ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.10
Committed: Sat Jul 26 13:17:51 2003 UTC (20 years, 9 months ago) by tim
Branch: MAIN
Changes since 1.9: +7 -7 lines
Log Message:
Default compiler is now 2.2-ea. Some sources are not compatible with 2.0-ea.

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority queue based on a priority heap. This queue orders
5 * elements according to an order specified at construction time, which is
6 * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
7 * either according to their <i>natural order</i> (see {@link Comparable}), or
8 * according to a {@link Comparator}, depending on which constructor is used.
9 * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 * minimal element with respect to the specified ordering. If multiple
11 * elements are tied for least value, no guarantees are made as to
12 * which of these elements is returned.
13 *
14 * <p>A priority queue has a <i>capacity</i>. The capacity is the
15 * size of the array used internally to store the elements on the
16 * queue. It is always at least as large as the queue size. As
17 * elements are added to a priority queue, its capacity grows
18 * automatically. The details of the growth policy are not specified.
19 *
20 *<p>Implementation note: this implementation provides O(log(n)) time
21 *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
22 *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
23 *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
24 *constant time for the retrieval methods (<tt>peek</tt>,
25 *<tt>element</tt>, and <tt>size</tt>).
26 *
27 * <p>This class is a member of the
28 * <a href="{@docRoot}/../guide/collections/index.html">
29 * Java Collections Framework</a>.
30 * @since 1.5
31 * @author Josh Bloch
32 */
33 public class PriorityQueue<E> extends AbstractQueue<E>
34 implements Queue<E>,
35 java.io.Serializable {
36 private static final int DEFAULT_INITIAL_CAPACITY = 11;
37
38 /**
39 * Priority queue represented as a balanced binary heap: the two children
40 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
41 * ordered by comparator, or by the elements' natural ordering, if
42 * comparator is null: For each node n in the heap and each descendant d
43 * of n, n <= d.
44 *
45 * The element with the lowest value is in queue[1], assuming the queue is
46 * nonempty. (A one-based array is used in preference to the traditional
47 * zero-based array to simplify parent and child calculations.)
48 *
49 * queue.length must be >= 2, even if size == 0.
50 */
51 private transient E[] queue;
52
53 /**
54 * The number of elements in the priority queue.
55 */
56 private int size = 0;
57
58 /**
59 * The comparator, or null if priority queue uses elements'
60 * natural ordering.
61 */
62 private final Comparator<E> comparator;
63
64 /**
65 * The number of times this priority queue has been
66 * <i>structurally modified</i>. See AbstractList for gory details.
67 */
68 private transient int modCount = 0;
69
70 /**
71 * Create a new priority queue with the default initial capacity
72 * (11) that orders its elements according to their natural
73 * ordering (using <tt>Comparable</tt>.)
74 */
75 public PriorityQueue() {
76 this(DEFAULT_INITIAL_CAPACITY);
77 }
78
79 /**
80 * Create a new priority queue with the specified initial capacity
81 * that orders its elements according to their natural ordering
82 * (using <tt>Comparable</tt>.)
83 *
84 * @param initialCapacity the initial capacity for this priority queue.
85 */
86 public PriorityQueue(int initialCapacity) {
87 this(initialCapacity, null);
88 }
89
90 /**
91 * Create a new priority queue with the specified initial capacity (11)
92 * that orders its elements according to the specified comparator.
93 *
94 * @param initialCapacity the initial capacity for this priority queue.
95 * @param comparator the comparator used to order this priority queue.
96 */
97 public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
98 if (initialCapacity < 1)
99 initialCapacity = 1;
100 queue = (E[]) new Object[initialCapacity + 1];
101 this.comparator = comparator;
102 }
103
104 /**
105 * Create a new priority queue containing the elements in the specified
106 * collection. The priority queue has an initial capacity of 110% of the
107 * size of the specified collection. If the specified collection
108 * implements the {@link Sorted} interface, the priority queue will be
109 * sorted according to the same comparator, or according to its elements'
110 * natural order if the collection is sorted according to its elements'
111 * natural order. If the specified collection does not implement
112 * <tt>Sorted</tt>, the priority queue is ordered according to
113 * its elements' natural order.
114 *
115 * @param initialElements the collection whose elements are to be placed
116 * into this priority queue.
117 * @throws ClassCastException if elements of the specified collection
118 * cannot be compared to one another according to the priority
119 * queue's ordering.
120 * @throws NullPointerException if the specified collection or an
121 * element of the specified collection is <tt>null</tt>.
122 */
123 public PriorityQueue(Collection<E> initialElements) {
124 int sz = initialElements.size();
125 int initialCapacity = (int)Math.min((sz * 110L) / 100,
126 Integer.MAX_VALUE - 1);
127 if (initialCapacity < 1)
128 initialCapacity = 1;
129 queue = (E[]) new Object[initialCapacity + 1];
130
131
132 if (initialElements instanceof Sorted) {
133 comparator = ((Sorted)initialElements).comparator();
134 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135 queue[++size] = i.next();
136 } else {
137 comparator = null;
138 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 add(i.next());
140 }
141 }
142
143 // Queue Methods
144
145 /**
146 * Remove and return the minimal element from this priority queue
147 * if it contains one or more elements, otherwise return
148 * <tt>null</tt>. The term <i>minimal</i> is defined according to
149 * this priority queue's order.
150 *
151 * @return the minimal element from this priority queue if it contains
152 * one or more elements, otherwise <tt>null</tt>.
153 */
154 public E poll() {
155 if (size == 0)
156 return null;
157 return remove(1);
158 }
159
160 /**
161 * Return, but do not remove, the minimal element from the
162 * priority queue, or return <tt>null</tt> if the queue is empty.
163 * The term <i>minimal</i> is defined according to this priority
164 * queue's order. This method returns the same object reference
165 * that would be returned by by the <tt>poll</tt> method. The two
166 * methods differ in that this method does not remove the element
167 * from the priority queue.
168 *
169 * @return the minimal element from this priority queue if it contains
170 * one or more elements, otherwise <tt>null</tt>.
171 */
172 public E peek() {
173 return queue[1];
174 }
175
176 // Collection Methods
177
178 /**
179 * Removes a single instance of the specified element from this priority
180 * queue, if it is present. Returns true if this collection contained the
181 * specified element (or equivalently, if this collection changed as a
182 * result of the call).
183 *
184 * @param element the element to be removed from this collection,
185 * if present.
186 * @return <tt>true</tt> if this collection changed as a result of the
187 * call
188 * @throws ClassCastException if the specified element cannot be compared
189 * with elements currently in the priority queue according
190 * to the priority queue's ordering.
191 * @throws NullPointerException if the specified element is null.
192 */
193 public boolean remove(Object element) {
194 if (element == null)
195 throw new NullPointerException();
196
197 if (comparator == null) {
198 for (int i = 1; i <= size; i++) {
199 if (((Comparable)queue[i]).compareTo(element) == 0) {
200 remove(i);
201 return true;
202 }
203 }
204 } else {
205 for (int i = 1; i <= size; i++) {
206 if (comparator.compare(queue[i], (E) element) == 0) {
207 remove(i);
208 return true;
209 }
210 }
211 }
212 return false;
213 }
214
215 /**
216 * Returns an iterator over the elements in this priority queue. The
217 * elements of the priority queue will be returned by this iterator in the
218 * order specified by the queue, which is to say the order they would be
219 * returned by repeated calls to <tt>poll</tt>.
220 *
221 * @return an <tt>Iterator</tt> over the elements in this priority queue.
222 */
223 public Iterator<E> iterator() {
224 return new Itr();
225 }
226
227 private class Itr implements Iterator<E> {
228 /**
229 * Index (into queue array) of element to be returned by
230 * subsequent call to next.
231 */
232 private int cursor = 1;
233
234 /**
235 * Index of element returned by most recent call to next or
236 * previous. Reset to 0 if this element is deleted by a call
237 * to remove.
238 */
239 private int lastRet = 0;
240
241 /**
242 * The modCount value that the iterator believes that the backing
243 * List should have. If this expectation is violated, the iterator
244 * has detected concurrent modification.
245 */
246 private int expectedModCount = modCount;
247
248 public boolean hasNext() {
249 return cursor <= size;
250 }
251
252 public E next() {
253 checkForComodification();
254 if (cursor > size)
255 throw new NoSuchElementException();
256 E result = queue[cursor];
257 lastRet = cursor++;
258 return result;
259 }
260
261 public void remove() {
262 if (lastRet == 0)
263 throw new IllegalStateException();
264 checkForComodification();
265
266 PriorityQueue.this.remove(lastRet);
267 if (lastRet < cursor)
268 cursor--;
269 lastRet = 0;
270 expectedModCount = modCount;
271 }
272
273 final void checkForComodification() {
274 if (modCount != expectedModCount)
275 throw new ConcurrentModificationException();
276 }
277 }
278
279 /**
280 * Returns the number of elements in this priority queue.
281 *
282 * @return the number of elements in this priority queue.
283 */
284 public int size() {
285 return size;
286 }
287
288 /**
289 * Add the specified element to this priority queue.
290 *
291 * @param element the element to add.
292 * @return true
293 * @throws ClassCastException if the specified element cannot be compared
294 * with elements currently in the priority queue according
295 * to the priority queue's ordering.
296 * @throws NullPointerException if the specified element is null.
297 */
298 public boolean offer(E element) {
299 if (element == null)
300 throw new NullPointerException();
301 modCount++;
302 ++size;
303
304 // Grow backing store if necessary
305 while (size >= queue.length) {
306 E[] newQueue = (E[]) new Object[2 * queue.length];
307 System.arraycopy(queue, 0, newQueue, 0, queue.length);
308 queue = newQueue;
309 }
310
311 queue[size] = element;
312 fixUp(size);
313 return true;
314 }
315
316 /**
317 * Remove all elements from the priority queue.
318 */
319 public void clear() {
320 modCount++;
321
322 // Null out element references to prevent memory leak
323 for (int i=1; i<=size; i++)
324 queue[i] = null;
325
326 size = 0;
327 }
328
329 /**
330 * Removes and returns the ith element from queue. Recall
331 * that queue is one-based, so 1 <= i <= size.
332 *
333 * XXX: Could further special-case i==size, but is it worth it?
334 * XXX: Could special-case i==0, but is it worth it?
335 */
336 private E remove(int i) {
337 assert i <= size;
338 modCount++;
339
340 E result = queue[i];
341 queue[i] = queue[size];
342 queue[size--] = null; // Drop extra ref to prevent memory leak
343 if (i <= size)
344 fixDown(i);
345 return result;
346 }
347
348 /**
349 * Establishes the heap invariant (described above) assuming the heap
350 * satisfies the invariant except possibly for the leaf-node indexed by k
351 * (which may have a nextExecutionTime less than its parent's).
352 *
353 * This method functions by "promoting" queue[k] up the hierarchy
354 * (by swapping it with its parent) repeatedly until queue[k]
355 * is greater than or equal to its parent.
356 */
357 private void fixUp(int k) {
358 if (comparator == null) {
359 while (k > 1) {
360 int j = k >> 1;
361 if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
362 break;
363 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
364 k = j;
365 }
366 } else {
367 while (k > 1) {
368 int j = k >> 1;
369 if (comparator.compare(queue[j], queue[k]) <= 0)
370 break;
371 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
372 k = j;
373 }
374 }
375 }
376
377 /**
378 * Establishes the heap invariant (described above) in the subtree
379 * rooted at k, which is assumed to satisfy the heap invariant except
380 * possibly for node k itself (which may be greater than its children).
381 *
382 * This method functions by "demoting" queue[k] down the hierarchy
383 * (by swapping it with its smaller child) repeatedly until queue[k]
384 * is less than or equal to its children.
385 */
386 private void fixDown(int k) {
387 int j;
388 if (comparator == null) {
389 while ((j = k << 1) <= size) {
390 if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
391 j++; // j indexes smallest kid
392 if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
393 break;
394 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
395 k = j;
396 }
397 } else {
398 while ((j = k << 1) <= size) {
399 if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
400 j++; // j indexes smallest kid
401 if (comparator.compare(queue[k], queue[j]) <= 0)
402 break;
403 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
404 k = j;
405 }
406 }
407 }
408
409 /**
410 * Returns the comparator associated with this priority queue, or
411 * <tt>null</tt> if it uses its elements' natural ordering.
412 *
413 * @return the comparator associated with this priority queue, or
414 * <tt>null</tt> if it uses its elements' natural ordering.
415 */
416 public Comparator comparator() {
417 return comparator;
418 }
419
420 /**
421 * Save the state of the instance to a stream (that
422 * is, serialize it).
423 *
424 * @serialData The length of the array backing the instance is
425 * emitted (int), followed by all of its elements (each an
426 * <tt>Object</tt>) in the proper order.
427 * @param s the stream
428 */
429 private synchronized void writeObject(java.io.ObjectOutputStream s)
430 throws java.io.IOException{
431 // Write out element count, and any hidden stuff
432 s.defaultWriteObject();
433
434 // Write out array length
435 s.writeInt(queue.length);
436
437 // Write out all elements in the proper order.
438 for (int i=0; i<size; i++)
439 s.writeObject(queue[i]);
440 }
441
442 /**
443 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
444 * deserialize it).
445 * @param s the stream
446 */
447 private synchronized void readObject(java.io.ObjectInputStream s)
448 throws java.io.IOException, ClassNotFoundException {
449 // Read in size, and any hidden stuff
450 s.defaultReadObject();
451
452 // Read in array length and allocate array
453 int arrayLength = s.readInt();
454 queue = (E[]) new Object[arrayLength];
455
456 // Read in all elements in the proper order.
457 for (int i=0; i<size; i++)
458 queue[i] = (E)s.readObject();
459 }
460
461 }