ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.8 by dl, Tue Jul 1 16:29:45 2003 UTC vs.
Revision 1.92 by jsr166, Mon Feb 18 03:15:10 2013 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 > import java.util.function.Consumer;
28 > import java.util.stream.Stream;
29 > import java.util.stream.Streams;
30  
31   /**
32 < * An unbounded priority queue based on a priority heap.  This queue orders
33 < * elements according to an order specified at construction time, which is
34 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
38 < * minimal element with respect to the specified ordering.  If multiple
39 < * elements are tied for least value, no guarantees are made as to
40 < * which of these elements is returned.
41 < *
42 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
43 < * size of the array used internally to store the elements on the
44 < * queue.  It is always at least as large as the queue size.  As
45 < * elements are added to a priority queue, its capacity grows
46 < * automatically.  The details of the growth policy are not specified.
47 < *
48 < *<p>Implementation note: this implementation provides O(log(n)) time
49 < *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 < *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 < *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 < *constant time for the retrieval methods (<tt>peek</tt>,
53 < *<tt>element</tt>, and <tt>size</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53 > * specified.
54 > *
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
59 > * the priority queue in any particular order. If you need ordered
60 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 > *
62 > * <p><strong>Note that this implementation is not synchronized.</strong>
63 > * Multiple threads should not access a {@code PriorityQueue}
64 > * instance concurrently if any of the threads modifies the queue.
65 > * Instead, use the thread-safe {@link
66 > * java.util.concurrent.PriorityBlockingQueue} class.
67 > *
68 > * <p>Implementation note: this implementation provides
69 > * O(log(n)) time for the enqueing and dequeing methods
70 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 > * methods; and constant time for the retrieval methods
73 > * ({@code peek}, {@code element}, and {@code size}).
74   *
75   * <p>This class is a member of the
76 < * <a href="{@docRoot}/../guide/collections/index.html">
76 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77   * Java Collections Framework</a>.
78 + *
79   * @since 1.5
80 < * @author Josh Bloch
80 > * @author Josh Bloch, Doug Lea
81 > * @param <E> the type of elements held in this collection
82   */
83   public class PriorityQueue<E> extends AbstractQueue<E>
84 <                              implements Queue<E>,
85 <                                         java.io.Serializable {
84 >    implements java.io.Serializable {
85 >
86 >    private static final long serialVersionUID = -7720805057305804111L;
87 >
88      private static final int DEFAULT_INITIAL_CAPACITY = 11;
89  
90      /**
91 <     * Priority queue represented as a balanced binary heap: the two children
92 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
93 <     * ordered by comparator, or by the elements' natural ordering, if
94 <     * comparator is null:  For each node n in the heap and each descendant d
95 <     * of n, n <= d.
96 <     *
45 <     * The element with the lowest value is in queue[1], assuming the queue is
46 <     * nonempty.  (A one-based array is used in preference to the traditional
47 <     * zero-based array to simplify parent and child calculations.)
48 <     *
49 <     * queue.length must be >= 2, even if size == 0.
91 >     * Priority queue represented as a balanced binary heap: the two
92 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
93 >     * priority queue is ordered by comparator, or by the elements'
94 >     * natural ordering, if comparator is null: For each node n in the
95 >     * heap and each descendant d of n, n <= d.  The element with the
96 >     * lowest value is in queue[0], assuming the queue is nonempty.
97       */
98 <    private transient E[] queue;
98 >    transient Object[] queue; // non-private to simplify nested class access
99  
100      /**
101       * The number of elements in the priority queue.
# Line 59 | Line 106 | public class PriorityQueue<E> extends Ab
106       * The comparator, or null if priority queue uses elements'
107       * natural ordering.
108       */
109 <    private final Comparator<E> comparator;
109 >    private final Comparator<? super E> comparator;
110  
111      /**
112       * The number of times this priority queue has been
113       * <i>structurally modified</i>.  See AbstractList for gory details.
114       */
115 <    private transient int modCount = 0;
115 >    transient int modCount = 0; // non-private to simplify nested class access
116  
117      /**
118 <     * Create a new priority queue with the default initial capacity
119 <     * (11) that orders its elements according to their natural
120 <     * ordering (using <tt>Comparable</tt>.)
118 >     * Creates a {@code PriorityQueue} with the default initial
119 >     * capacity (11) that orders its elements according to their
120 >     * {@linkplain Comparable natural ordering}.
121       */
122      public PriorityQueue() {
123 <        this(DEFAULT_INITIAL_CAPACITY);
123 >        this(DEFAULT_INITIAL_CAPACITY, null);
124      }
125  
126      /**
127 <     * Create a new priority queue with the specified initial capacity
128 <     * that orders its elements according to their natural ordering
129 <     * (using <tt>Comparable</tt>.)
127 >     * Creates a {@code PriorityQueue} with the specified initial
128 >     * capacity that orders its elements according to their
129 >     * {@linkplain Comparable natural ordering}.
130       *
131 <     * @param initialCapacity the initial capacity for this priority queue.
131 >     * @param initialCapacity the initial capacity for this priority queue
132 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
133 >     *         than 1
134       */
135      public PriorityQueue(int initialCapacity) {
136          this(initialCapacity, null);
137      }
138  
139      /**
140 <     * Create a new priority queue with the specified initial capacity (11)
140 >     * Creates a {@code PriorityQueue} with the specified initial capacity
141       * that orders its elements according to the specified comparator.
142       *
143 <     * @param initialCapacity the initial capacity for this priority queue.
144 <     * @param comparator the comparator used to order this priority queue.
145 <     */
146 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
143 >     * @param  initialCapacity the initial capacity for this priority queue
144 >     * @param  comparator the comparator that will be used to order this
145 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
146 >     *         natural ordering} of the elements will be used.
147 >     * @throws IllegalArgumentException if {@code initialCapacity} is
148 >     *         less than 1
149 >     */
150 >    public PriorityQueue(int initialCapacity,
151 >                         Comparator<? super E> comparator) {
152 >        // Note: This restriction of at least one is not actually needed,
153 >        // but continues for 1.5 compatibility
154          if (initialCapacity < 1)
155 <            initialCapacity = 1;
156 <        queue = new E[initialCapacity + 1];
155 >            throw new IllegalArgumentException();
156 >        this.queue = new Object[initialCapacity];
157          this.comparator = comparator;
158      }
159  
160      /**
161 <     * Create a new priority queue containing the elements in the specified
162 <     * collection.  The priority queue has an initial capacity of 110% of the
163 <     * size of the specified collection. If the specified collection
164 <     * implements the {@link Sorted} interface, the priority queue will be
165 <     * sorted according to the same comparator, or according to its elements'
166 <     * natural order if the collection is sorted according to its elements'
111 <     * natural order.  If the specified collection does not implement
112 <     * <tt>Sorted</tt>, the priority queue is ordered according to
113 <     * its elements' natural order.
161 >     * Creates a {@code PriorityQueue} containing the elements in the
162 >     * specified collection.  If the specified collection is an instance of
163 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
164 >     * priority queue will be ordered according to the same ordering.
165 >     * Otherwise, this priority queue will be ordered according to the
166 >     * {@linkplain Comparable natural ordering} of its elements.
167       *
168 <     * @param initialElements the collection whose elements are to be placed
169 <     *        into this priority queue.
168 >     * @param  c the collection whose elements are to be placed
169 >     *         into this priority queue
170       * @throws ClassCastException if elements of the specified collection
171       *         cannot be compared to one another according to the priority
172 <     *         queue's ordering.
173 <     * @throws NullPointerException if the specified collection or an
174 <     *         element of the specified collection is <tt>null</tt>.
175 <     */
176 <    public PriorityQueue(Collection<E> initialElements) {
177 <        int sz = initialElements.size();
178 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
179 <                                            Integer.MAX_VALUE - 1);
180 <        if (initialCapacity < 1)
181 <            initialCapacity = 1;
182 <        queue = new E[initialCapacity + 1];
172 >     *         queue's ordering
173 >     * @throws NullPointerException if the specified collection or any
174 >     *         of its elements are null
175 >     */
176 >    @SuppressWarnings("unchecked")
177 >    public PriorityQueue(Collection<? extends E> c) {
178 >        if (c instanceof SortedSet<?>) {
179 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
180 >            this.comparator = (Comparator<? super E>) ss.comparator();
181 >            initElementsFromCollection(ss);
182 >        }
183 >        else if (c instanceof PriorityQueue<?>) {
184 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
185 >            this.comparator = (Comparator<? super E>) pq.comparator();
186 >            initFromPriorityQueue(pq);
187 >        }
188 >        else {
189 >            this.comparator = null;
190 >            initFromCollection(c);
191 >        }
192 >    }
193  
194 +    /**
195 +     * Creates a {@code PriorityQueue} containing the elements in the
196 +     * specified priority queue.  This priority queue will be
197 +     * ordered according to the same ordering as the given priority
198 +     * queue.
199 +     *
200 +     * @param  c the priority queue whose elements are to be placed
201 +     *         into this priority queue
202 +     * @throws ClassCastException if elements of {@code c} cannot be
203 +     *         compared to one another according to {@code c}'s
204 +     *         ordering
205 +     * @throws NullPointerException if the specified priority queue or any
206 +     *         of its elements are null
207 +     */
208 +    @SuppressWarnings("unchecked")
209 +    public PriorityQueue(PriorityQueue<? extends E> c) {
210 +        this.comparator = (Comparator<? super E>) c.comparator();
211 +        initFromPriorityQueue(c);
212 +    }
213  
214 <        if (initialElements instanceof Sorted) {
215 <            comparator = ((Sorted)initialElements).comparator();
216 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
217 <                queue[++size] = i.next();
214 >    /**
215 >     * Creates a {@code PriorityQueue} containing the elements in the
216 >     * specified sorted set.   This priority queue will be ordered
217 >     * according to the same ordering as the given sorted set.
218 >     *
219 >     * @param  c the sorted set whose elements are to be placed
220 >     *         into this priority queue
221 >     * @throws ClassCastException if elements of the specified sorted
222 >     *         set cannot be compared to one another according to the
223 >     *         sorted set's ordering
224 >     * @throws NullPointerException if the specified sorted set or any
225 >     *         of its elements are null
226 >     */
227 >    @SuppressWarnings("unchecked")
228 >    public PriorityQueue(SortedSet<? extends E> c) {
229 >        this.comparator = (Comparator<? super E>) c.comparator();
230 >        initElementsFromCollection(c);
231 >    }
232 >
233 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
234 >        if (c.getClass() == PriorityQueue.class) {
235 >            this.queue = c.toArray();
236 >            this.size = c.size();
237          } else {
238 <            comparator = null;
138 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 <                add(i.next());
238 >            initFromCollection(c);
239          }
240      }
241  
242 <    // Queue Methods
242 >    private void initElementsFromCollection(Collection<? extends E> c) {
243 >        Object[] a = c.toArray();
244 >        // If c.toArray incorrectly doesn't return Object[], copy it.
245 >        if (a.getClass() != Object[].class)
246 >            a = Arrays.copyOf(a, a.length, Object[].class);
247 >        int len = a.length;
248 >        if (len == 1 || this.comparator != null)
249 >            for (int i = 0; i < len; i++)
250 >                if (a[i] == null)
251 >                    throw new NullPointerException();
252 >        this.queue = a;
253 >        this.size = a.length;
254 >    }
255  
256      /**
257 <     * Remove and return the minimal element from this priority queue
147 <     * if it contains one or more elements, otherwise return
148 <     * <tt>null</tt>.  The term <i>minimal</i> is defined according to
149 <     * this priority queue's order.
257 >     * Initializes queue array with elements from the given Collection.
258       *
259 <     * @return the minimal element from this priority queue if it contains
152 <     *         one or more elements, otherwise <tt>null</tt>.
259 >     * @param c the collection
260       */
261 <    public E poll() {
262 <        if (size == 0)
263 <            return null;
264 <        return remove(1);
261 >    private void initFromCollection(Collection<? extends E> c) {
262 >        initElementsFromCollection(c);
263 >        heapify();
264 >    }
265 >
266 >    /**
267 >     * The maximum size of array to allocate.
268 >     * Some VMs reserve some header words in an array.
269 >     * Attempts to allocate larger arrays may result in
270 >     * OutOfMemoryError: Requested array size exceeds VM limit
271 >     */
272 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
273 >
274 >    /**
275 >     * Increases the capacity of the array.
276 >     *
277 >     * @param minCapacity the desired minimum capacity
278 >     */
279 >    private void grow(int minCapacity) {
280 >        int oldCapacity = queue.length;
281 >        // Double size if small; else grow by 50%
282 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
283 >                                         (oldCapacity + 2) :
284 >                                         (oldCapacity >> 1));
285 >        // overflow-conscious code
286 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
287 >            newCapacity = hugeCapacity(minCapacity);
288 >        queue = Arrays.copyOf(queue, newCapacity);
289 >    }
290 >
291 >    private static int hugeCapacity(int minCapacity) {
292 >        if (minCapacity < 0) // overflow
293 >            throw new OutOfMemoryError();
294 >        return (minCapacity > MAX_ARRAY_SIZE) ?
295 >            Integer.MAX_VALUE :
296 >            MAX_ARRAY_SIZE;
297 >    }
298 >
299 >    /**
300 >     * Inserts the specified element into this priority queue.
301 >     *
302 >     * @return {@code true} (as specified by {@link Collection#add})
303 >     * @throws ClassCastException if the specified element cannot be
304 >     *         compared with elements currently in this priority queue
305 >     *         according to the priority queue's ordering
306 >     * @throws NullPointerException if the specified element is null
307 >     */
308 >    public boolean add(E e) {
309 >        return offer(e);
310      }
311  
312      /**
313 <     * Return, but do not remove, the minimal element from the
162 <     * priority queue, or return <tt>null</tt> if the queue is empty.
163 <     * The term <i>minimal</i> is defined according to this priority
164 <     * queue's order.  This method returns the same object reference
165 <     * that would be returned by by the <tt>poll</tt> method.  The two
166 <     * methods differ in that this method does not remove the element
167 <     * from the priority queue.
313 >     * Inserts the specified element into this priority queue.
314       *
315 <     * @return the minimal element from this priority queue if it contains
316 <     *         one or more elements, otherwise <tt>null</tt>.
315 >     * @return {@code true} (as specified by {@link Queue#offer})
316 >     * @throws ClassCastException if the specified element cannot be
317 >     *         compared with elements currently in this priority queue
318 >     *         according to the priority queue's ordering
319 >     * @throws NullPointerException if the specified element is null
320       */
321 +    public boolean offer(E e) {
322 +        if (e == null)
323 +            throw new NullPointerException();
324 +        modCount++;
325 +        int i = size;
326 +        if (i >= queue.length)
327 +            grow(i + 1);
328 +        size = i + 1;
329 +        if (i == 0)
330 +            queue[0] = e;
331 +        else
332 +            siftUp(i, e);
333 +        return true;
334 +    }
335 +
336 +    @SuppressWarnings("unchecked")
337      public E peek() {
338 <        return queue[1];
338 >        return (size == 0) ? null : (E) queue[0];
339      }
340  
341 <    // Collection Methods
341 >    private int indexOf(Object o) {
342 >        if (o != null) {
343 >            for (int i = 0; i < size; i++)
344 >                if (o.equals(queue[i]))
345 >                    return i;
346 >        }
347 >        return -1;
348 >    }
349  
350      /**
351 <     * Removes a single instance of the specified element from this priority
352 <     * queue, if it is present.  Returns true if this collection contained the
353 <     * specified element (or equivalently, if this collection changed as a
351 >     * Removes a single instance of the specified element from this queue,
352 >     * if it is present.  More formally, removes an element {@code e} such
353 >     * that {@code o.equals(e)}, if this queue contains one or more such
354 >     * elements.  Returns {@code true} if and only if this queue contained
355 >     * the specified element (or equivalently, if this queue changed as a
356       * result of the call).
357       *
358 <     * @param element the element to be removed from this collection,
359 <     * if present.
186 <     * @return <tt>true</tt> if this collection changed as a result of the
187 <     *         call
188 <     * @throws ClassCastException if the specified element cannot be compared
189 <     *            with elements currently in the priority queue according
190 <     *            to the priority queue's ordering.
191 <     * @throws NullPointerException if the specified element is null.
358 >     * @param o element to be removed from this queue, if present
359 >     * @return {@code true} if this queue changed as a result of the call
360       */
361 <    public boolean remove(Object element) {
362 <        if (element == null)
363 <            throw new NullPointerException();
361 >    public boolean remove(Object o) {
362 >        int i = indexOf(o);
363 >        if (i == -1)
364 >            return false;
365 >        else {
366 >            removeAt(i);
367 >            return true;
368 >        }
369 >    }
370  
371 <        if (comparator == null) {
372 <            for (int i = 1; i <= size; i++) {
373 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
374 <                    remove(i);
375 <                    return true;
376 <                }
377 <            }
378 <        } else {
379 <            for (int i = 1; i <= size; i++) {
380 <                if (comparator.compare(queue[i], (E) element) == 0) {
381 <                    remove(i);
382 <                    return true;
209 <                }
371 >    /**
372 >     * Version of remove using reference equality, not equals.
373 >     * Needed by iterator.remove.
374 >     *
375 >     * @param o element to be removed from this queue, if present
376 >     * @return {@code true} if removed
377 >     */
378 >    boolean removeEq(Object o) {
379 >        for (int i = 0; i < size; i++) {
380 >            if (o == queue[i]) {
381 >                removeAt(i);
382 >                return true;
383              }
384          }
385          return false;
386      }
387  
388      /**
389 <     * Returns an iterator over the elements in this priority queue.  The
390 <     * elements of the priority queue will be returned by this iterator in the
391 <     * order specified by the queue, which is to say the order they would be
392 <     * returned by repeated calls to <tt>poll</tt>.
393 <     *
394 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
389 >     * Returns {@code true} if this queue contains the specified element.
390 >     * More formally, returns {@code true} if and only if this queue contains
391 >     * at least one element {@code e} such that {@code o.equals(e)}.
392 >     *
393 >     * @param o object to be checked for containment in this queue
394 >     * @return {@code true} if this queue contains the specified element
395 >     */
396 >    public boolean contains(Object o) {
397 >        return indexOf(o) != -1;
398 >    }
399 >
400 >    /**
401 >     * Returns an array containing all of the elements in this queue.
402 >     * The elements are in no particular order.
403 >     *
404 >     * <p>The returned array will be "safe" in that no references to it are
405 >     * maintained by this queue.  (In other words, this method must allocate
406 >     * a new array).  The caller is thus free to modify the returned array.
407 >     *
408 >     * <p>This method acts as bridge between array-based and collection-based
409 >     * APIs.
410 >     *
411 >     * @return an array containing all of the elements in this queue
412 >     */
413 >    public Object[] toArray() {
414 >        return Arrays.copyOf(queue, size);
415 >    }
416 >
417 >    /**
418 >     * Returns an array containing all of the elements in this queue; the
419 >     * runtime type of the returned array is that of the specified array.
420 >     * The returned array elements are in no particular order.
421 >     * If the queue fits in the specified array, it is returned therein.
422 >     * Otherwise, a new array is allocated with the runtime type of the
423 >     * specified array and the size of this queue.
424 >     *
425 >     * <p>If the queue fits in the specified array with room to spare
426 >     * (i.e., the array has more elements than the queue), the element in
427 >     * the array immediately following the end of the collection is set to
428 >     * {@code null}.
429 >     *
430 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
431 >     * array-based and collection-based APIs.  Further, this method allows
432 >     * precise control over the runtime type of the output array, and may,
433 >     * under certain circumstances, be used to save allocation costs.
434 >     *
435 >     * <p>Suppose {@code x} is a queue known to contain only strings.
436 >     * The following code can be used to dump the queue into a newly
437 >     * allocated array of {@code String}:
438 >     *
439 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
440 >     *
441 >     * Note that {@code toArray(new Object[0])} is identical in function to
442 >     * {@code toArray()}.
443 >     *
444 >     * @param a the array into which the elements of the queue are to
445 >     *          be stored, if it is big enough; otherwise, a new array of the
446 >     *          same runtime type is allocated for this purpose.
447 >     * @return an array containing all of the elements in this queue
448 >     * @throws ArrayStoreException if the runtime type of the specified array
449 >     *         is not a supertype of the runtime type of every element in
450 >     *         this queue
451 >     * @throws NullPointerException if the specified array is null
452 >     */
453 >    @SuppressWarnings("unchecked")
454 >    public <T> T[] toArray(T[] a) {
455 >        final int size = this.size;
456 >        if (a.length < size)
457 >            // Make a new array of a's runtime type, but my contents:
458 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
459 >        System.arraycopy(queue, 0, a, 0, size);
460 >        if (a.length > size)
461 >            a[size] = null;
462 >        return a;
463 >    }
464 >
465 >    /**
466 >     * Returns an iterator over the elements in this queue. The iterator
467 >     * does not return the elements in any particular order.
468 >     *
469 >     * @return an iterator over the elements in this queue
470       */
471      public Iterator<E> iterator() {
472          return new Itr();
473      }
474  
475 <    private class Itr implements Iterator<E> {
475 >    private final class Itr implements Iterator<E> {
476          /**
477           * Index (into queue array) of element to be returned by
478           * subsequent call to next.
479           */
480 <        private int cursor = 1;
480 >        private int cursor = 0;
481 >
482 >        /**
483 >         * Index of element returned by most recent call to next,
484 >         * unless that element came from the forgetMeNot list.
485 >         * Set to -1 if element is deleted by a call to remove.
486 >         */
487 >        private int lastRet = -1;
488 >
489 >        /**
490 >         * A queue of elements that were moved from the unvisited portion of
491 >         * the heap into the visited portion as a result of "unlucky" element
492 >         * removals during the iteration.  (Unlucky element removals are those
493 >         * that require a siftup instead of a siftdown.)  We must visit all of
494 >         * the elements in this list to complete the iteration.  We do this
495 >         * after we've completed the "normal" iteration.
496 >         *
497 >         * We expect that most iterations, even those involving removals,
498 >         * will not need to store elements in this field.
499 >         */
500 >        private ArrayDeque<E> forgetMeNot = null;
501  
502          /**
503 <         * Index of element returned by most recent call to next or
504 <         * previous.  Reset to 0 if this element is deleted by a call
237 <         * to remove.
503 >         * Element returned by the most recent call to next iff that
504 >         * element was drawn from the forgetMeNot list.
505           */
506 <        private int lastRet = 0;
506 >        private E lastRetElt = null;
507  
508          /**
509           * The modCount value that the iterator believes that the backing
510 <         * List should have.  If this expectation is violated, the iterator
510 >         * Queue should have.  If this expectation is violated, the iterator
511           * has detected concurrent modification.
512           */
513          private int expectedModCount = modCount;
514  
515          public boolean hasNext() {
516 <            return cursor <= size;
516 >            return cursor < size ||
517 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
518          }
519  
520 +        @SuppressWarnings("unchecked")
521          public E next() {
522 <            checkForComodification();
523 <            if (cursor > size)
524 <                throw new NoSuchElementException();
525 <            E result = queue[cursor];
526 <            lastRet = cursor++;
527 <            return result;
522 >            if (expectedModCount != modCount)
523 >                throw new ConcurrentModificationException();
524 >            if (cursor < size)
525 >                return (E) queue[lastRet = cursor++];
526 >            if (forgetMeNot != null) {
527 >                lastRet = -1;
528 >                lastRetElt = forgetMeNot.poll();
529 >                if (lastRetElt != null)
530 >                    return lastRetElt;
531 >            }
532 >            throw new NoSuchElementException();
533          }
534  
535          public void remove() {
536 <            if (lastRet == 0)
536 >            if (expectedModCount != modCount)
537 >                throw new ConcurrentModificationException();
538 >            if (lastRet != -1) {
539 >                E moved = PriorityQueue.this.removeAt(lastRet);
540 >                lastRet = -1;
541 >                if (moved == null)
542 >                    cursor--;
543 >                else {
544 >                    if (forgetMeNot == null)
545 >                        forgetMeNot = new ArrayDeque<>();
546 >                    forgetMeNot.add(moved);
547 >                }
548 >            } else if (lastRetElt != null) {
549 >                PriorityQueue.this.removeEq(lastRetElt);
550 >                lastRetElt = null;
551 >            } else {
552                  throw new IllegalStateException();
553 <            checkForComodification();
265 <
266 <            PriorityQueue.this.remove(lastRet);
267 <            if (lastRet < cursor)
268 <                cursor--;
269 <            lastRet = 0;
553 >            }
554              expectedModCount = modCount;
555          }
272
273        final void checkForComodification() {
274            if (modCount != expectedModCount)
275                throw new ConcurrentModificationException();
276        }
556      }
557  
279    /**
280     * Returns the number of elements in this priority queue.
281     *
282     * @return the number of elements in this priority queue.
283     */
558      public int size() {
559          return size;
560      }
561  
562      /**
563 <     * Add the specified element to this priority queue.
564 <     *
291 <     * @param element the element to add.
292 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
563 >     * Removes all of the elements from this priority queue.
564 >     * The queue will be empty after this call returns.
565       */
566 <    public boolean offer(E element) {
299 <        if (element == null)
300 <            throw new NullPointerException();
566 >    public void clear() {
567          modCount++;
568 +        for (int i = 0; i < size; i++)
569 +            queue[i] = null;
570 +        size = 0;
571 +    }
572  
573 <        // Grow backing store if necessary
574 <        if (++size == queue.length) {
575 <            E[] newQueue = new E[2 * queue.length];
576 <            System.arraycopy(queue, 0, newQueue, 0, size);
577 <            queue = newQueue;
578 <        }
579 <
580 <        queue[size] = element;
581 <        fixUp(size);
582 <        return true;
573 >    @SuppressWarnings("unchecked")
574 >    public E poll() {
575 >        if (size == 0)
576 >            return null;
577 >        int s = --size;
578 >        modCount++;
579 >        E result = (E) queue[0];
580 >        E x = (E) queue[s];
581 >        queue[s] = null;
582 >        if (s != 0)
583 >            siftDown(0, x);
584 >        return result;
585      }
586  
587      /**
588 <     * Remove all elements from the priority queue.
589 <     */
590 <    public void clear() {
588 >     * Removes the ith element from queue.
589 >     *
590 >     * Normally this method leaves the elements at up to i-1,
591 >     * inclusive, untouched.  Under these circumstances, it returns
592 >     * null.  Occasionally, in order to maintain the heap invariant,
593 >     * it must swap a later element of the list with one earlier than
594 >     * i.  Under these circumstances, this method returns the element
595 >     * that was previously at the end of the list and is now at some
596 >     * position before i. This fact is used by iterator.remove so as to
597 >     * avoid missing traversing elements.
598 >     */
599 >    @SuppressWarnings("unchecked")
600 >    private E removeAt(int i) {
601 >        // assert i >= 0 && i < size;
602          modCount++;
603 <
604 <        // Null out element references to prevent memory leak
322 <        for (int i=1; i<=size; i++)
603 >        int s = --size;
604 >        if (s == i) // removed last element
605              queue[i] = null;
606 <
607 <        size = 0;
606 >        else {
607 >            E moved = (E) queue[s];
608 >            queue[s] = null;
609 >            siftDown(i, moved);
610 >            if (queue[i] == moved) {
611 >                siftUp(i, moved);
612 >                if (queue[i] != moved)
613 >                    return moved;
614 >            }
615 >        }
616 >        return null;
617      }
618  
619      /**
620 <     * Removes and returns the ith element from queue.  Recall
621 <     * that queue is one-based, so 1 <= i <= size.
622 <     *
623 <     * XXX: Could further special-case i==size, but is it worth it?
624 <     * XXX: Could special-case i==0, but is it worth it?
625 <     */
626 <    private E remove(int i) {
627 <        assert i <= size;
628 <        modCount++;
620 >     * Inserts item x at position k, maintaining heap invariant by
621 >     * promoting x up the tree until it is greater than or equal to
622 >     * its parent, or is the root.
623 >     *
624 >     * To simplify and speed up coercions and comparisons. the
625 >     * Comparable and Comparator versions are separated into different
626 >     * methods that are otherwise identical. (Similarly for siftDown.)
627 >     *
628 >     * @param k the position to fill
629 >     * @param x the item to insert
630 >     */
631 >    private void siftUp(int k, E x) {
632 >        if (comparator != null)
633 >            siftUpUsingComparator(k, x);
634 >        else
635 >            siftUpComparable(k, x);
636 >    }
637 >
638 >    @SuppressWarnings("unchecked")
639 >    private void siftUpComparable(int k, E x) {
640 >        Comparable<? super E> key = (Comparable<? super E>) x;
641 >        while (k > 0) {
642 >            int parent = (k - 1) >>> 1;
643 >            Object e = queue[parent];
644 >            if (key.compareTo((E) e) >= 0)
645 >                break;
646 >            queue[k] = e;
647 >            k = parent;
648 >        }
649 >        queue[k] = key;
650 >    }
651  
652 <        E result = queue[i];
653 <        queue[i] = queue[size];
654 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
655 <        if (i <= size)
656 <            fixDown(i);
657 <        return result;
652 >    @SuppressWarnings("unchecked")
653 >    private void siftUpUsingComparator(int k, E x) {
654 >        while (k > 0) {
655 >            int parent = (k - 1) >>> 1;
656 >            Object e = queue[parent];
657 >            if (comparator.compare(x, (E) e) >= 0)
658 >                break;
659 >            queue[k] = e;
660 >            k = parent;
661 >        }
662 >        queue[k] = x;
663      }
664  
665      /**
666 <     * Establishes the heap invariant (described above) assuming the heap
667 <     * satisfies the invariant except possibly for the leaf-node indexed by k
668 <     * (which may have a nextExecutionTime less than its parent's).
669 <     *
670 <     * This method functions by "promoting" queue[k] up the hierarchy
671 <     * (by swapping it with its parent) repeatedly until queue[k]
672 <     * is greater than or equal to its parent.
673 <     */
674 <    private void fixUp(int k) {
675 <        if (comparator == null) {
676 <            while (k > 1) {
677 <                int j = k >> 1;
678 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
679 <                    break;
680 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
681 <                k = j;
682 <            }
683 <        } else {
684 <            while (k > 1) {
685 <                int j = k >> 1;
686 <                if (comparator.compare(queue[j], queue[k]) <= 0)
687 <                    break;
688 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
689 <                k = j;
690 <            }
666 >     * Inserts item x at position k, maintaining heap invariant by
667 >     * demoting x down the tree repeatedly until it is less than or
668 >     * equal to its children or is a leaf.
669 >     *
670 >     * @param k the position to fill
671 >     * @param x the item to insert
672 >     */
673 >    private void siftDown(int k, E x) {
674 >        if (comparator != null)
675 >            siftDownUsingComparator(k, x);
676 >        else
677 >            siftDownComparable(k, x);
678 >    }
679 >
680 >    @SuppressWarnings("unchecked")
681 >    private void siftDownComparable(int k, E x) {
682 >        Comparable<? super E> key = (Comparable<? super E>)x;
683 >        int half = size >>> 1;        // loop while a non-leaf
684 >        while (k < half) {
685 >            int child = (k << 1) + 1; // assume left child is least
686 >            Object c = queue[child];
687 >            int right = child + 1;
688 >            if (right < size &&
689 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
690 >                c = queue[child = right];
691 >            if (key.compareTo((E) c) <= 0)
692 >                break;
693 >            queue[k] = c;
694 >            k = child;
695          }
696 +        queue[k] = key;
697      }
698  
699 <    /**
700 <     * Establishes the heap invariant (described above) in the subtree
701 <     * rooted at k, which is assumed to satisfy the heap invariant except
702 <     * possibly for node k itself (which may be greater than its children).
703 <     *
704 <     * This method functions by "demoting" queue[k] down the hierarchy
705 <     * (by swapping it with its smaller child) repeatedly until queue[k]
706 <     * is less than or equal to its children.
707 <     */
708 <    private void fixDown(int k) {
709 <        int j;
710 <        if (comparator == null) {
711 <            while ((j = k << 1) <= size) {
712 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
390 <                    j++; // j indexes smallest kid
391 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
392 <                    break;
393 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
394 <                k = j;
395 <            }
396 <        } else {
397 <            while ((j = k << 1) <= size) {
398 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
399 <                    j++; // j indexes smallest kid
400 <                if (comparator.compare(queue[k], queue[j]) <= 0)
401 <                    break;
402 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
403 <                k = j;
404 <            }
699 >    @SuppressWarnings("unchecked")
700 >    private void siftDownUsingComparator(int k, E x) {
701 >        int half = size >>> 1;
702 >        while (k < half) {
703 >            int child = (k << 1) + 1;
704 >            Object c = queue[child];
705 >            int right = child + 1;
706 >            if (right < size &&
707 >                comparator.compare((E) c, (E) queue[right]) > 0)
708 >                c = queue[child = right];
709 >            if (comparator.compare(x, (E) c) <= 0)
710 >                break;
711 >            queue[k] = c;
712 >            k = child;
713          }
714 +        queue[k] = x;
715      }
716  
717      /**
718 <     * Returns the comparator associated with this priority queue, or
719 <     * <tt>null</tt> if it uses its elements' natural ordering.
718 >     * Establishes the heap invariant (described above) in the entire tree,
719 >     * assuming nothing about the order of the elements prior to the call.
720 >     */
721 >    @SuppressWarnings("unchecked")
722 >    private void heapify() {
723 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
724 >            siftDown(i, (E) queue[i]);
725 >    }
726 >
727 >    /**
728 >     * Returns the comparator used to order the elements in this
729 >     * queue, or {@code null} if this queue is sorted according to
730 >     * the {@linkplain Comparable natural ordering} of its elements.
731       *
732 <     * @return the comparator associated with this priority queue, or
733 <     *         <tt>null</tt> if it uses its elements' natural ordering.
732 >     * @return the comparator used to order this queue, or
733 >     *         {@code null} if this queue is sorted according to the
734 >     *         natural ordering of its elements
735       */
736 <    public Comparator comparator() {
736 >    public Comparator<? super E> comparator() {
737          return comparator;
738      }
739  
740      /**
741 <     * Save the state of the instance to a stream (that
421 <     * is, serialize it).
741 >     * Saves this queue to a stream (that is, serializes it).
742       *
743       * @serialData The length of the array backing the instance is
744 <     * emitted (int), followed by all of its elements (each an
745 <     * <tt>Object</tt>) in the proper order.
744 >     *             emitted (int), followed by all of its elements
745 >     *             (each an {@code Object}) in the proper order.
746       * @param s the stream
747       */
748 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
749 <        throws java.io.IOException{
748 >    private void writeObject(java.io.ObjectOutputStream s)
749 >        throws java.io.IOException {
750          // Write out element count, and any hidden stuff
751          s.defaultWriteObject();
752  
753 <        // Write out array length
754 <        s.writeInt(queue.length);
753 >        // Write out array length, for compatibility with 1.5 version
754 >        s.writeInt(Math.max(2, size + 1));
755  
756 <        // Write out all elements in the proper order.
757 <        for (int i=0; i<size; i++)
756 >        // Write out all elements in the "proper order".
757 >        for (int i = 0; i < size; i++)
758              s.writeObject(queue[i]);
759      }
760  
761      /**
762 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
763 <     * deserialize it).
762 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
763 >     * (that is, deserializes it).
764 >     *
765       * @param s the stream
766       */
767 <    private synchronized void readObject(java.io.ObjectInputStream s)
767 >    private void readObject(java.io.ObjectInputStream s)
768          throws java.io.IOException, ClassNotFoundException {
769          // Read in size, and any hidden stuff
770          s.defaultReadObject();
771  
772 <        // Read in array length and allocate array
773 <        int arrayLength = s.readInt();
774 <        queue = new E[arrayLength];
775 <
776 <        // Read in all elements in the proper order.
777 <        for (int i=0; i<size; i++)
778 <            queue[i] = (E)s.readObject();
772 >        // Read in (and discard) array length
773 >        s.readInt();
774 >
775 >        queue = new Object[size];
776 >
777 >        // Read in all elements.
778 >        for (int i = 0; i < size; i++)
779 >            queue[i] = s.readObject();
780 >
781 >        // Elements are guaranteed to be in "proper order", but the
782 >        // spec has never explained what that might be.
783 >        heapify();
784 >    }
785 >
786 >    final Spliterator<E> spliterator() {
787 >        return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
788 >    }
789 >
790 >    public Stream<E> stream() {
791 >        return Streams.stream(spliterator());
792 >    }
793 >
794 >    public Stream<E> parallelStream() {
795 >        return Streams.parallelStream(spliterator());
796      }
797  
798 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
799 +        /*
800 +         * This is very similar to ArrayList Spliterator, except for
801 +         * extra null checks.
802 +         */
803 +        private final PriorityQueue<E> pq;
804 +        private int index;            // current index, modified on advance/split
805 +        private int fence;            // -1 until first use
806 +        private int expectedModCount; // initialized when fence set
807 +
808 +        /** Creates new spliterator covering the given range */
809 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
810 +                             int expectedModCount) {
811 +            this.pq = pq;
812 +            this.index = origin;
813 +            this.fence = fence;
814 +            this.expectedModCount = expectedModCount;
815 +        }
816 +
817 +        private int getFence() { // initialize fence to size on first use
818 +            int hi;
819 +            if ((hi = fence) < 0) {
820 +                expectedModCount = pq.modCount;
821 +                hi = fence = pq.size;
822 +            }
823 +            return hi;
824 +        }
825 +
826 +        public PriorityQueueSpliterator<E> trySplit() {
827 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
828 +            return (lo >= mid) ? null :
829 +                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
830 +                                                expectedModCount);
831 +        }
832 +
833 +        @SuppressWarnings("unchecked")
834 +        public void forEach(Consumer<? super E> action) {
835 +            int i, hi, mc; // hoist accesses and checks from loop
836 +            PriorityQueue<E> q; Object[] a;
837 +            if (action == null)
838 +                throw new NullPointerException();
839 +            if ((q = pq) != null && (a = q.queue) != null) {
840 +                if ((hi = fence) < 0) {
841 +                    mc = q.modCount;
842 +                    hi = q.size;
843 +                }
844 +                else
845 +                    mc = expectedModCount;
846 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
847 +                    for (E e;; ++i) {
848 +                        if (i < hi) {
849 +                            if ((e = (E) a[i]) == null) // must be CME
850 +                                break;
851 +                            action.accept(e);
852 +                        }
853 +                        else if (q.modCount != mc)
854 +                            break;
855 +                        else
856 +                            return;
857 +                    }
858 +                }
859 +            }
860 +            throw new ConcurrentModificationException();
861 +        }
862 +
863 +        public boolean tryAdvance(Consumer<? super E> action) {
864 +            int hi = getFence(), lo = index;
865 +            if (lo >= 0 && lo < hi) {
866 +                index = lo + 1;
867 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
868 +                if (e == null)
869 +                    throw new ConcurrentModificationException();
870 +                action.accept(e);
871 +                if (pq.modCount != expectedModCount)
872 +                    throw new ConcurrentModificationException();
873 +                return true;
874 +            }
875 +            return false;
876 +        }
877 +
878 +        public long estimateSize() {
879 +            return (long) (getFence() - index);
880 +        }
881 +
882 +        public int characteristics() {
883 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 +        }
885 +    }
886   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines