ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.9 by dl, Sun Jul 13 22:51:22 2003 UTC vs.
Revision 1.122 by jsr166, Sun May 6 02:08:36 2018 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded priority queue based on a priority heap.  This queue orders
33 < * elements according to an order specified at construction time, which is
34 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
38 < * minimal element with respect to the specified ordering.  If multiple
39 < * elements are tied for least value, no guarantees are made as to
40 < * which of these elements is returned.
41 < *
42 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
43 < * size of the array used internally to store the elements on the
44 < * queue.  It is always at least as large as the queue size.  As
45 < * elements are added to a priority queue, its capacity grows
46 < * automatically.  The details of the growth policy are not specified.
47 < *
48 < *<p>Implementation note: this implementation provides O(log(n)) time
49 < *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 < *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 < *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 < *constant time for the retrieval methods (<tt>peek</tt>,
53 < *<tt>element</tt>, and <tt>size</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53 > * specified.
54 > *
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @author Josh Bloch
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83   */
84   public class PriorityQueue<E> extends AbstractQueue<E>
85 <                              implements Queue<E>,
86 <                                         java.io.Serializable {
85 >    implements java.io.Serializable {
86 >
87 >    private static final long serialVersionUID = -7720805057305804111L;
88 >
89      private static final int DEFAULT_INITIAL_CAPACITY = 11;
90  
91      /**
92 <     * Priority queue represented as a balanced binary heap: the two children
93 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
94 <     * ordered by comparator, or by the elements' natural ordering, if
95 <     * comparator is null:  For each node n in the heap and each descendant d
96 <     * of n, n <= d.
97 <     *
45 <     * The element with the lowest value is in queue[1], assuming the queue is
46 <     * nonempty.  (A one-based array is used in preference to the traditional
47 <     * zero-based array to simplify parent and child calculations.)
48 <     *
49 <     * queue.length must be >= 2, even if size == 0.
92 >     * Priority queue represented as a balanced binary heap: the two
93 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
94 >     * priority queue is ordered by comparator, or by the elements'
95 >     * natural ordering, if comparator is null: For each node n in the
96 >     * heap and each descendant d of n, n <= d.  The element with the
97 >     * lowest value is in queue[0], assuming the queue is nonempty.
98       */
99 <    private transient E[] queue;
99 >    transient Object[] queue; // non-private to simplify nested class access
100  
101      /**
102       * The number of elements in the priority queue.
103       */
104 <    private int size = 0;
104 >    int size;
105  
106      /**
107       * The comparator, or null if priority queue uses elements'
108       * natural ordering.
109       */
110 <    private final Comparator<E> comparator;
110 >    private final Comparator<? super E> comparator;
111  
112      /**
113       * The number of times this priority queue has been
114       * <i>structurally modified</i>.  See AbstractList for gory details.
115       */
116 <    private transient int modCount = 0;
116 >    transient int modCount;     // non-private to simplify nested class access
117  
118      /**
119 <     * Create a new priority queue with the default initial capacity
120 <     * (11) that orders its elements according to their natural
121 <     * ordering (using <tt>Comparable</tt>.)
119 >     * Creates a {@code PriorityQueue} with the default initial
120 >     * capacity (11) that orders its elements according to their
121 >     * {@linkplain Comparable natural ordering}.
122       */
123      public PriorityQueue() {
124 <        this(DEFAULT_INITIAL_CAPACITY);
124 >        this(DEFAULT_INITIAL_CAPACITY, null);
125      }
126  
127      /**
128 <     * Create a new priority queue with the specified initial capacity
129 <     * that orders its elements according to their natural ordering
130 <     * (using <tt>Comparable</tt>.)
128 >     * Creates a {@code PriorityQueue} with the specified initial
129 >     * capacity that orders its elements according to their
130 >     * {@linkplain Comparable natural ordering}.
131       *
132 <     * @param initialCapacity the initial capacity for this priority queue.
132 >     * @param initialCapacity the initial capacity for this priority queue
133 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
134 >     *         than 1
135       */
136      public PriorityQueue(int initialCapacity) {
137          this(initialCapacity, null);
138      }
139  
140      /**
141 <     * Create a new priority queue with the specified initial capacity (11)
142 <     * that orders its elements according to the specified comparator.
141 >     * Creates a {@code PriorityQueue} with the default initial capacity and
142 >     * whose elements are ordered according to the specified comparator.
143       *
144 <     * @param initialCapacity the initial capacity for this priority queue.
145 <     * @param comparator the comparator used to order this priority queue.
144 >     * @param  comparator the comparator that will be used to order this
145 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
146 >     *         natural ordering} of the elements will be used.
147 >     * @since 1.8
148       */
149 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
149 >    public PriorityQueue(Comparator<? super E> comparator) {
150 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
151 >    }
152 >
153 >    /**
154 >     * Creates a {@code PriorityQueue} with the specified initial capacity
155 >     * that orders its elements according to the specified comparator.
156 >     *
157 >     * @param  initialCapacity the initial capacity for this priority queue
158 >     * @param  comparator the comparator that will be used to order this
159 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
160 >     *         natural ordering} of the elements will be used.
161 >     * @throws IllegalArgumentException if {@code initialCapacity} is
162 >     *         less than 1
163 >     */
164 >    public PriorityQueue(int initialCapacity,
165 >                         Comparator<? super E> comparator) {
166 >        // Note: This restriction of at least one is not actually needed,
167 >        // but continues for 1.5 compatibility
168          if (initialCapacity < 1)
169 <            initialCapacity = 1;
170 <        queue = new E[initialCapacity + 1];
169 >            throw new IllegalArgumentException();
170 >        this.queue = new Object[initialCapacity];
171          this.comparator = comparator;
172      }
173  
174      /**
175 <     * Create a new priority queue containing the elements in the specified
176 <     * collection.  The priority queue has an initial capacity of 110% of the
177 <     * size of the specified collection. If the specified collection
178 <     * implements the {@link Sorted} interface, the priority queue will be
179 <     * sorted according to the same comparator, or according to its elements'
180 <     * natural order if the collection is sorted according to its elements'
111 <     * natural order.  If the specified collection does not implement
112 <     * <tt>Sorted</tt>, the priority queue is ordered according to
113 <     * its elements' natural order.
175 >     * Creates a {@code PriorityQueue} containing the elements in the
176 >     * specified collection.  If the specified collection is an instance of
177 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
178 >     * priority queue will be ordered according to the same ordering.
179 >     * Otherwise, this priority queue will be ordered according to the
180 >     * {@linkplain Comparable natural ordering} of its elements.
181       *
182 <     * @param initialElements the collection whose elements are to be placed
183 <     *        into this priority queue.
182 >     * @param  c the collection whose elements are to be placed
183 >     *         into this priority queue
184       * @throws ClassCastException if elements of the specified collection
185       *         cannot be compared to one another according to the priority
186 <     *         queue's ordering.
187 <     * @throws NullPointerException if the specified collection or an
188 <     *         element of the specified collection is <tt>null</tt>.
189 <     */
190 <    public PriorityQueue(Collection<E> initialElements) {
191 <        int sz = initialElements.size();
192 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
193 <                                            Integer.MAX_VALUE - 1);
194 <        if (initialCapacity < 1)
195 <            initialCapacity = 1;
196 <        queue = new E[initialCapacity + 1];
186 >     *         queue's ordering
187 >     * @throws NullPointerException if the specified collection or any
188 >     *         of its elements are null
189 >     */
190 >    @SuppressWarnings("unchecked")
191 >    public PriorityQueue(Collection<? extends E> c) {
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206 >    }
207  
208 +    /**
209 +     * Creates a {@code PriorityQueue} containing the elements in the
210 +     * specified priority queue.  This priority queue will be
211 +     * ordered according to the same ordering as the given priority
212 +     * queue.
213 +     *
214 +     * @param  c the priority queue whose elements are to be placed
215 +     *         into this priority queue
216 +     * @throws ClassCastException if elements of {@code c} cannot be
217 +     *         compared to one another according to {@code c}'s
218 +     *         ordering
219 +     * @throws NullPointerException if the specified priority queue or any
220 +     *         of its elements are null
221 +     */
222 +    @SuppressWarnings("unchecked")
223 +    public PriorityQueue(PriorityQueue<? extends E> c) {
224 +        this.comparator = (Comparator<? super E>) c.comparator();
225 +        initFromPriorityQueue(c);
226 +    }
227  
228 <        if (initialElements instanceof Sorted) {
229 <            comparator = ((Sorted)initialElements).comparator();
230 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
231 <                queue[++size] = i.next();
228 >    /**
229 >     * Creates a {@code PriorityQueue} containing the elements in the
230 >     * specified sorted set.   This priority queue will be ordered
231 >     * according to the same ordering as the given sorted set.
232 >     *
233 >     * @param  c the sorted set whose elements are to be placed
234 >     *         into this priority queue
235 >     * @throws ClassCastException if elements of the specified sorted
236 >     *         set cannot be compared to one another according to the
237 >     *         sorted set's ordering
238 >     * @throws NullPointerException if the specified sorted set or any
239 >     *         of its elements are null
240 >     */
241 >    @SuppressWarnings("unchecked")
242 >    public PriorityQueue(SortedSet<? extends E> c) {
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245 >    }
246 >
247 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
248 >        if (c.getClass() == PriorityQueue.class) {
249 >            this.queue = c.toArray();
250 >            this.size = c.size();
251          } else {
252 <            comparator = null;
138 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 <                add(i.next());
252 >            initFromCollection(c);
253          }
254      }
255  
256 <    // Queue Methods
256 >    private void initElementsFromCollection(Collection<? extends E> c) {
257 >        Object[] a = c.toArray();
258 >        // If c.toArray incorrectly doesn't return Object[], copy it.
259 >        if (a.getClass() != Object[].class)
260 >            a = Arrays.copyOf(a, a.length, Object[].class);
261 >        int len = a.length;
262 >        if (len == 1 || this.comparator != null)
263 >            for (Object e : a)
264 >                if (e == null)
265 >                    throw new NullPointerException();
266 >        this.queue = a;
267 >        this.size = a.length;
268 >    }
269  
270      /**
271 <     * Remove and return the minimal element from this priority queue
147 <     * if it contains one or more elements, otherwise return
148 <     * <tt>null</tt>.  The term <i>minimal</i> is defined according to
149 <     * this priority queue's order.
271 >     * Initializes queue array with elements from the given Collection.
272       *
273 <     * @return the minimal element from this priority queue if it contains
152 <     *         one or more elements, otherwise <tt>null</tt>.
273 >     * @param c the collection
274       */
275 <    public E poll() {
276 <        if (size == 0)
277 <            return null;
278 <        return remove(1);
275 >    private void initFromCollection(Collection<? extends E> c) {
276 >        initElementsFromCollection(c);
277 >        heapify();
278 >    }
279 >
280 >    /**
281 >     * The maximum size of array to allocate.
282 >     * Some VMs reserve some header words in an array.
283 >     * Attempts to allocate larger arrays may result in
284 >     * OutOfMemoryError: Requested array size exceeds VM limit
285 >     */
286 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
287 >
288 >    /**
289 >     * Increases the capacity of the array.
290 >     *
291 >     * @param minCapacity the desired minimum capacity
292 >     */
293 >    private void grow(int minCapacity) {
294 >        int oldCapacity = queue.length;
295 >        // Double size if small; else grow by 50%
296 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
297 >                                         (oldCapacity + 2) :
298 >                                         (oldCapacity >> 1));
299 >        // overflow-conscious code
300 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
301 >            newCapacity = hugeCapacity(minCapacity);
302 >        queue = Arrays.copyOf(queue, newCapacity);
303 >    }
304 >
305 >    private static int hugeCapacity(int minCapacity) {
306 >        if (minCapacity < 0) // overflow
307 >            throw new OutOfMemoryError();
308 >        return (minCapacity > MAX_ARRAY_SIZE) ?
309 >            Integer.MAX_VALUE :
310 >            MAX_ARRAY_SIZE;
311 >    }
312 >
313 >    /**
314 >     * Inserts the specified element into this priority queue.
315 >     *
316 >     * @return {@code true} (as specified by {@link Collection#add})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321 >     */
322 >    public boolean add(E e) {
323 >        return offer(e);
324      }
325  
326      /**
327 <     * Return, but do not remove, the minimal element from the
162 <     * priority queue, or return <tt>null</tt> if the queue is empty.
163 <     * The term <i>minimal</i> is defined according to this priority
164 <     * queue's order.  This method returns the same object reference
165 <     * that would be returned by by the <tt>poll</tt> method.  The two
166 <     * methods differ in that this method does not remove the element
167 <     * from the priority queue.
327 >     * Inserts the specified element into this priority queue.
328       *
329 <     * @return the minimal element from this priority queue if it contains
330 <     *         one or more elements, otherwise <tt>null</tt>.
329 >     * @return {@code true} (as specified by {@link Queue#offer})
330 >     * @throws ClassCastException if the specified element cannot be
331 >     *         compared with elements currently in this priority queue
332 >     *         according to the priority queue's ordering
333 >     * @throws NullPointerException if the specified element is null
334       */
335 +    public boolean offer(E e) {
336 +        if (e == null)
337 +            throw new NullPointerException();
338 +        modCount++;
339 +        int i = size;
340 +        if (i >= queue.length)
341 +            grow(i + 1);
342 +        siftUp(i, e);
343 +        size = i + 1;
344 +        return true;
345 +    }
346 +
347 +    @SuppressWarnings("unchecked")
348      public E peek() {
349 <        return queue[1];
349 >        return (size == 0) ? null : (E) queue[0];
350      }
351  
352 <    // Collection Methods
352 >    private int indexOf(Object o) {
353 >        if (o != null) {
354 >            for (int i = 0; i < size; i++)
355 >                if (o.equals(queue[i]))
356 >                    return i;
357 >        }
358 >        return -1;
359 >    }
360  
361      /**
362 <     * Removes a single instance of the specified element from this priority
363 <     * queue, if it is present.  Returns true if this collection contained the
364 <     * specified element (or equivalently, if this collection changed as a
362 >     * Removes a single instance of the specified element from this queue,
363 >     * if it is present.  More formally, removes an element {@code e} such
364 >     * that {@code o.equals(e)}, if this queue contains one or more such
365 >     * elements.  Returns {@code true} if and only if this queue contained
366 >     * the specified element (or equivalently, if this queue changed as a
367       * result of the call).
368       *
369 <     * @param element the element to be removed from this collection,
370 <     * if present.
186 <     * @return <tt>true</tt> if this collection changed as a result of the
187 <     *         call
188 <     * @throws ClassCastException if the specified element cannot be compared
189 <     *            with elements currently in the priority queue according
190 <     *            to the priority queue's ordering.
191 <     * @throws NullPointerException if the specified element is null.
369 >     * @param o element to be removed from this queue, if present
370 >     * @return {@code true} if this queue changed as a result of the call
371       */
372 <    public boolean remove(Object element) {
373 <        if (element == null)
374 <            throw new NullPointerException();
372 >    public boolean remove(Object o) {
373 >        int i = indexOf(o);
374 >        if (i == -1)
375 >            return false;
376 >        else {
377 >            removeAt(i);
378 >            return true;
379 >        }
380 >    }
381  
382 <        if (comparator == null) {
383 <            for (int i = 1; i <= size; i++) {
384 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
385 <                    remove(i);
386 <                    return true;
387 <                }
388 <            }
389 <        } else {
390 <            for (int i = 1; i <= size; i++) {
391 <                if (comparator.compare(queue[i], (E) element) == 0) {
392 <                    remove(i);
393 <                    return true;
209 <                }
382 >    /**
383 >     * Version of remove using reference equality, not equals.
384 >     * Needed by iterator.remove.
385 >     *
386 >     * @param o element to be removed from this queue, if present
387 >     * @return {@code true} if removed
388 >     */
389 >    boolean removeEq(Object o) {
390 >        for (int i = 0; i < size; i++) {
391 >            if (o == queue[i]) {
392 >                removeAt(i);
393 >                return true;
394              }
395          }
396          return false;
397      }
398  
399      /**
400 <     * Returns an iterator over the elements in this priority queue.  The
401 <     * elements of the priority queue will be returned by this iterator in the
402 <     * order specified by the queue, which is to say the order they would be
403 <     * returned by repeated calls to <tt>poll</tt>.
404 <     *
405 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
400 >     * Returns {@code true} if this queue contains the specified element.
401 >     * More formally, returns {@code true} if and only if this queue contains
402 >     * at least one element {@code e} such that {@code o.equals(e)}.
403 >     *
404 >     * @param o object to be checked for containment in this queue
405 >     * @return {@code true} if this queue contains the specified element
406 >     */
407 >    public boolean contains(Object o) {
408 >        return indexOf(o) >= 0;
409 >    }
410 >
411 >    /**
412 >     * Returns an array containing all of the elements in this queue.
413 >     * The elements are in no particular order.
414 >     *
415 >     * <p>The returned array will be "safe" in that no references to it are
416 >     * maintained by this queue.  (In other words, this method must allocate
417 >     * a new array).  The caller is thus free to modify the returned array.
418 >     *
419 >     * <p>This method acts as bridge between array-based and collection-based
420 >     * APIs.
421 >     *
422 >     * @return an array containing all of the elements in this queue
423 >     */
424 >    public Object[] toArray() {
425 >        return Arrays.copyOf(queue, size);
426 >    }
427 >
428 >    /**
429 >     * Returns an array containing all of the elements in this queue; the
430 >     * runtime type of the returned array is that of the specified array.
431 >     * The returned array elements are in no particular order.
432 >     * If the queue fits in the specified array, it is returned therein.
433 >     * Otherwise, a new array is allocated with the runtime type of the
434 >     * specified array and the size of this queue.
435 >     *
436 >     * <p>If the queue fits in the specified array with room to spare
437 >     * (i.e., the array has more elements than the queue), the element in
438 >     * the array immediately following the end of the collection is set to
439 >     * {@code null}.
440 >     *
441 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
442 >     * array-based and collection-based APIs.  Further, this method allows
443 >     * precise control over the runtime type of the output array, and may,
444 >     * under certain circumstances, be used to save allocation costs.
445 >     *
446 >     * <p>Suppose {@code x} is a queue known to contain only strings.
447 >     * The following code can be used to dump the queue into a newly
448 >     * allocated array of {@code String}:
449 >     *
450 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
451 >     *
452 >     * Note that {@code toArray(new Object[0])} is identical in function to
453 >     * {@code toArray()}.
454 >     *
455 >     * @param a the array into which the elements of the queue are to
456 >     *          be stored, if it is big enough; otherwise, a new array of the
457 >     *          same runtime type is allocated for this purpose.
458 >     * @return an array containing all of the elements in this queue
459 >     * @throws ArrayStoreException if the runtime type of the specified array
460 >     *         is not a supertype of the runtime type of every element in
461 >     *         this queue
462 >     * @throws NullPointerException if the specified array is null
463 >     */
464 >    @SuppressWarnings("unchecked")
465 >    public <T> T[] toArray(T[] a) {
466 >        final int size = this.size;
467 >        if (a.length < size)
468 >            // Make a new array of a's runtime type, but my contents:
469 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 >        System.arraycopy(queue, 0, a, 0, size);
471 >        if (a.length > size)
472 >            a[size] = null;
473 >        return a;
474 >    }
475 >
476 >    /**
477 >     * Returns an iterator over the elements in this queue. The iterator
478 >     * does not return the elements in any particular order.
479 >     *
480 >     * @return an iterator over the elements in this queue
481       */
482      public Iterator<E> iterator() {
483          return new Itr();
484      }
485  
486 <    private class Itr implements Iterator<E> {
486 >    private final class Itr implements Iterator<E> {
487          /**
488           * Index (into queue array) of element to be returned by
489           * subsequent call to next.
490           */
491 <        private int cursor = 1;
491 >        private int cursor;
492 >
493 >        /**
494 >         * Index of element returned by most recent call to next,
495 >         * unless that element came from the forgetMeNot list.
496 >         * Set to -1 if element is deleted by a call to remove.
497 >         */
498 >        private int lastRet = -1;
499  
500          /**
501 <         * Index of element returned by most recent call to next or
502 <         * previous.  Reset to 0 if this element is deleted by a call
503 <         * to remove.
501 >         * A queue of elements that were moved from the unvisited portion of
502 >         * the heap into the visited portion as a result of "unlucky" element
503 >         * removals during the iteration.  (Unlucky element removals are those
504 >         * that require a siftup instead of a siftdown.)  We must visit all of
505 >         * the elements in this list to complete the iteration.  We do this
506 >         * after we've completed the "normal" iteration.
507 >         *
508 >         * We expect that most iterations, even those involving removals,
509 >         * will not need to store elements in this field.
510           */
511 <        private int lastRet = 0;
511 >        private ArrayDeque<E> forgetMeNot;
512 >
513 >        /**
514 >         * Element returned by the most recent call to next iff that
515 >         * element was drawn from the forgetMeNot list.
516 >         */
517 >        private E lastRetElt;
518  
519          /**
520           * The modCount value that the iterator believes that the backing
521 <         * List should have.  If this expectation is violated, the iterator
521 >         * Queue should have.  If this expectation is violated, the iterator
522           * has detected concurrent modification.
523           */
524          private int expectedModCount = modCount;
525  
526 +        Itr() {}                        // prevent access constructor creation
527 +
528          public boolean hasNext() {
529 <            return cursor <= size;
529 >            return cursor < size ||
530 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
531          }
532  
533 +        @SuppressWarnings("unchecked")
534          public E next() {
535 <            checkForComodification();
536 <            if (cursor > size)
537 <                throw new NoSuchElementException();
538 <            E result = queue[cursor];
539 <            lastRet = cursor++;
540 <            return result;
535 >            if (expectedModCount != modCount)
536 >                throw new ConcurrentModificationException();
537 >            if (cursor < size)
538 >                return (E) queue[lastRet = cursor++];
539 >            if (forgetMeNot != null) {
540 >                lastRet = -1;
541 >                lastRetElt = forgetMeNot.poll();
542 >                if (lastRetElt != null)
543 >                    return lastRetElt;
544 >            }
545 >            throw new NoSuchElementException();
546          }
547  
548          public void remove() {
549 <            if (lastRet == 0)
549 >            if (expectedModCount != modCount)
550 >                throw new ConcurrentModificationException();
551 >            if (lastRet != -1) {
552 >                E moved = PriorityQueue.this.removeAt(lastRet);
553 >                lastRet = -1;
554 >                if (moved == null)
555 >                    cursor--;
556 >                else {
557 >                    if (forgetMeNot == null)
558 >                        forgetMeNot = new ArrayDeque<>();
559 >                    forgetMeNot.add(moved);
560 >                }
561 >            } else if (lastRetElt != null) {
562 >                PriorityQueue.this.removeEq(lastRetElt);
563 >                lastRetElt = null;
564 >            } else {
565                  throw new IllegalStateException();
566 <            checkForComodification();
265 <
266 <            PriorityQueue.this.remove(lastRet);
267 <            if (lastRet < cursor)
268 <                cursor--;
269 <            lastRet = 0;
566 >            }
567              expectedModCount = modCount;
568          }
272
273        final void checkForComodification() {
274            if (modCount != expectedModCount)
275                throw new ConcurrentModificationException();
276        }
569      }
570  
279    /**
280     * Returns the number of elements in this priority queue.
281     *
282     * @return the number of elements in this priority queue.
283     */
571      public int size() {
572          return size;
573      }
574  
575      /**
576 <     * Add the specified element to this priority queue.
577 <     *
291 <     * @param element the element to add.
292 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
576 >     * Removes all of the elements from this priority queue.
577 >     * The queue will be empty after this call returns.
578       */
579 <    public boolean offer(E element) {
299 <        if (element == null)
300 <            throw new NullPointerException();
579 >    public void clear() {
580          modCount++;
581 <        ++size;
582 <
583 <        // Grow backing store if necessary
584 <        while (size >= queue.length) {
306 <            E[] newQueue = new E[2 * queue.length];
307 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
308 <            queue = newQueue;
309 <        }
581 >        for (int i = 0; i < size; i++)
582 >            queue[i] = null;
583 >        size = 0;
584 >    }
585  
586 <        queue[size] = element;
587 <        fixUp(size);
588 <        return true;
586 >    @SuppressWarnings("unchecked")
587 >    public E poll() {
588 >        if (size == 0)
589 >            return null;
590 >        int s = --size;
591 >        modCount++;
592 >        E result = (E) queue[0];
593 >        E x = (E) queue[s];
594 >        queue[s] = null;
595 >        if (s != 0)
596 >            siftDown(0, x);
597 >        return result;
598      }
599  
600      /**
601 <     * Remove all elements from the priority queue.
602 <     */
603 <    public void clear() {
601 >     * Removes the ith element from queue.
602 >     *
603 >     * Normally this method leaves the elements at up to i-1,
604 >     * inclusive, untouched.  Under these circumstances, it returns
605 >     * null.  Occasionally, in order to maintain the heap invariant,
606 >     * it must swap a later element of the list with one earlier than
607 >     * i.  Under these circumstances, this method returns the element
608 >     * that was previously at the end of the list and is now at some
609 >     * position before i. This fact is used by iterator.remove so as to
610 >     * avoid missing traversing elements.
611 >     */
612 >    @SuppressWarnings("unchecked")
613 >    E removeAt(int i) {
614 >        // assert i >= 0 && i < size;
615          modCount++;
616 <
617 <        // Null out element references to prevent memory leak
323 <        for (int i=1; i<=size; i++)
616 >        int s = --size;
617 >        if (s == i) // removed last element
618              queue[i] = null;
619 <
620 <        size = 0;
619 >        else {
620 >            E moved = (E) queue[s];
621 >            queue[s] = null;
622 >            siftDown(i, moved);
623 >            if (queue[i] == moved) {
624 >                siftUp(i, moved);
625 >                if (queue[i] != moved)
626 >                    return moved;
627 >            }
628 >        }
629 >        return null;
630      }
631  
632      /**
633 <     * Removes and returns the ith element from queue.  Recall
634 <     * that queue is one-based, so 1 <= i <= size.
635 <     *
636 <     * XXX: Could further special-case i==size, but is it worth it?
637 <     * XXX: Could special-case i==0, but is it worth it?
638 <     */
639 <    private E remove(int i) {
640 <        assert i <= size;
641 <        modCount++;
633 >     * Inserts item x at position k, maintaining heap invariant by
634 >     * promoting x up the tree until it is greater than or equal to
635 >     * its parent, or is the root.
636 >     *
637 >     * To simplify and speed up coercions and comparisons, the
638 >     * Comparable and Comparator versions are separated into different
639 >     * methods that are otherwise identical. (Similarly for siftDown.)
640 >     *
641 >     * @param k the position to fill
642 >     * @param x the item to insert
643 >     */
644 >    private void siftUp(int k, E x) {
645 >        if (comparator != null)
646 >            siftUpUsingComparator(k, x);
647 >        else
648 >            siftUpComparable(k, x);
649 >    }
650 >
651 >    @SuppressWarnings("unchecked")
652 >    private void siftUpComparable(int k, E x) {
653 >        Comparable<? super E> key = (Comparable<? super E>) x;
654 >        while (k > 0) {
655 >            int parent = (k - 1) >>> 1;
656 >            Object e = queue[parent];
657 >            if (key.compareTo((E) e) >= 0)
658 >                break;
659 >            queue[k] = e;
660 >            k = parent;
661 >        }
662 >        queue[k] = key;
663 >    }
664  
665 <        E result = queue[i];
666 <        queue[i] = queue[size];
667 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
668 <        if (i <= size)
669 <            fixDown(i);
670 <        return result;
665 >    @SuppressWarnings("unchecked")
666 >    private void siftUpUsingComparator(int k, E x) {
667 >        while (k > 0) {
668 >            int parent = (k - 1) >>> 1;
669 >            Object e = queue[parent];
670 >            if (comparator.compare(x, (E) e) >= 0)
671 >                break;
672 >            queue[k] = e;
673 >            k = parent;
674 >        }
675 >        queue[k] = x;
676      }
677  
678      /**
679 <     * Establishes the heap invariant (described above) assuming the heap
680 <     * satisfies the invariant except possibly for the leaf-node indexed by k
681 <     * (which may have a nextExecutionTime less than its parent's).
682 <     *
683 <     * This method functions by "promoting" queue[k] up the hierarchy
684 <     * (by swapping it with its parent) repeatedly until queue[k]
685 <     * is greater than or equal to its parent.
686 <     */
687 <    private void fixUp(int k) {
688 <        if (comparator == null) {
689 <            while (k > 1) {
690 <                int j = k >> 1;
691 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
692 <                    break;
693 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
694 <                k = j;
695 <            }
696 <        } else {
697 <            while (k > 1) {
698 <                int j = k >> 1;
699 <                if (comparator.compare(queue[j], queue[k]) <= 0)
700 <                    break;
701 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
702 <                k = j;
703 <            }
679 >     * Inserts item x at position k, maintaining heap invariant by
680 >     * demoting x down the tree repeatedly until it is less than or
681 >     * equal to its children or is a leaf.
682 >     *
683 >     * @param k the position to fill
684 >     * @param x the item to insert
685 >     */
686 >    private void siftDown(int k, E x) {
687 >        if (comparator != null)
688 >            siftDownUsingComparator(k, x);
689 >        else
690 >            siftDownComparable(k, x);
691 >    }
692 >
693 >    @SuppressWarnings("unchecked")
694 >    private void siftDownComparable(int k, E x) {
695 >        Comparable<? super E> key = (Comparable<? super E>)x;
696 >        int half = size >>> 1;        // loop while a non-leaf
697 >        while (k < half) {
698 >            int child = (k << 1) + 1; // assume left child is least
699 >            Object c = queue[child];
700 >            int right = child + 1;
701 >            if (right < size &&
702 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
703 >                c = queue[child = right];
704 >            if (key.compareTo((E) c) <= 0)
705 >                break;
706 >            queue[k] = c;
707 >            k = child;
708          }
709 +        queue[k] = key;
710      }
711  
712 <    /**
713 <     * Establishes the heap invariant (described above) in the subtree
714 <     * rooted at k, which is assumed to satisfy the heap invariant except
715 <     * possibly for node k itself (which may be greater than its children).
716 <     *
717 <     * This method functions by "demoting" queue[k] down the hierarchy
718 <     * (by swapping it with its smaller child) repeatedly until queue[k]
719 <     * is less than or equal to its children.
720 <     */
721 <    private void fixDown(int k) {
722 <        int j;
723 <        if (comparator == null) {
724 <            while ((j = k << 1) <= size) {
725 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
391 <                    j++; // j indexes smallest kid
392 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
393 <                    break;
394 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
395 <                k = j;
396 <            }
397 <        } else {
398 <            while ((j = k << 1) <= size) {
399 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
400 <                    j++; // j indexes smallest kid
401 <                if (comparator.compare(queue[k], queue[j]) <= 0)
402 <                    break;
403 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
404 <                k = j;
405 <            }
712 >    @SuppressWarnings("unchecked")
713 >    private void siftDownUsingComparator(int k, E x) {
714 >        int half = size >>> 1;
715 >        while (k < half) {
716 >            int child = (k << 1) + 1;
717 >            Object c = queue[child];
718 >            int right = child + 1;
719 >            if (right < size &&
720 >                comparator.compare((E) c, (E) queue[right]) > 0)
721 >                c = queue[child = right];
722 >            if (comparator.compare(x, (E) c) <= 0)
723 >                break;
724 >            queue[k] = c;
725 >            k = child;
726          }
727 +        queue[k] = x;
728      }
729  
730      /**
731 <     * Returns the comparator associated with this priority queue, or
732 <     * <tt>null</tt> if it uses its elements' natural ordering.
731 >     * Establishes the heap invariant (described above) in the entire tree,
732 >     * assuming nothing about the order of the elements prior to the call.
733 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
734 >     */
735 >    @SuppressWarnings("unchecked")
736 >    private void heapify() {
737 >        final Object[] es = queue;
738 >        int i = (size >>> 1) - 1;
739 >        if (comparator == null)
740 >            for (; i >= 0; i--)
741 >                siftDownComparable(i, (E) es[i]);
742 >        else
743 >            for (; i >= 0; i--)
744 >                siftDownUsingComparator(i, (E) es[i]);
745 >    }
746 >
747 >    /**
748 >     * Returns the comparator used to order the elements in this
749 >     * queue, or {@code null} if this queue is sorted according to
750 >     * the {@linkplain Comparable natural ordering} of its elements.
751       *
752 <     * @return the comparator associated with this priority queue, or
753 <     *         <tt>null</tt> if it uses its elements' natural ordering.
752 >     * @return the comparator used to order this queue, or
753 >     *         {@code null} if this queue is sorted according to the
754 >     *         natural ordering of its elements
755       */
756 <    public Comparator comparator() {
756 >    public Comparator<? super E> comparator() {
757          return comparator;
758      }
759  
760      /**
761 <     * Save the state of the instance to a stream (that
422 <     * is, serialize it).
761 >     * Saves this queue to a stream (that is, serializes it).
762       *
424     * @serialData The length of the array backing the instance is
425     * emitted (int), followed by all of its elements (each an
426     * <tt>Object</tt>) in the proper order.
763       * @param s the stream
764 +     * @throws java.io.IOException if an I/O error occurs
765 +     * @serialData The length of the array backing the instance is
766 +     *             emitted (int), followed by all of its elements
767 +     *             (each an {@code Object}) in the proper order.
768       */
769 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
770 <        throws java.io.IOException{
769 >    private void writeObject(java.io.ObjectOutputStream s)
770 >        throws java.io.IOException {
771          // Write out element count, and any hidden stuff
772          s.defaultWriteObject();
773  
774 <        // Write out array length
775 <        s.writeInt(queue.length);
774 >        // Write out array length, for compatibility with 1.5 version
775 >        s.writeInt(Math.max(2, size + 1));
776  
777 <        // Write out all elements in the proper order.
778 <        for (int i=0; i<size; i++)
777 >        // Write out all elements in the "proper order".
778 >        for (int i = 0; i < size; i++)
779              s.writeObject(queue[i]);
780      }
781  
782      /**
783 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
784 <     * deserialize it).
783 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
784 >     * (that is, deserializes it).
785 >     *
786       * @param s the stream
787 +     * @throws ClassNotFoundException if the class of a serialized object
788 +     *         could not be found
789 +     * @throws java.io.IOException if an I/O error occurs
790       */
791 <    private synchronized void readObject(java.io.ObjectInputStream s)
791 >    private void readObject(java.io.ObjectInputStream s)
792          throws java.io.IOException, ClassNotFoundException {
793          // Read in size, and any hidden stuff
794          s.defaultReadObject();
795  
796 <        // Read in array length and allocate array
797 <        int arrayLength = s.readInt();
798 <        queue = new E[arrayLength];
799 <
800 <        // Read in all elements in the proper order.
801 <        for (int i=0; i<size; i++)
802 <            queue[i] = (E)s.readObject();
796 >        // Read in (and discard) array length
797 >        s.readInt();
798 >
799 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
800 >        queue = new Object[size];
801 >
802 >        // Read in all elements.
803 >        for (int i = 0; i < size; i++)
804 >            queue[i] = s.readObject();
805 >
806 >        // Elements are guaranteed to be in "proper order", but the
807 >        // spec has never explained what that might be.
808 >        heapify();
809 >    }
810 >
811 >    /**
812 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
813 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
814 >     * queue. The spliterator does not traverse elements in any particular order
815 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
816 >     *
817 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
818 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
819 >     * Overriding implementations should document the reporting of additional
820 >     * characteristic values.
821 >     *
822 >     * @return a {@code Spliterator} over the elements in this queue
823 >     * @since 1.8
824 >     */
825 >    public final Spliterator<E> spliterator() {
826 >        return new PriorityQueueSpliterator(0, -1, 0);
827 >    }
828 >
829 >    final class PriorityQueueSpliterator implements Spliterator<E> {
830 >        private int index;            // current index, modified on advance/split
831 >        private int fence;            // -1 until first use
832 >        private int expectedModCount; // initialized when fence set
833 >
834 >        /** Creates new spliterator covering the given range. */
835 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
836 >            this.index = origin;
837 >            this.fence = fence;
838 >            this.expectedModCount = expectedModCount;
839 >        }
840 >
841 >        private int getFence() { // initialize fence to size on first use
842 >            int hi;
843 >            if ((hi = fence) < 0) {
844 >                expectedModCount = modCount;
845 >                hi = fence = size;
846 >            }
847 >            return hi;
848 >        }
849 >
850 >        public PriorityQueueSpliterator trySplit() {
851 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
852 >            return (lo >= mid) ? null :
853 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
854 >        }
855 >
856 >        @SuppressWarnings("unchecked")
857 >        public void forEachRemaining(Consumer<? super E> action) {
858 >            if (action == null)
859 >                throw new NullPointerException();
860 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
861 >            final Object[] a = queue;
862 >            int i, hi; E e;
863 >            for (i = index, index = hi = fence; i < hi; i++) {
864 >                if ((e = (E) a[i]) == null)
865 >                    break;      // must be CME
866 >                action.accept(e);
867 >            }
868 >            if (modCount != expectedModCount)
869 >                throw new ConcurrentModificationException();
870 >        }
871 >
872 >        @SuppressWarnings("unchecked")
873 >        public boolean tryAdvance(Consumer<? super E> action) {
874 >            if (action == null)
875 >                throw new NullPointerException();
876 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
877 >            int i;
878 >            if ((i = index) < fence) {
879 >                index = i + 1;
880 >                E e;
881 >                if ((e = (E) queue[i]) == null
882 >                    || modCount != expectedModCount)
883 >                    throw new ConcurrentModificationException();
884 >                action.accept(e);
885 >                return true;
886 >            }
887 >            return false;
888 >        }
889 >
890 >        public long estimateSize() {
891 >            return getFence() - index;
892 >        }
893 >
894 >        public int characteristics() {
895 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
896 >        }
897      }
898  
899 +    /**
900 +     * @throws NullPointerException {@inheritDoc}
901 +     */
902 +    @SuppressWarnings("unchecked")
903 +    public void forEach(Consumer<? super E> action) {
904 +        Objects.requireNonNull(action);
905 +        final int expectedModCount = modCount;
906 +        final Object[] es = queue;
907 +        for (int i = 0, n = size; i < n; i++)
908 +            action.accept((E) es[i]);
909 +        if (expectedModCount != modCount)
910 +            throw new ConcurrentModificationException();
911 +    }
912   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines