28   /**
29 < * An unbounded priority {@linkplain Queue queue} based on a priority
30 < * heap.  This queue orders elements according to an order specified
31 < * at construction time, which is specified either according to their
32 < * <i>natural order</i> (see {@link Comparable}), or according to a
33 < * {@link java.util.Comparator}, depending on which constructor is
34 < * used. A priority queue does not permit <tt>null</tt> elements.
35 < * A priority queue relying on natural ordering also does not
36 < * permit insertion of non-comparable objects (doing so may result
19 < * in <tt>ClassCastException</tt>).
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37   *
38   * <p>The <em>head</em> of this queue is the <em>least</em> element
39   * with respect to the specified ordering.  If multiple elements are
40   * tied for least value, the head is one of those elements -- ties are
41 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
42 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43   * element at the head of the queue.
44   *
45   * <p>A priority queue is unbounded, but has an internal
# Line 32 | Line 49 | package java.util;
49   * grows automatically.  The details of the growth policy are not
50   * specified.
51   *
52 < * <p>This class implements all of the <em>optional</em> methods of
53 < * the {@link Collection} and {@link Iterator} interfaces.  The
54 < * Iterator provided in method {@link #iterator()} is <em>not</em>
55 < * guaranteed to traverse the elements of the PriorityQueue in any
56 < * particular order. If you need ordered traversal, consider using
57 < * <tt>Arrays.sort(pq.toArray())</tt>.
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58   *
59   * <p> <strong>Note that this implementation is not synchronized.</strong>
60 < * Multiple threads should not access a <tt>PriorityQueue</tt>
61 < * instance concurrently if any of the threads modifies the list
62 < * structurally. Instead, use the thread-safe {@link
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63   * java.util.concurrent.PriorityBlockingQueue} class.
64   *
65 < *
66 < * <p>Implementation note: this implementation provides O(log(n)) time
67 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
68 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
69 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
70 < * constant time for the retrieval methods (<tt>peek</tt>,
54 < * <tt>element</tt>, and <tt>size</tt>).
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71   *
72   * <p>This class is a member of the
73 < * <a href="{@docRoot}/../guide/collections/index.html">
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74   * Java Collections Framework</a>.
75 + *
76   * @since 1.5
77 < * @version %I%, %G%
78 < * @author Josh Bloch
62 < * @param <E> the base class of all elements held in this collection
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79   */
80   public class PriorityQueue<E> extends AbstractQueue<E>
81 <    implements Queue<E>, java.io.Serializable {
81 >    implements java.io.Serializable {
82  
83      private static final long serialVersionUID = -7720805057305804111L;
84  
85      private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87      /**
88 <     * Priority queue represented as a balanced binary heap: the two children
89 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
90 <     * ordered by comparator, or by the elements' natural ordering, if
91 <     * comparator is null:  For each node n in the heap and each descendant d
92 <     * of n, n <= d.
93 <     *
78 <     * The element with the lowest value is in queue[1], assuming the queue is
79 <     * nonempty.  (A one-based array is used in preference to the traditional
80 <     * zero-based array to simplify parent and child calculations.)
81 <     *
82 <     * queue.length must be >= 2, even if size == 0.
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94       */
95      private transient Object[] queue;
96  
# Line 101 | Line 112 | public class PriorityQueue<E> extends Ab
112      private transient int modCount = 0;
113  
114      /**
115 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
116 <     * (11) that orders its elements according to their natural
117 <     * ordering (using <tt>Comparable</tt>).
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118       */
119      public PriorityQueue() {
120          this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122  
123      /**
124 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
125 <     * that orders its elements according to their natural ordering
126 <     * (using <tt>Comparable</tt>).
127 <     *
128 <     * @param initialCapacity the initial capacity for this priority queue.
129 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
130 <     * than 1
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131       */
132      public PriorityQueue(int initialCapacity) {
133          this(initialCapacity, null);
134      }
135  
136      /**
137 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138       * that orders its elements according to the specified comparator.
139       *
140 <     * @param initialCapacity the initial capacity for this priority queue.
141 <     * @param comparator the comparator used to order this priority queue.
142 <     * If <tt>null</tt> then the order depends on the elements' natural
143 <     * ordering.
144 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
145 <     * than 1
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146       */
147 <    public PriorityQueue(int initialCapacity,
147 >    public PriorityQueue(int initialCapacity,
148                           Comparator<? super E> comparator) {
149 +        // Note: This restriction of at least one is not actually needed,
150 +        // but continues for 1.5 compatibility
151          if (initialCapacity < 1)
152              throw new IllegalArgumentException();
153 <        this.queue = new Object[initialCapacity + 1];
153 >        this.queue = new Object[initialCapacity];
154          this.comparator = comparator;
155      }
156  
157      /**
158 <     * Common code to initialize underlying queue array across
159 <     * constructors below.
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164 >     *
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167 >     * @throws ClassCastException if elements of the specified collection
168 >     *         cannot be compared to one another according to the priority
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172       */
173 <    private void initializeArray(Collection<? extends E> c) {
174 <        int sz = c.size();
175 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
176 <                                            Integer.MAX_VALUE - 1);
177 <        if (initialCapacity < 1)
178 <            initialCapacity = 1;
179 <
180 <        this.queue = new Object[initialCapacity + 1];
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189      }
190  
191      /**
192 <     * Initially fill elements of the queue array under the
193 <     * knowledge that it is sorted or is another PQ, in which
194 <     * case we can just place the elements in the order presented.
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204       */
205 <    private void fillFromSorted(Collection<? extends E> c) {
206 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
207 <            queue[++size] = i.next();
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209      }
210  
211      /**
212 <     * Initially fill elements of the queue array that is not to our knowledge
213 <     * sorted, so we must rearrange the elements to guarantee the heap
214 <     * invariant.
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223       */
224 <    private void fillFromUnsorted(Collection<? extends E> c) {
225 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
226 <            queue[++size] = i.next();
227 <        heapify();
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228      }
229  
230 <    /**
231 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
232 <     * specified collection.  The priority queue has an initial
233 <     * capacity of 110% of the size of the specified collection or 1
183 <     * if the collection is empty.  If the specified collection is an
184 <     * instance of a {@link java.util.SortedSet} or is another
185 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 <     * according to the same comparator, or according to its elements'
187 <     * natural order if the collection is sorted according to its
188 <     * elements' natural order.  Otherwise, the priority queue is
189 <     * ordered according to its elements' natural order.
190 <     *
191 <     * @param c the collection whose elements are to be placed
192 <     *        into this priority queue.
193 <     * @throws ClassCastException if elements of the specified collection
194 <     *         cannot be compared to one another according to the priority
195 <     *         queue's ordering.
196 <     * @throws NullPointerException if <tt>c</tt> or any element within it
197 <     * is <tt>null</tt>
198 <     */
199 <    public PriorityQueue(Collection<? extends E> c) {
200 <        initializeArray(c);
201 <        if (c instanceof SortedSet) {
202 <            // @fixme double-cast workaround for compiler
203 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
204 <            comparator = (Comparator<? super E>)s.comparator();
205 <            fillFromSorted(s);
206 <        } else if (c instanceof PriorityQueue) {
207 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
208 <            comparator = (Comparator<? super E>)s.comparator();
209 <            fillFromSorted(s);
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234          } else {
235 <            comparator = null;
212 <            fillFromUnsorted(c);
235 >            initFromCollection(c);
236          }
237      }
238  
239 +    private void initElementsFromCollection(Collection<? extends E> c) {
240 +        Object[] a = c.toArray();
241 +        // If c.toArray incorrectly doesn't return Object[], copy it.
242 +        if (a.getClass() != Object[].class)
243 +            a = Arrays.copyOf(a, a.length, Object[].class);
244 +        int len = a.length;
245 +        if (len == 1 || this.comparator != null)
246 +            for (int i = 0; i < len; i++)
247 +                if (a[i] == null)
248 +                    throw new NullPointerException();
249 +        this.queue = a;
250 +        this.size = a.length;
251 +    }
252 +
253      /**
254 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
218 <     * specified collection.  The priority queue has an initial
219 <     * capacity of 110% of the size of the specified collection or 1
220 <     * if the collection is empty.  This priority queue will be sorted
221 <     * according to the same comparator as the given collection, or
222 <     * according to its elements' natural order if the collection is
223 <     * sorted according to its elements' natural order.
254 >     * Initializes queue array with elements from the given Collection.
255       *
256 <     * @param c the collection whose elements are to be placed
226 <     *        into this priority queue.
