ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.113
Committed: Wed Nov 30 03:31:47 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.112: +15 -19 lines
Log Message:
convert Spliterator implementations to inner classes

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29
30 /**
31 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 * The elements of the priority queue are ordered according to their
33 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 * provided at queue construction time, depending on which constructor is
35 * used. A priority queue does not permit {@code null} elements.
36 * A priority queue relying on natural ordering also does not permit
37 * insertion of non-comparable objects (doing so may result in
38 * {@code ClassCastException}).
39 *
40 * <p>The <em>head</em> of this queue is the <em>least</em> element
41 * with respect to the specified ordering. If multiple elements are
42 * tied for least value, the head is one of those elements -- ties are
43 * broken arbitrarily. The queue retrieval operations {@code poll},
44 * {@code remove}, {@code peek}, and {@code element} access the
45 * element at the head of the queue.
46 *
47 * <p>A priority queue is unbounded, but has an internal
48 * <i>capacity</i> governing the size of an array used to store the
49 * elements on the queue. It is always at least as large as the queue
50 * size. As elements are added to a priority queue, its capacity
51 * grows automatically. The details of the growth policy are not
52 * specified.
53 *
54 * <p>This class and its iterator implement all of the
55 * <em>optional</em> methods of the {@link Collection} and {@link
56 * Iterator} interfaces. The Iterator provided in method {@link
57 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
58 * are <em>not</em> guaranteed to traverse the elements of
59 * the priority queue in any particular order. If you need ordered
60 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 *
62 * <p><strong>Note that this implementation is not synchronized.</strong>
63 * Multiple threads should not access a {@code PriorityQueue}
64 * instance concurrently if any of the threads modifies the queue.
65 * Instead, use the thread-safe {@link
66 * java.util.concurrent.PriorityBlockingQueue} class.
67 *
68 * <p>Implementation note: this implementation provides
69 * O(log(n)) time for the enqueuing and dequeuing methods
70 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 * methods; and constant time for the retrieval methods
73 * ({@code peek}, {@code element}, and {@code size}).
74 *
75 * <p>This class is a member of the
76 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77 * Java Collections Framework</a>.
78 *
79 * @since 1.5
80 * @author Josh Bloch, Doug Lea
81 * @param <E> the type of elements held in this queue
82 */
83 public class PriorityQueue<E> extends AbstractQueue<E>
84 implements java.io.Serializable {
85
86 private static final long serialVersionUID = -7720805057305804111L;
87
88 private static final int DEFAULT_INITIAL_CAPACITY = 11;
89
90 /**
91 * Priority queue represented as a balanced binary heap: the two
92 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
93 * priority queue is ordered by comparator, or by the elements'
94 * natural ordering, if comparator is null: For each node n in the
95 * heap and each descendant d of n, n <= d. The element with the
96 * lowest value is in queue[0], assuming the queue is nonempty.
97 */
98 transient Object[] queue; // non-private to simplify nested class access
99
100 /**
101 * The number of elements in the priority queue.
102 */
103 int size;
104
105 /**
106 * The comparator, or null if priority queue uses elements'
107 * natural ordering.
108 */
109 private final Comparator<? super E> comparator;
110
111 /**
112 * The number of times this priority queue has been
113 * <i>structurally modified</i>. See AbstractList for gory details.
114 */
115 transient int modCount; // non-private to simplify nested class access
116
117 /**
118 * Creates a {@code PriorityQueue} with the default initial
119 * capacity (11) that orders its elements according to their
120 * {@linkplain Comparable natural ordering}.
121 */
122 public PriorityQueue() {
123 this(DEFAULT_INITIAL_CAPACITY, null);
124 }
125
126 /**
127 * Creates a {@code PriorityQueue} with the specified initial
128 * capacity that orders its elements according to their
129 * {@linkplain Comparable natural ordering}.
130 *
131 * @param initialCapacity the initial capacity for this priority queue
132 * @throws IllegalArgumentException if {@code initialCapacity} is less
133 * than 1
134 */
135 public PriorityQueue(int initialCapacity) {
136 this(initialCapacity, null);
137 }
138
139 /**
140 * Creates a {@code PriorityQueue} with the default initial capacity and
141 * whose elements are ordered according to the specified comparator.
142 *
143 * @param comparator the comparator that will be used to order this
144 * priority queue. If {@code null}, the {@linkplain Comparable
145 * natural ordering} of the elements will be used.
146 * @since 1.8
147 */
148 public PriorityQueue(Comparator<? super E> comparator) {
149 this(DEFAULT_INITIAL_CAPACITY, comparator);
150 }
151
152 /**
153 * Creates a {@code PriorityQueue} with the specified initial capacity
154 * that orders its elements according to the specified comparator.
155 *
156 * @param initialCapacity the initial capacity for this priority queue
157 * @param comparator the comparator that will be used to order this
158 * priority queue. If {@code null}, the {@linkplain Comparable
159 * natural ordering} of the elements will be used.
160 * @throws IllegalArgumentException if {@code initialCapacity} is
161 * less than 1
162 */
163 public PriorityQueue(int initialCapacity,
164 Comparator<? super E> comparator) {
165 // Note: This restriction of at least one is not actually needed,
166 // but continues for 1.5 compatibility
167 if (initialCapacity < 1)
168 throw new IllegalArgumentException();
169 this.queue = new Object[initialCapacity];
170 this.comparator = comparator;
171 }
172
173 /**
174 * Creates a {@code PriorityQueue} containing the elements in the
175 * specified collection. If the specified collection is an instance of
176 * a {@link SortedSet} or is another {@code PriorityQueue}, this
177 * priority queue will be ordered according to the same ordering.
178 * Otherwise, this priority queue will be ordered according to the
179 * {@linkplain Comparable natural ordering} of its elements.
180 *
181 * @param c the collection whose elements are to be placed
182 * into this priority queue
183 * @throws ClassCastException if elements of the specified collection
184 * cannot be compared to one another according to the priority
185 * queue's ordering
186 * @throws NullPointerException if the specified collection or any
187 * of its elements are null
188 */
189 @SuppressWarnings("unchecked")
190 public PriorityQueue(Collection<? extends E> c) {
191 if (c instanceof SortedSet<?>) {
192 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
193 this.comparator = (Comparator<? super E>) ss.comparator();
194 initElementsFromCollection(ss);
195 }
196 else if (c instanceof PriorityQueue<?>) {
197 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
198 this.comparator = (Comparator<? super E>) pq.comparator();
199 initFromPriorityQueue(pq);
200 }
201 else {
202 this.comparator = null;
203 initFromCollection(c);
204 }
205 }
206
207 /**
208 * Creates a {@code PriorityQueue} containing the elements in the
209 * specified priority queue. This priority queue will be
210 * ordered according to the same ordering as the given priority
211 * queue.
212 *
213 * @param c the priority queue whose elements are to be placed
214 * into this priority queue
215 * @throws ClassCastException if elements of {@code c} cannot be
216 * compared to one another according to {@code c}'s
217 * ordering
218 * @throws NullPointerException if the specified priority queue or any
219 * of its elements are null
220 */
221 @SuppressWarnings("unchecked")
222 public PriorityQueue(PriorityQueue<? extends E> c) {
223 this.comparator = (Comparator<? super E>) c.comparator();
224 initFromPriorityQueue(c);
225 }
226
227 /**
228 * Creates a {@code PriorityQueue} containing the elements in the
229 * specified sorted set. This priority queue will be ordered
230 * according to the same ordering as the given sorted set.
231 *
232 * @param c the sorted set whose elements are to be placed
233 * into this priority queue
234 * @throws ClassCastException if elements of the specified sorted
235 * set cannot be compared to one another according to the
236 * sorted set's ordering
237 * @throws NullPointerException if the specified sorted set or any
238 * of its elements are null
239 */
240 @SuppressWarnings("unchecked")
241 public PriorityQueue(SortedSet<? extends E> c) {
242 this.comparator = (Comparator<? super E>) c.comparator();
243 initElementsFromCollection(c);
244 }
245
246 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
247 if (c.getClass() == PriorityQueue.class) {
248 this.queue = c.toArray();
249 this.size = c.size();
250 } else {
251 initFromCollection(c);
252 }
253 }
254
255 private void initElementsFromCollection(Collection<? extends E> c) {
256 Object[] a = c.toArray();
257 // If c.toArray incorrectly doesn't return Object[], copy it.
258 if (a.getClass() != Object[].class)
259 a = Arrays.copyOf(a, a.length, Object[].class);
260 int len = a.length;
261 if (len == 1 || this.comparator != null)
262 for (Object e : a)
263 if (e == null)
264 throw new NullPointerException();
265 this.queue = a;
266 this.size = a.length;
267 }
268
269 /**
270 * Initializes queue array with elements from the given Collection.
271 *
272 * @param c the collection
273 */
274 private void initFromCollection(Collection<? extends E> c) {
275 initElementsFromCollection(c);
276 heapify();
277 }
278
279 /**
280 * The maximum size of array to allocate.
281 * Some VMs reserve some header words in an array.
282 * Attempts to allocate larger arrays may result in
283 * OutOfMemoryError: Requested array size exceeds VM limit
284 */
285 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
286
287 /**
288 * Increases the capacity of the array.
289 *
290 * @param minCapacity the desired minimum capacity
291 */
292 private void grow(int minCapacity) {
293 int oldCapacity = queue.length;
294 // Double size if small; else grow by 50%
295 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
296 (oldCapacity + 2) :
297 (oldCapacity >> 1));
298 // overflow-conscious code
299 if (newCapacity - MAX_ARRAY_SIZE > 0)
300 newCapacity = hugeCapacity(minCapacity);
301 queue = Arrays.copyOf(queue, newCapacity);
302 }
303
304 private static int hugeCapacity(int minCapacity) {
305 if (minCapacity < 0) // overflow
306 throw new OutOfMemoryError();
307 return (minCapacity > MAX_ARRAY_SIZE) ?
308 Integer.MAX_VALUE :
309 MAX_ARRAY_SIZE;
310 }
311
312 /**
313 * Inserts the specified element into this priority queue.
314 *
315 * @return {@code true} (as specified by {@link Collection#add})
316 * @throws ClassCastException if the specified element cannot be
317 * compared with elements currently in this priority queue
318 * according to the priority queue's ordering
319 * @throws NullPointerException if the specified element is null
320 */
321 public boolean add(E e) {
322 return offer(e);
323 }
324
325 /**
326 * Inserts the specified element into this priority queue.
327 *
328 * @return {@code true} (as specified by {@link Queue#offer})
329 * @throws ClassCastException if the specified element cannot be
330 * compared with elements currently in this priority queue
331 * according to the priority queue's ordering
332 * @throws NullPointerException if the specified element is null
333 */
334 public boolean offer(E e) {
335 if (e == null)
336 throw new NullPointerException();
337 modCount++;
338 int i = size;
339 if (i >= queue.length)
340 grow(i + 1);
341 siftUp(i, e);
342 size = i + 1;
343 return true;
344 }
345
346 @SuppressWarnings("unchecked")
347 public E peek() {
348 return (size == 0) ? null : (E) queue[0];
349 }
350
351 private int indexOf(Object o) {
352 if (o != null) {
353 for (int i = 0; i < size; i++)
354 if (o.equals(queue[i]))
355 return i;
356 }
357 return -1;
358 }
359
360 /**
361 * Removes a single instance of the specified element from this queue,
362 * if it is present. More formally, removes an element {@code e} such
363 * that {@code o.equals(e)}, if this queue contains one or more such
364 * elements. Returns {@code true} if and only if this queue contained
365 * the specified element (or equivalently, if this queue changed as a
366 * result of the call).
367 *
368 * @param o element to be removed from this queue, if present
369 * @return {@code true} if this queue changed as a result of the call
370 */
371 public boolean remove(Object o) {
372 int i = indexOf(o);
373 if (i == -1)
374 return false;
375 else {
376 removeAt(i);
377 return true;
378 }
379 }
380
381 /**
382 * Version of remove using reference equality, not equals.
383 * Needed by iterator.remove.
384 *
385 * @param o element to be removed from this queue, if present
386 * @return {@code true} if removed
387 */
388 boolean removeEq(Object o) {
389 for (int i = 0; i < size; i++) {
390 if (o == queue[i]) {
391 removeAt(i);
392 return true;
393 }
394 }
395 return false;
396 }
397
398 /**
399 * Returns {@code true} if this queue contains the specified element.
400 * More formally, returns {@code true} if and only if this queue contains
401 * at least one element {@code e} such that {@code o.equals(e)}.
402 *
403 * @param o object to be checked for containment in this queue
404 * @return {@code true} if this queue contains the specified element
405 */
406 public boolean contains(Object o) {
407 return indexOf(o) >= 0;
408 }
409
410 /**
411 * Returns an array containing all of the elements in this queue.
412 * The elements are in no particular order.
413 *
414 * <p>The returned array will be "safe" in that no references to it are
415 * maintained by this queue. (In other words, this method must allocate
416 * a new array). The caller is thus free to modify the returned array.
417 *
418 * <p>This method acts as bridge between array-based and collection-based
419 * APIs.
420 *
421 * @return an array containing all of the elements in this queue
422 */
423 public Object[] toArray() {
424 return Arrays.copyOf(queue, size);
425 }
426
427 /**
428 * Returns an array containing all of the elements in this queue; the
429 * runtime type of the returned array is that of the specified array.
430 * The returned array elements are in no particular order.
431 * If the queue fits in the specified array, it is returned therein.
432 * Otherwise, a new array is allocated with the runtime type of the
433 * specified array and the size of this queue.
434 *
435 * <p>If the queue fits in the specified array with room to spare
436 * (i.e., the array has more elements than the queue), the element in
437 * the array immediately following the end of the collection is set to
438 * {@code null}.
439 *
440 * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 * array-based and collection-based APIs. Further, this method allows
442 * precise control over the runtime type of the output array, and may,
443 * under certain circumstances, be used to save allocation costs.
444 *
445 * <p>Suppose {@code x} is a queue known to contain only strings.
446 * The following code can be used to dump the queue into a newly
447 * allocated array of {@code String}:
448 *
449 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 *
451 * Note that {@code toArray(new Object[0])} is identical in function to
452 * {@code toArray()}.
453 *
454 * @param a the array into which the elements of the queue are to
455 * be stored, if it is big enough; otherwise, a new array of the
456 * same runtime type is allocated for this purpose.
457 * @return an array containing all of the elements in this queue
458 * @throws ArrayStoreException if the runtime type of the specified array
459 * is not a supertype of the runtime type of every element in
460 * this queue
461 * @throws NullPointerException if the specified array is null
462 */
463 @SuppressWarnings("unchecked")
464 public <T> T[] toArray(T[] a) {
465 final int size = this.size;
466 if (a.length < size)
467 // Make a new array of a's runtime type, but my contents:
468 return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 System.arraycopy(queue, 0, a, 0, size);
470 if (a.length > size)
471 a[size] = null;
472 return a;
473 }
474
475 /**
476 * Returns an iterator over the elements in this queue. The iterator
477 * does not return the elements in any particular order.
478 *
479 * @return an iterator over the elements in this queue
480 */
481 public Iterator<E> iterator() {
482 return new Itr();
483 }
484
485 private final class Itr implements Iterator<E> {
486 /**
487 * Index (into queue array) of element to be returned by
488 * subsequent call to next.
489 */
490 private int cursor;
491
492 /**
493 * Index of element returned by most recent call to next,
494 * unless that element came from the forgetMeNot list.
495 * Set to -1 if element is deleted by a call to remove.
496 */
497 private int lastRet = -1;
498
499 /**
500 * A queue of elements that were moved from the unvisited portion of
501 * the heap into the visited portion as a result of "unlucky" element
502 * removals during the iteration. (Unlucky element removals are those
503 * that require a siftup instead of a siftdown.) We must visit all of
504 * the elements in this list to complete the iteration. We do this
505 * after we've completed the "normal" iteration.
506 *
507 * We expect that most iterations, even those involving removals,
508 * will not need to store elements in this field.
509 */
510 private ArrayDeque<E> forgetMeNot;
511
512 /**
513 * Element returned by the most recent call to next iff that
514 * element was drawn from the forgetMeNot list.
515 */
516 private E lastRetElt;
517
518 /**
519 * The modCount value that the iterator believes that the backing
520 * Queue should have. If this expectation is violated, the iterator
521 * has detected concurrent modification.
522 */
523 private int expectedModCount = modCount;
524
525 public boolean hasNext() {
526 return cursor < size ||
527 (forgetMeNot != null && !forgetMeNot.isEmpty());
528 }
529
530 @SuppressWarnings("unchecked")
531 public E next() {
532 if (expectedModCount != modCount)
533 throw new ConcurrentModificationException();
534 if (cursor < size)
535 return (E) queue[lastRet = cursor++];
536 if (forgetMeNot != null) {
537 lastRet = -1;
538 lastRetElt = forgetMeNot.poll();
539 if (lastRetElt != null)
540 return lastRetElt;
541 }
542 throw new NoSuchElementException();
543 }
544
545 public void remove() {
546 if (expectedModCount != modCount)
547 throw new ConcurrentModificationException();
548 if (lastRet != -1) {
549 E moved = PriorityQueue.this.removeAt(lastRet);
550 lastRet = -1;
551 if (moved == null)
552 cursor--;
553 else {
554 if (forgetMeNot == null)
555 forgetMeNot = new ArrayDeque<>();
556 forgetMeNot.add(moved);
557 }
558 } else if (lastRetElt != null) {
559 PriorityQueue.this.removeEq(lastRetElt);
560 lastRetElt = null;
561 } else {
562 throw new IllegalStateException();
563 }
564 expectedModCount = modCount;
565 }
566 }
567
568 public int size() {
569 return size;
570 }
571
572 /**
573 * Removes all of the elements from this priority queue.
574 * The queue will be empty after this call returns.
575 */
576 public void clear() {
577 modCount++;
578 for (int i = 0; i < size; i++)
579 queue[i] = null;
580 size = 0;
581 }
582
583 @SuppressWarnings("unchecked")
584 public E poll() {
585 if (size == 0)
586 return null;
587 int s = --size;
588 modCount++;
589 E result = (E) queue[0];
590 E x = (E) queue[s];
591 queue[s] = null;
592 if (s != 0)
593 siftDown(0, x);
594 return result;
595 }
596
597 /**
598 * Removes the ith element from queue.
599 *
600 * Normally this method leaves the elements at up to i-1,
601 * inclusive, untouched. Under these circumstances, it returns
602 * null. Occasionally, in order to maintain the heap invariant,
603 * it must swap a later element of the list with one earlier than
604 * i. Under these circumstances, this method returns the element
605 * that was previously at the end of the list and is now at some
606 * position before i. This fact is used by iterator.remove so as to
607 * avoid missing traversing elements.
608 */
609 @SuppressWarnings("unchecked")
610 E removeAt(int i) {
611 // assert i >= 0 && i < size;
612 modCount++;
613 int s = --size;
614 if (s == i) // removed last element
615 queue[i] = null;
616 else {
617 E moved = (E) queue[s];
618 queue[s] = null;
619 siftDown(i, moved);
620 if (queue[i] == moved) {
621 siftUp(i, moved);
622 if (queue[i] != moved)
623 return moved;
624 }
625 }
626 return null;
627 }
628
629 /**
630 * Inserts item x at position k, maintaining heap invariant by
631 * promoting x up the tree until it is greater than or equal to
632 * its parent, or is the root.
633 *
634 * To simplify and speed up coercions and comparisons. the
635 * Comparable and Comparator versions are separated into different
636 * methods that are otherwise identical. (Similarly for siftDown.)
637 *
638 * @param k the position to fill
639 * @param x the item to insert
640 */
641 private void siftUp(int k, E x) {
642 if (comparator != null)
643 siftUpUsingComparator(k, x);
644 else
645 siftUpComparable(k, x);
646 }
647
648 @SuppressWarnings("unchecked")
649 private void siftUpComparable(int k, E x) {
650 Comparable<? super E> key = (Comparable<? super E>) x;
651 while (k > 0) {
652 int parent = (k - 1) >>> 1;
653 Object e = queue[parent];
654 if (key.compareTo((E) e) >= 0)
655 break;
656 queue[k] = e;
657 k = parent;
658 }
659 queue[k] = key;
660 }
661
662 @SuppressWarnings("unchecked")
663 private void siftUpUsingComparator(int k, E x) {
664 while (k > 0) {
665 int parent = (k - 1) >>> 1;
666 Object e = queue[parent];
667 if (comparator.compare(x, (E) e) >= 0)
668 break;
669 queue[k] = e;
670 k = parent;
671 }
672 queue[k] = x;
673 }
674
675 /**
676 * Inserts item x at position k, maintaining heap invariant by
677 * demoting x down the tree repeatedly until it is less than or
678 * equal to its children or is a leaf.
679 *
680 * @param k the position to fill
681 * @param x the item to insert
682 */
683 private void siftDown(int k, E x) {
684 if (comparator != null)
685 siftDownUsingComparator(k, x);
686 else
687 siftDownComparable(k, x);
688 }
689
690 @SuppressWarnings("unchecked")
691 private void siftDownComparable(int k, E x) {
692 Comparable<? super E> key = (Comparable<? super E>)x;
693 int half = size >>> 1; // loop while a non-leaf
694 while (k < half) {
695 int child = (k << 1) + 1; // assume left child is least
696 Object c = queue[child];
697 int right = child + 1;
698 if (right < size &&
699 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
700 c = queue[child = right];
701 if (key.compareTo((E) c) <= 0)
702 break;
703 queue[k] = c;
704 k = child;
705 }
706 queue[k] = key;
707 }
708
709 @SuppressWarnings("unchecked")
710 private void siftDownUsingComparator(int k, E x) {
711 int half = size >>> 1;
712 while (k < half) {
713 int child = (k << 1) + 1;
714 Object c = queue[child];
715 int right = child + 1;
716 if (right < size &&
717 comparator.compare((E) c, (E) queue[right]) > 0)
718 c = queue[child = right];
719 if (comparator.compare(x, (E) c) <= 0)
720 break;
721 queue[k] = c;
722 k = child;
723 }
724 queue[k] = x;
725 }
726
727 /**
728 * Establishes the heap invariant (described above) in the entire tree,
729 * assuming nothing about the order of the elements prior to the call.
730 * This classic algorithm due to Floyd (1964) is known to be O(size).
731 */
732 @SuppressWarnings("unchecked")
733 private void heapify() {
734 for (int i = (size >>> 1) - 1; i >= 0; i--)
735 siftDown(i, (E) queue[i]);
736 }
737
738 /**
739 * Returns the comparator used to order the elements in this
740 * queue, or {@code null} if this queue is sorted according to
741 * the {@linkplain Comparable natural ordering} of its elements.
742 *
743 * @return the comparator used to order this queue, or
744 * {@code null} if this queue is sorted according to the
745 * natural ordering of its elements
746 */
747 public Comparator<? super E> comparator() {
748 return comparator;
749 }
750
751 /**
752 * Saves this queue to a stream (that is, serializes it).
753 *
754 * @param s the stream
755 * @throws java.io.IOException if an I/O error occurs
756 * @serialData The length of the array backing the instance is
757 * emitted (int), followed by all of its elements
758 * (each an {@code Object}) in the proper order.
759 */
760 private void writeObject(java.io.ObjectOutputStream s)
761 throws java.io.IOException {
762 // Write out element count, and any hidden stuff
763 s.defaultWriteObject();
764
765 // Write out array length, for compatibility with 1.5 version
766 s.writeInt(Math.max(2, size + 1));
767
768 // Write out all elements in the "proper order".
769 for (int i = 0; i < size; i++)
770 s.writeObject(queue[i]);
771 }
772
773 /**
774 * Reconstitutes the {@code PriorityQueue} instance from a stream
775 * (that is, deserializes it).
776 *
777 * @param s the stream
778 * @throws ClassNotFoundException if the class of a serialized object
779 * could not be found
780 * @throws java.io.IOException if an I/O error occurs
781 */
782 private void readObject(java.io.ObjectInputStream s)
783 throws java.io.IOException, ClassNotFoundException {
784 // Read in size, and any hidden stuff
785 s.defaultReadObject();
786
787 // Read in (and discard) array length
788 s.readInt();
789
790 queue = new Object[size];
791
792 // Read in all elements.
793 for (int i = 0; i < size; i++)
794 queue[i] = s.readObject();
795
796 // Elements are guaranteed to be in "proper order", but the
797 // spec has never explained what that might be.
798 heapify();
799 }
800
801 /**
802 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 * queue. The spliterator does not traverse elements in any particular order
805 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 *
807 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 * Overriding implementations should document the reporting of additional
810 * characteristic values.
811 *
812 * @return a {@code Spliterator} over the elements in this queue
813 * @since 1.8
814 */
815 public final Spliterator<E> spliterator() {
816 return new PriorityQueueSpliterator(0, -1, 0);
817 }
818
819 final class PriorityQueueSpliterator implements Spliterator<E> {
820 /*
821 * This is very similar to ArrayList Spliterator, except for
822 * extra null checks.
823 */
824 private int index; // current index, modified on advance/split
825 private int fence; // -1 until first use
826 private int expectedModCount; // initialized when fence set
827
828 /** Creates new spliterator covering the given range. */
829 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 this.index = origin;
831 this.fence = fence;
832 this.expectedModCount = expectedModCount;
833 }
834
835 private int getFence() { // initialize fence to size on first use
836 int hi;
837 if ((hi = fence) < 0) {
838 expectedModCount = modCount;
839 hi = fence = size;
840 }
841 return hi;
842 }
843
844 public PriorityQueueSpliterator trySplit() {
845 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 return (lo >= mid) ? null :
847 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 }
849
850 @SuppressWarnings("unchecked")
851 public void forEachRemaining(Consumer<? super E> action) {
852 int i, hi, mc; // hoist accesses and checks from loop
853 final Object[] a;
854 if (action == null)
855 throw new NullPointerException();
856 if ((a = queue) != null) {
857 if ((hi = fence) < 0) {
858 mc = modCount;
859 hi = size;
860 }
861 else
862 mc = expectedModCount;
863 if ((i = index) >= 0 && (index = hi) <= a.length) {
864 for (E e;; ++i) {
865 if (i < hi) {
866 if ((e = (E) a[i]) == null) // must be CME
867 break;
868 action.accept(e);
869 }
870 else if (modCount != mc)
871 break;
872 else
873 return;
874 }
875 }
876 }
877 throw new ConcurrentModificationException();
878 }
879
880 public boolean tryAdvance(Consumer<? super E> action) {
881 if (action == null)
882 throw new NullPointerException();
883 int hi = getFence(), lo = index;
884 if (lo >= 0 && lo < hi) {
885 index = lo + 1;
886 @SuppressWarnings("unchecked") E e = (E)queue[lo];
887 if (e == null)
888 throw new ConcurrentModificationException();
889 action.accept(e);
890 if (modCount != expectedModCount)
891 throw new ConcurrentModificationException();
892 return true;
893 }
894 return false;
895 }
896
897 public long estimateSize() {
898 return getFence() - index;
899 }
900
901 public int characteristics() {
902 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
903 }
904 }
905 }