227 <     * @throws ClassCastException if elements of the specified collection
228 <     *         cannot be compared to one another according to the priority
229 <     *         queue's ordering.
230 <     * @throws NullPointerException if <tt>c</tt> or any element within it
231 <     * is <tt>null</tt>
256 >     * @param c the collection
257       */
258 <    public PriorityQueue(PriorityQueue<? extends E> c) {
259 <        initializeArray(c);
260 <        comparator = (Comparator<? super E>)c.comparator();
236 <        fillFromSorted(c);
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261      }
262  
263      /**
264 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
265 <     * specified collection.  The priority queue has an initial
266 <     * capacity of 110% of the size of the specified collection or 1
267 <     * if the collection is empty.  This priority queue will be sorted
268 <     * according to the same comparator as the given collection, or
269 <     * according to its elements' natural order if the collection is
270 <     * sorted according to its elements' natural order.
264 >     * The maximum size of array to allocate.
265 >     * Some VMs reserve some header words in an array.
266 >     * Attempts to allocate larger arrays may result in
267 >     * OutOfMemoryError: Requested array size exceeds VM limit
268 >     */
269 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270 >
271 >    /**
272 >     * Increases the capacity of the array.
273       *
274 <     * @param c the collection whose elements are to be placed
249 <     *        into this priority queue.
250 <     * @throws ClassCastException if elements of the specified collection
251 <     *         cannot be compared to one another according to the priority
252 <     *         queue's ordering.
253 <     * @throws NullPointerException if <tt>c</tt> or any element within it
254 <     * is <tt>null</tt>
274 >     * @param minCapacity the desired minimum capacity
275       */
276 <    public PriorityQueue(SortedSet<? extends E> c) {
277 <        initializeArray(c);
278 <        comparator = (Comparator<? super E>)c.comparator();
279 <        fillFromSorted(c);
276 >    private void grow(int minCapacity) {
277 >        int oldCapacity = queue.length;
278 >        // Double size if small; else grow by 50%
279 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 >                                         (oldCapacity + 2) :
281 >                                         (oldCapacity >> 1));
282 >        // overflow-conscious code
283 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 >            newCapacity = hugeCapacity(minCapacity);
285 >        queue = Arrays.copyOf(queue, newCapacity);
286 >    }
287 >
288 >    private static int hugeCapacity(int minCapacity) {
289 >        if (minCapacity < 0) // overflow
290 >            throw new OutOfMemoryError();
291 >        return (minCapacity > MAX_ARRAY_SIZE) ?
292 >            Integer.MAX_VALUE :
293 >            MAX_ARRAY_SIZE;
294      }
295  
296      /**
297 <     * Resize array, if necessary, to be able to hold given index
297 >     * Inserts the specified element into this priority queue.
298 >     *
299 >     * @return {@code true} (as specified by {@link Collection#add})
300 >     * @throws ClassCastException if the specified element cannot be
301 >     *         compared with elements currently in this priority queue
302 >     *         according to the priority queue's ordering
303 >     * @throws NullPointerException if the specified element is null
304       */
305 <    private void grow(int index) {
306 <        int newlen = queue.length;
267 <        if (index < newlen) // don't need to grow
268 <            return;
269 <        if (index == Integer.MAX_VALUE)
270 <            throw new OutOfMemoryError();
271 <        while (newlen <= index) {
272 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
273 <                newlen = Integer.MAX_VALUE;
274 <            else
275 <                newlen <<= 2;
276 <        }
277 <        Object[] newQueue = new Object[newlen];
278 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
279 <        queue = newQueue;
305 >    public boolean add(E e) {
306 >        return offer(e);
307      }
281            
308  
309      /**
310       * Inserts the specified element into this priority queue.
311       *
312 <     * @return <tt>true</tt>
313 <     * @throws ClassCastException if the specified element cannot be compared
314 <     * with elements currently in the priority queue according
315 <     * to the priority queue's ordering.
316 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
312 >     * @return {@code true} (as specified by {@link Queue#offer})
313 >     * @throws ClassCastException if the specified element cannot be
314 >     *         compared with elements currently in this priority queue
315 >     *         according to the priority queue's ordering
316 >     * @throws NullPointerException if the specified element is null
317       */
318 <    public boolean offer(E o) {
319 <        if (o == null)
318 >    public boolean offer(E e) {
319 >        if (e == null)
320              throw new NullPointerException();
321          modCount++;
322 <        ++size;
323 <
324 <        // Grow backing store if necessary
325 <        if (size >= queue.length)
326 <            grow(size);
327 <
328 <        queue[size] = o;
329 <        fixUp(size);
322 >        int i = size;
323 >        if (i >= queue.length)
324 >            grow(i + 1);
325 >        size = i + 1;
326 >        if (i == 0)
327 >            queue[0] = e;
328 >        else
329 >            siftUp(i, e);
330          return true;
331      }
332  
333      public E peek() {
334          if (size == 0)
335              return null;
336 <        return (E) queue[1];
336 >        return (E) queue[0];
337      }
338  
339 <    // Collection Methods - the first two override to update docs
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            for (int i = 0; i < size; i++)
342 >                if (o.equals(queue[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346 >    }
347  
348      /**
349 <     * Adds the specified element to this queue.
350 <     * @return <tt>true</tt> (as per the general contract of
351 <     * <tt>Collection.add</tt>).
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355       *
356 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
357 <     * @throws ClassCastException if the specified element cannot be compared
322 <     * with elements currently in the priority queue according
323 <     * to the priority queue's ordering.
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358       */
325    public boolean add(E o) {
326        return offer(o);
327    }
328
359      public boolean remove(Object o) {
360 <        if (o == null)
360 >        int i = indexOf(o);
361 >        if (i == -1)
362              return false;
363 +        else {
364 +            removeAt(i);
365 +            return true;
366 +        }
367 +    }
368  
369 <        if (comparator == null) {
370 <            for (int i = 1; i <= size; i++) {
371 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
372 <                    removeAt(i);
373 <                    return true;
374 <                }
375 <            }
376 <        } else {
377 <            for (int i = 1; i <= size; i++) {
378 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
379 <                    removeAt(i);
380 <                    return true;
345 <                }
369 >    /**
370 >     * Version of remove using reference equality, not equals.
371 >     * Needed by iterator.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if removed
375 >     */
376 >    boolean removeEq(Object o) {
377 >        for (int i = 0; i < size; i++) {
378 >            if (o == queue[i]) {
379 >                removeAt(i);
380 >                return true;
381              }
382          }
383          return false;
384      }
385  
386      /**
387 +     * Returns {@code true} if this queue contains the specified element.
388 +     * More formally, returns {@code true} if and only if this queue contains
389 +     * at least one element {@code e} such that {@code o.equals(e)}.
390 +     *
391 +     * @param o object to be checked for containment in this queue
392 +     * @return {@code true} if this queue contains the specified element
393 +     */
394 +    public boolean contains(Object o) {
395 +        return indexOf(o) != -1;
396 +    }
397 +
398 +    /**
399 +     * Returns an array containing all of the elements in this queue.
400 +     * The elements are in no particular order.
401 +     *
402 +     * <p>The returned array will be "safe" in that no references to it are
403 +     * maintained by this queue.  (In other words, this method must allocate
404 +     * a new array).  The caller is thus free to modify the returned array.
405 +     *
406 +     * <p>This method acts as bridge between array-based and collection-based
407 +     * APIs.
408 +     *
409 +     * @return an array containing all of the elements in this queue
410 +     */
411 +    public Object[] toArray() {
412 +        return Arrays.copyOf(queue, size);
413 +    }
414 +
415 +    /**
416 +     * Returns an array containing all of the elements in this queue; the
417 +     * runtime type of the returned array is that of the specified array.
418 +     * The returned array elements are in no particular order.
419 +     * If the queue fits in the specified array, it is returned therein.
420 +     * Otherwise, a new array is allocated with the runtime type of the
421 +     * specified array and the size of this queue.
422 +     *
423 +     * <p>If the queue fits in the specified array with room to spare
424 +     * (i.e., the array has more elements than the queue), the element in
425 +     * the array immediately following the end of the collection is set to
426 +     * {@code null}.
427 +     *
428 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 +     * array-based and collection-based APIs.  Further, this method allows
430 +     * precise control over the runtime type of the output array, and may,
431 +     * under certain circumstances, be used to save allocation costs.
432 +     *
433 +     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
434 +     * The following code can be used to dump the queue into a newly
435 +     * allocated array of <tt>String</tt>:
436 +     *
437 +     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438 +     *
439 +     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
440 +     * <tt>toArray()</tt>.
441 +     *
442 +     * @param a the array into which the elements of the queue are to
443 +     *          be stored, if it is big enough; otherwise, a new array of the
444 +     *          same runtime type is allocated for this purpose.
445 +     * @return an array containing all of the elements in this queue
446 +     * @throws ArrayStoreException if the runtime type of the specified array
447 +     *         is not a supertype of the runtime type of every element in
448 +     *         this queue
449 +     * @throws NullPointerException if the specified array is null
450 +     */
451 +    public <T> T[] toArray(T[] a) {
452 +        if (a.length < size)
453 +            // Make a new array of a's runtime type, but my contents:
454 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
455 +        System.arraycopy(queue, 0, a, 0, size);
456 +        if (a.length > size)
457 +            a[size] = null;
458 +        return a;
459 +    }
460 +
461 +    /**
462       * Returns an iterator over the elements in this queue. The iterator
463       * does not return the elements in any particular order.
464       *
465 <     * @return an iterator over the elements in this queue.
465 >     * @return an iterator over the elements in this queue
466       */
467      public Iterator<E> iterator() {
468          return new Itr();
469      }
470  
471 <    private class Itr implements Iterator<E> {
362 <
471 >    private final class Itr implements Iterator<E> {
472          /**
473           * Index (into queue array) of element to be returned by
474           * subsequent call to next.
475           */
476 <        private int cursor = 1;
476 >        private int cursor = 0;
477  
478          /**
479           * Index of element returned by most recent call to next,
480           * unless that element came from the forgetMeNot list.
481 <         * Reset to 0 if element is deleted by a call to remove.
373 <         */
374 <        private int lastRet = 0;
375 <
376 <        /**
377 <         * The modCount value that the iterator believes that the backing
378 <         * List should have.  If this expectation is violated, the iterator
379 <         * has detected concurrent modification.
481 >         * Set to -1 if element is deleted by a call to remove.
482           */
483 <        private int expectedModCount = modCount;
483 >        private int lastRet = -1;
484  
485          /**
486 <         * A list of elements that were moved from the unvisited portion of
486 >         * A queue of elements that were moved from the unvisited portion of
487           * the heap into the visited portion as a result of "unlucky" element
488           * removals during the iteration.  (Unlucky element removals are those
489 <         * that require a fixup instead of a fixdown.)  We must visit all of
489 >         * that require a siftup instead of a siftdown.)  We must visit all of
490           * the elements in this list to complete the iteration.  We do this
491           * after we've completed the "normal" iteration.
492           *
493           * We expect that most iterations, even those involving removals,
494 <         * will not use need to store elements in this field.
494 >         * will not need to store elements in this field.
495           */
496 <        private ArrayList<E> forgetMeNot = null;
496 >        private ArrayDeque<E> forgetMeNot = null;
497  
498          /**
499           * Element returned by the most recent call to next iff that
500           * element was drawn from the forgetMeNot list.
501           */
502 <        private Object lastRetElt = null;
502 >        private E lastRetElt = null;
503 >
504 >        /**
505 >         * The modCount value that the iterator believes that the backing
506 >         * Queue should have.  If this expectation is violated, the iterator
507 >         * has detected concurrent modification.
508 >         */
509 >        private int expectedModCount = modCount;
510  
511          public boolean hasNext() {
512 <            return cursor <= size || forgetMeNot != null;
512 >            return cursor < size ||
513 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
514          }
515  
516          public E next() {
517 <            checkForComodification();
518 <            E result;
519 <            if (cursor <= size) {
520 <                result = (E) queue[cursor];
521 <                lastRet = cursor++;
522 <            }
523 <            else if (forgetMeNot == null)
524 <                throw new NoSuchElementException();
525 <            else {
416 <                int remaining = forgetMeNot.size();
417 <                result = forgetMeNot.remove(remaining - 1);
418 <                if (remaining == 1)
419 <                    forgetMeNot = null;
420 <                lastRet = 0;
421 <                lastRetElt = result;
517 >            if (expectedModCount != modCount)
518 >                throw new ConcurrentModificationException();
519 >            if (cursor < size)
520 >                return (E) queue[lastRet = cursor++];
521 >            if (forgetMeNot != null) {
522 >                lastRet = -1;
523 >                lastRetElt = forgetMeNot.poll();
524 >                if (lastRetElt != null)
525 >                    return lastRetElt;
526              }
527 <            return result;
527 >            throw new NoSuchElementException();
528          }
529  
530          public void remove() {
531 <            checkForComodification();
532 <
533 <            if (lastRet != 0) {
531 >            if (expectedModCount != modCount)
532 >                throw new ConcurrentModificationException();
533 >            if (lastRet != -1) {
534                  E moved = PriorityQueue.this.removeAt(lastRet);
535 <                lastRet = 0;
536 <                if (moved == null) {
535 >                lastRet = -1;
536 >                if (moved == null)
537                      cursor--;
538 <                } else {
538 >                else {
539                      if (forgetMeNot == null)
540 <                        forgetMeNot = new ArrayList<E>();
540 >                        forgetMeNot = new ArrayDeque<E>();
541                      forgetMeNot.add(moved);
542                  }
543              } else if (lastRetElt != null) {
544 <                PriorityQueue.this.remove(lastRetElt);
544 >                PriorityQueue.this.removeEq(lastRetElt);
545                  lastRetElt = null;
546              } else {
547                  throw new IllegalStateException();
548              }
445
549              expectedModCount = modCount;
550          }
448
449        final void checkForComodification() {
450            if (modCount != expectedModCount)
451                throw new ConcurrentModificationException();
452        }
551      }
552  
553      public int size() {
# Line 457 | Line 555 | public class PriorityQueue<E> extends Ab
555      }
556  
557      /**
558 <     * Remove all elements from the priority queue.
558 >     * Removes all of the elements from this priority queue.
559 >     * The queue will be empty after this call returns.
560       */
561      public void clear() {
562          modCount++;
563 <
465 <        // Null out element references to prevent memory leak
466 <        for (int i=1; i<=size; i++)
563 >        for (int i = 0; i < size; i++)
564              queue[i] = null;
468
565          size = 0;
566      }
567  
568      public E poll() {
569          if (size == 0)
570              return null;
571 +        int s = --size;
572          modCount++;
573 <
574 <        E result = (E) queue[1];
575 <        queue[1] = queue[size];
576 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
577 <        if (size > 1)
481 <            fixDown(1);
482 <
573 >        E result = (E) queue[0];
574 >        E x = (E) queue[s];
575 >        queue[s] = null;
576 >        if (s != 0)
577 >            siftDown(0, x);
578          return result;
579      }
580  
581      /**
582 <     * Removes and returns the ith element from queue.  (Recall that queue
488 <     * is one-based, so 1 <= i <= size.)
582 >     * Removes the ith element from queue.
583       *
584 <     * Normally this method leaves the elements at positions from 1 up to i-1,
585 <     * inclusive, untouched.  Under these circumstances, it returns null.
586 <     * Occasionally, in order to maintain the heap invariant, it must move
587 <     * the last element of the list to some index in the range [2, i-1],
588 <     * and move the element previously at position (i/2) to position i.
589 <     * Under these circumstances, this method returns the element that was
590 <     * previously at the end of the list and is now at some position between
591 <     * 2 and i-1 inclusive.
584 >     * Normally this method leaves the elements at up to i-1,
585 >     * inclusive, untouched.  Under these circumstances, it returns
586 >     * null.  Occasionally, in order to maintain the heap invariant,
587 >     * it must swap a later element of the list with one earlier than
588 >     * i.  Under these circumstances, this method returns the element
589 >     * that was previously at the end of the list and is now at some
590 >     * position before i. This fact is used by iterator.remove so as to
591 >     * avoid missing traversing elements.
592       */
593 <    private E removeAt(int i) {
594 <        assert i > 0 && i <= size;
593 >    private E removeAt(int i) {
594 >        assert i >= 0 && i < size;
595          modCount++;
596 <
597 <        E moved = (E) queue[size];
598 <        queue[i] = moved;
599 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
600 <        if (i <= size) {
601 <            fixDown(i);
596 >        int s = --size;
597 >        if (s == i) // removed last element
598 >            queue[i] = null;
599 >        else {
600 >            E moved = (E) queue[s];
601 >            queue[s] = null;
602 >            siftDown(i, moved);
603              if (queue[i] == moved) {
604 <                fixUp(i);
604 >                siftUp(i, moved);
605                  if (queue[i] != moved)
606                      return moved;
607              }
# Line 515 | Line 610 | public class PriorityQueue<E> extends Ab
610      }
611  
612      /**
613 <     * Establishes the heap invariant (described above) assuming the heap
614 <     * satisfies the invariant except possibly for the leaf-node indexed by k
615 <     * (which may have a nextExecutionTime less than its parent's).
616 <     *
617 <     * This method functions by "promoting" queue[k] up the hierarchy
618 <     * (by swapping it with its parent) repeatedly until queue[k]
619 <     * is greater than or equal to its parent.
620 <     */
621 <    private void fixUp(int k) {
622 <        if (comparator == null) {
623 <            while (k > 1) {
624 <                int j = k >> 1;
625 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
626 <                    break;
627 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
628 <                k = j;
629 <            }
630 <        } else {
631 <            while (k > 1) {
632 <                int j = k >>> 1;
633 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
634 <                    break;
635 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
636 <                k = j;
637 <            }
613 >     * Inserts item x at position k, maintaining heap invariant by
614 >     * promoting x up the tree until it is greater than or equal to
615 >     * its parent, or is the root.
616 >     *
617 >     * To simplify and speed up coercions and comparisons. the
618 >     * Comparable and Comparator versions are separated into different
619 >     * methods that are otherwise identical. (Similarly for siftDown.)
620 >     *
621 >     * @param k the position to fill
622 >     * @param x the item to insert
623 >     */
624 >    private void siftUp(int k, E x) {
625 >        if (comparator != null)
626 >            siftUpUsingComparator(k, x);
627 >        else
628 >            siftUpComparable(k, x);
629 >    }
630 >
631 >    private void siftUpComparable(int k, E x) {
632 >        Comparable<? super E> key = (Comparable<? super E>) x;
633 >        while (k > 0) {
634 >            int parent = (k - 1) >>> 1;
635 >            Object e = queue[parent];
636 >            if (key.compareTo((E) e) >= 0)
637 >                break;
638 >            queue[k] = e;
639 >            k = parent;
640          }
641 +        queue[k] = key;
642 +    }
643 +
644 +    private void siftUpUsingComparator(int k, E x) {
645 +        while (k > 0) {
646 +            int parent = (k - 1) >>> 1;
647 +            Object e = queue[parent];
648 +            if (comparator.compare(x, (E) e) >= 0)
649 +                break;
650 +            queue[k] = e;
651 +            k = parent;
652 +        }
653 +        queue[k] = x;
654      }
655  
656      /**
657 <     * Establishes the heap invariant (described above) in the subtree
658 <     * rooted at k, which is assumed to satisfy the heap invariant except
659 <     * possibly for node k itself (which may be greater than its children).
660 <     *
661 <     * This method functions by "demoting" queue[k] down the hierarchy
662 <     * (by swapping it with its smaller child) repeatedly until queue[k]
663 <     * is less than or equal to its children.
664 <     */
665 <    private void fixDown(int k) {
666 <        int j;
667 <        if (comparator == null) {
668 <            while ((j = k << 1) <= size && (j > 0)) {
669 <                if (j<size &&
670 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
671 <                    j++; // j indexes smallest kid
672 <
673 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
674 <                    break;
675 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
676 <                k = j;
677 <            }
678 <        } else {
679 <            while ((j = k << 1) <= size && (j > 0)) {
680 <                if (j<size &&
681 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
682 <                    j++; // j indexes smallest kid
683 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
684 <                    break;
575 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
576 <                k = j;
577 <            }
657 >     * Inserts item x at position k, maintaining heap invariant by
658 >     * demoting x down the tree repeatedly until it is less than or
659 >     * equal to its children or is a leaf.
660 >     *
661 >     * @param k the position to fill
662 >     * @param x the item to insert
663 >     */
664 >    private void siftDown(int k, E x) {
665 >        if (comparator != null)
666 >            siftDownUsingComparator(k, x);
667 >        else
668 >            siftDownComparable(k, x);
669 >    }
670 >
671 >    private void siftDownComparable(int k, E x) {
672 >        Comparable<? super E> key = (Comparable<? super E>)x;
673 >        int half = size >>> 1;        // loop while a non-leaf
674 >        while (k < half) {
675 >            int child = (k << 1) + 1; // assume left child is least
676 >            Object c = queue[child];
677 >            int right = child + 1;
678 >            if (right < size &&
679 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
680 >                c = queue[child = right];
681 >            if (key.compareTo((E) c) <= 0)
682 >                break;
683 >            queue[k] = c;
684 >            k = child;
685          }
686 +        queue[k] = key;
687 +    }
688 +
689 +    private void siftDownUsingComparator(int k, E x) {
690 +        int half = size >>> 1;
691 +        while (k < half) {
692 +            int child = (k << 1) + 1;
693 +            Object c = queue[child];
694 +            int right = child + 1;
695 +            if (right < size &&
696 +                comparator.compare((E) c, (E) queue[right]) > 0)
697 +                c = queue[child = right];
698 +            if (comparator.compare(x, (E) c) <= 0)
699 +                break;
700 +            queue[k] = c;
701 +            k = child;
702 +        }
703 +        queue[k] = x;
704      }
705  
706      /**
# Line 583 | Line 708 | public class PriorityQueue<E> extends Ab
708       * assuming nothing about the order of the elements prior to the call.
709       */
710      private void heapify() {
711 <        for (int i = size/2; i >= 1; i--)
712 <            fixDown(i);
711 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
712 >            siftDown(i, (E) queue[i]);
713      }
714  
715      /**
716 <     * Returns the comparator used to order this collection, or <tt>null</tt>
717 <     * if this collection is sorted according to its elements natural ordering
718 <     * (using <tt>Comparable</tt>).
716 >     * Returns the comparator used to order the elements in this
717 >     * queue, or {@code null} if this queue is sorted according to
718 >     * the {@linkplain Comparable natural ordering} of its elements.
719       *
720 <     * @return the comparator used to order this collection, or <tt>null</tt>
721 <     * if this collection is sorted according to its elements natural ordering.
720 >     * @return the comparator used to order this queue, or
721 >     *         {@code null} if this queue is sorted according to the
722 >     *         natural ordering of its elements
723       */
724      public Comparator<? super E> comparator() {
725          return comparator;
726      }
727  
728      /**
729 <     * Save the state of the instance to a stream (that
730 <     * is, serialize it).
729 >     * Saves the state of the instance to a stream (that
730 >     * is, serializes it).
731       *
732       * @serialData The length of the array backing the instance is
733 <     * emitted (int), followed by all of its elements (each an
734 <     * <tt>Object</tt>) in the proper order.
733 >     *             emitted (int), followed by all of its elements
734 >     *             (each an {@code Object}) in the proper order.
735       * @param s the stream
736       */
737      private void writeObject(java.io.ObjectOutputStream s)
# Line 613 | Line 739 | public class PriorityQueue<E> extends Ab
739          // Write out element count, and any hidden stuff
740          s.defaultWriteObject();
741  
742 <        // Write out array length
743 <        s.writeInt(queue.length);
742 >        // Write out array length, for compatibility with 1.5 version
743 >        s.writeInt(Math.max(2, size + 1));
744  
745 <        // Write out all elements in the proper order.
746 <        for (int i=1; i<=size; i++)
745 >        // Write out all elements in the "proper order".
746 >        for (int i = 0; i < size; i++)
747              s.writeObject(queue[i]);
748      }
749  
750      /**
751 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
752 <     * deserialize it).
751 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
752 >     * (that is, deserializes it).
753 >     *
754       * @param s the stream
755       */
756      private void readObject(java.io.ObjectInputStream s)
# Line 631 | Line 758 | public class PriorityQueue<E> extends Ab
758          // Read in size, and any hidden stuff
759          s.defaultReadObject();
760  
761 <        // Read in array length and allocate array
762 <        int arrayLength = s.readInt();
763 <        queue = new Object[arrayLength];
764 <
638 <        // Read in all elements in the proper order.
639 <        for (int i=1; i<=size; i++)
640 <            queue[i] = (E) s.readObject();
641 <    }
761 >        // Read in (and discard) array length
762 >        s.readInt();
763 >
764 >        queue = new Object[size];
765  
766 +        // Read in all elements.
767 +        for (int i = 0; i < size; i++)
768 +            queue[i] = s.readObject();
769 +
770 +        // Elements are guaranteed to be in "proper order", but the
771 +        // spec has never explained what that might be.
772 +        heapify();
773 +    }
774   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines