ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.120
Committed: Sun Oct 22 17:44:03 2017 UTC (6 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.119: +3 -1 lines
Log Message:
sync 8174109: Better queuing priorities

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import jdk.internal.misc.SharedSecrets;
30
31 /**
32 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 * The elements of the priority queue are ordered according to their
34 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 * provided at queue construction time, depending on which constructor is
36 * used. A priority queue does not permit {@code null} elements.
37 * A priority queue relying on natural ordering also does not permit
38 * insertion of non-comparable objects (doing so may result in
39 * {@code ClassCastException}).
40 *
41 * <p>The <em>head</em> of this queue is the <em>least</em> element
42 * with respect to the specified ordering. If multiple elements are
43 * tied for least value, the head is one of those elements -- ties are
44 * broken arbitrarily. The queue retrieval operations {@code poll},
45 * {@code remove}, {@code peek}, and {@code element} access the
46 * element at the head of the queue.
47 *
48 * <p>A priority queue is unbounded, but has an internal
49 * <i>capacity</i> governing the size of an array used to store the
50 * elements on the queue. It is always at least as large as the queue
51 * size. As elements are added to a priority queue, its capacity
52 * grows automatically. The details of the growth policy are not
53 * specified.
54 *
55 * <p>This class and its iterator implement all of the
56 * <em>optional</em> methods of the {@link Collection} and {@link
57 * Iterator} interfaces. The Iterator provided in method {@link
58 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 * are <em>not</em> guaranteed to traverse the elements of
60 * the priority queue in any particular order. If you need ordered
61 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 *
63 * <p><strong>Note that this implementation is not synchronized.</strong>
64 * Multiple threads should not access a {@code PriorityQueue}
65 * instance concurrently if any of the threads modifies the queue.
66 * Instead, use the thread-safe {@link
67 * java.util.concurrent.PriorityBlockingQueue} class.
68 *
69 * <p>Implementation note: this implementation provides
70 * O(log(n)) time for the enqueuing and dequeuing methods
71 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 * methods; and constant time for the retrieval methods
74 * ({@code peek}, {@code element}, and {@code size}).
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 * Java Collections Framework</a>.
79 *
80 * @since 1.5
81 * @author Josh Bloch, Doug Lea
82 * @param <E> the type of elements held in this queue
83 */
84 public class PriorityQueue<E> extends AbstractQueue<E>
85 implements java.io.Serializable {
86
87 private static final long serialVersionUID = -7720805057305804111L;
88
89 private static final int DEFAULT_INITIAL_CAPACITY = 11;
90
91 /**
92 * Priority queue represented as a balanced binary heap: the two
93 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
94 * priority queue is ordered by comparator, or by the elements'
95 * natural ordering, if comparator is null: For each node n in the
96 * heap and each descendant d of n, n <= d. The element with the
97 * lowest value is in queue[0], assuming the queue is nonempty.
98 */
99 transient Object[] queue; // non-private to simplify nested class access
100
101 /**
102 * The number of elements in the priority queue.
103 */
104 int size;
105
106 /**
107 * The comparator, or null if priority queue uses elements'
108 * natural ordering.
109 */
110 private final Comparator<? super E> comparator;
111
112 /**
113 * The number of times this priority queue has been
114 * <i>structurally modified</i>. See AbstractList for gory details.
115 */
116 transient int modCount; // non-private to simplify nested class access
117
118 /**
119 * Creates a {@code PriorityQueue} with the default initial
120 * capacity (11) that orders its elements according to their
121 * {@linkplain Comparable natural ordering}.
122 */
123 public PriorityQueue() {
124 this(DEFAULT_INITIAL_CAPACITY, null);
125 }
126
127 /**
128 * Creates a {@code PriorityQueue} with the specified initial
129 * capacity that orders its elements according to their
130 * {@linkplain Comparable natural ordering}.
131 *
132 * @param initialCapacity the initial capacity for this priority queue
133 * @throws IllegalArgumentException if {@code initialCapacity} is less
134 * than 1
135 */
136 public PriorityQueue(int initialCapacity) {
137 this(initialCapacity, null);
138 }
139
140 /**
141 * Creates a {@code PriorityQueue} with the default initial capacity and
142 * whose elements are ordered according to the specified comparator.
143 *
144 * @param comparator the comparator that will be used to order this
145 * priority queue. If {@code null}, the {@linkplain Comparable
146 * natural ordering} of the elements will be used.
147 * @since 1.8
148 */
149 public PriorityQueue(Comparator<? super E> comparator) {
150 this(DEFAULT_INITIAL_CAPACITY, comparator);
151 }
152
153 /**
154 * Creates a {@code PriorityQueue} with the specified initial capacity
155 * that orders its elements according to the specified comparator.
156 *
157 * @param initialCapacity the initial capacity for this priority queue
158 * @param comparator the comparator that will be used to order this
159 * priority queue. If {@code null}, the {@linkplain Comparable
160 * natural ordering} of the elements will be used.
161 * @throws IllegalArgumentException if {@code initialCapacity} is
162 * less than 1
163 */
164 public PriorityQueue(int initialCapacity,
165 Comparator<? super E> comparator) {
166 // Note: This restriction of at least one is not actually needed,
167 // but continues for 1.5 compatibility
168 if (initialCapacity < 1)
169 throw new IllegalArgumentException();
170 this.queue = new Object[initialCapacity];
171 this.comparator = comparator;
172 }
173
174 /**
175 * Creates a {@code PriorityQueue} containing the elements in the
176 * specified collection. If the specified collection is an instance of
177 * a {@link SortedSet} or is another {@code PriorityQueue}, this
178 * priority queue will be ordered according to the same ordering.
179 * Otherwise, this priority queue will be ordered according to the
180 * {@linkplain Comparable natural ordering} of its elements.
181 *
182 * @param c the collection whose elements are to be placed
183 * into this priority queue
184 * @throws ClassCastException if elements of the specified collection
185 * cannot be compared to one another according to the priority
186 * queue's ordering
187 * @throws NullPointerException if the specified collection or any
188 * of its elements are null
189 */
190 @SuppressWarnings("unchecked")
191 public PriorityQueue(Collection<? extends E> c) {
192 if (c instanceof SortedSet<?>) {
193 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 this.comparator = (Comparator<? super E>) ss.comparator();
195 initElementsFromCollection(ss);
196 }
197 else if (c instanceof PriorityQueue<?>) {
198 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 this.comparator = (Comparator<? super E>) pq.comparator();
200 initFromPriorityQueue(pq);
201 }
202 else {
203 this.comparator = null;
204 initFromCollection(c);
205 }
206 }
207
208 /**
209 * Creates a {@code PriorityQueue} containing the elements in the
210 * specified priority queue. This priority queue will be
211 * ordered according to the same ordering as the given priority
212 * queue.
213 *
214 * @param c the priority queue whose elements are to be placed
215 * into this priority queue
216 * @throws ClassCastException if elements of {@code c} cannot be
217 * compared to one another according to {@code c}'s
218 * ordering
219 * @throws NullPointerException if the specified priority queue or any
220 * of its elements are null
221 */
222 @SuppressWarnings("unchecked")
223 public PriorityQueue(PriorityQueue<? extends E> c) {
224 this.comparator = (Comparator<? super E>) c.comparator();
225 initFromPriorityQueue(c);
226 }
227
228 /**
229 * Creates a {@code PriorityQueue} containing the elements in the
230 * specified sorted set. This priority queue will be ordered
231 * according to the same ordering as the given sorted set.
232 *
233 * @param c the sorted set whose elements are to be placed
234 * into this priority queue
235 * @throws ClassCastException if elements of the specified sorted
236 * set cannot be compared to one another according to the
237 * sorted set's ordering
238 * @throws NullPointerException if the specified sorted set or any
239 * of its elements are null
240 */
241 @SuppressWarnings("unchecked")
242 public PriorityQueue(SortedSet<? extends E> c) {
243 this.comparator = (Comparator<? super E>) c.comparator();
244 initElementsFromCollection(c);
245 }
246
247 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
248 if (c.getClass() == PriorityQueue.class) {
249 this.queue = c.toArray();
250 this.size = c.size();
251 } else {
252 initFromCollection(c);
253 }
254 }
255
256 private void initElementsFromCollection(Collection<? extends E> c) {
257 Object[] a = c.toArray();
258 // If c.toArray incorrectly doesn't return Object[], copy it.
259 if (a.getClass() != Object[].class)
260 a = Arrays.copyOf(a, a.length, Object[].class);
261 int len = a.length;
262 if (len == 1 || this.comparator != null)
263 for (Object e : a)
264 if (e == null)
265 throw new NullPointerException();
266 this.queue = a;
267 this.size = a.length;
268 }
269
270 /**
271 * Initializes queue array with elements from the given Collection.
272 *
273 * @param c the collection
274 */
275 private void initFromCollection(Collection<? extends E> c) {
276 initElementsFromCollection(c);
277 heapify();
278 }
279
280 /**
281 * The maximum size of array to allocate.
282 * Some VMs reserve some header words in an array.
283 * Attempts to allocate larger arrays may result in
284 * OutOfMemoryError: Requested array size exceeds VM limit
285 */
286 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
287
288 /**
289 * Increases the capacity of the array.
290 *
291 * @param minCapacity the desired minimum capacity
292 */
293 private void grow(int minCapacity) {
294 int oldCapacity = queue.length;
295 // Double size if small; else grow by 50%
296 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
297 (oldCapacity + 2) :
298 (oldCapacity >> 1));
299 // overflow-conscious code
300 if (newCapacity - MAX_ARRAY_SIZE > 0)
301 newCapacity = hugeCapacity(minCapacity);
302 queue = Arrays.copyOf(queue, newCapacity);
303 }
304
305 private static int hugeCapacity(int minCapacity) {
306 if (minCapacity < 0) // overflow
307 throw new OutOfMemoryError();
308 return (minCapacity > MAX_ARRAY_SIZE) ?
309 Integer.MAX_VALUE :
310 MAX_ARRAY_SIZE;
311 }
312
313 /**
314 * Inserts the specified element into this priority queue.
315 *
316 * @return {@code true} (as specified by {@link Collection#add})
317 * @throws ClassCastException if the specified element cannot be
318 * compared with elements currently in this priority queue
319 * according to the priority queue's ordering
320 * @throws NullPointerException if the specified element is null
321 */
322 public boolean add(E e) {
323 return offer(e);
324 }
325
326 /**
327 * Inserts the specified element into this priority queue.
328 *
329 * @return {@code true} (as specified by {@link Queue#offer})
330 * @throws ClassCastException if the specified element cannot be
331 * compared with elements currently in this priority queue
332 * according to the priority queue's ordering
333 * @throws NullPointerException if the specified element is null
334 */
335 public boolean offer(E e) {
336 if (e == null)
337 throw new NullPointerException();
338 modCount++;
339 int i = size;
340 if (i >= queue.length)
341 grow(i + 1);
342 siftUp(i, e);
343 size = i + 1;
344 return true;
345 }
346
347 @SuppressWarnings("unchecked")
348 public E peek() {
349 return (size == 0) ? null : (E) queue[0];
350 }
351
352 private int indexOf(Object o) {
353 if (o != null) {
354 for (int i = 0; i < size; i++)
355 if (o.equals(queue[i]))
356 return i;
357 }
358 return -1;
359 }
360
361 /**
362 * Removes a single instance of the specified element from this queue,
363 * if it is present. More formally, removes an element {@code e} such
364 * that {@code o.equals(e)}, if this queue contains one or more such
365 * elements. Returns {@code true} if and only if this queue contained
366 * the specified element (or equivalently, if this queue changed as a
367 * result of the call).
368 *
369 * @param o element to be removed from this queue, if present
370 * @return {@code true} if this queue changed as a result of the call
371 */
372 public boolean remove(Object o) {
373 int i = indexOf(o);
374 if (i == -1)
375 return false;
376 else {
377 removeAt(i);
378 return true;
379 }
380 }
381
382 /**
383 * Version of remove using reference equality, not equals.
384 * Needed by iterator.remove.
385 *
386 * @param o element to be removed from this queue, if present
387 * @return {@code true} if removed
388 */
389 boolean removeEq(Object o) {
390 for (int i = 0; i < size; i++) {
391 if (o == queue[i]) {
392 removeAt(i);
393 return true;
394 }
395 }
396 return false;
397 }
398
399 /**
400 * Returns {@code true} if this queue contains the specified element.
401 * More formally, returns {@code true} if and only if this queue contains
402 * at least one element {@code e} such that {@code o.equals(e)}.
403 *
404 * @param o object to be checked for containment in this queue
405 * @return {@code true} if this queue contains the specified element
406 */
407 public boolean contains(Object o) {
408 return indexOf(o) >= 0;
409 }
410
411 /**
412 * Returns an array containing all of the elements in this queue.
413 * The elements are in no particular order.
414 *
415 * <p>The returned array will be "safe" in that no references to it are
416 * maintained by this queue. (In other words, this method must allocate
417 * a new array). The caller is thus free to modify the returned array.
418 *
419 * <p>This method acts as bridge between array-based and collection-based
420 * APIs.
421 *
422 * @return an array containing all of the elements in this queue
423 */
424 public Object[] toArray() {
425 return Arrays.copyOf(queue, size);
426 }
427
428 /**
429 * Returns an array containing all of the elements in this queue; the
430 * runtime type of the returned array is that of the specified array.
431 * The returned array elements are in no particular order.
432 * If the queue fits in the specified array, it is returned therein.
433 * Otherwise, a new array is allocated with the runtime type of the
434 * specified array and the size of this queue.
435 *
436 * <p>If the queue fits in the specified array with room to spare
437 * (i.e., the array has more elements than the queue), the element in
438 * the array immediately following the end of the collection is set to
439 * {@code null}.
440 *
441 * <p>Like the {@link #toArray()} method, this method acts as bridge between
442 * array-based and collection-based APIs. Further, this method allows
443 * precise control over the runtime type of the output array, and may,
444 * under certain circumstances, be used to save allocation costs.
445 *
446 * <p>Suppose {@code x} is a queue known to contain only strings.
447 * The following code can be used to dump the queue into a newly
448 * allocated array of {@code String}:
449 *
450 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
451 *
452 * Note that {@code toArray(new Object[0])} is identical in function to
453 * {@code toArray()}.
454 *
455 * @param a the array into which the elements of the queue are to
456 * be stored, if it is big enough; otherwise, a new array of the
457 * same runtime type is allocated for this purpose.
458 * @return an array containing all of the elements in this queue
459 * @throws ArrayStoreException if the runtime type of the specified array
460 * is not a supertype of the runtime type of every element in
461 * this queue
462 * @throws NullPointerException if the specified array is null
463 */
464 @SuppressWarnings("unchecked")
465 public <T> T[] toArray(T[] a) {
466 final int size = this.size;
467 if (a.length < size)
468 // Make a new array of a's runtime type, but my contents:
469 return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 System.arraycopy(queue, 0, a, 0, size);
471 if (a.length > size)
472 a[size] = null;
473 return a;
474 }
475
476 /**
477 * Returns an iterator over the elements in this queue. The iterator
478 * does not return the elements in any particular order.
479 *
480 * @return an iterator over the elements in this queue
481 */
482 public Iterator<E> iterator() {
483 return new Itr();
484 }
485
486 private final class Itr implements Iterator<E> {
487 /**
488 * Index (into queue array) of element to be returned by
489 * subsequent call to next.
490 */
491 private int cursor;
492
493 /**
494 * Index of element returned by most recent call to next,
495 * unless that element came from the forgetMeNot list.
496 * Set to -1 if element is deleted by a call to remove.
497 */
498 private int lastRet = -1;
499
500 /**
501 * A queue of elements that were moved from the unvisited portion of
502 * the heap into the visited portion as a result of "unlucky" element
503 * removals during the iteration. (Unlucky element removals are those
504 * that require a siftup instead of a siftdown.) We must visit all of
505 * the elements in this list to complete the iteration. We do this
506 * after we've completed the "normal" iteration.
507 *
508 * We expect that most iterations, even those involving removals,
509 * will not need to store elements in this field.
510 */
511 private ArrayDeque<E> forgetMeNot;
512
513 /**
514 * Element returned by the most recent call to next iff that
515 * element was drawn from the forgetMeNot list.
516 */
517 private E lastRetElt;
518
519 /**
520 * The modCount value that the iterator believes that the backing
521 * Queue should have. If this expectation is violated, the iterator
522 * has detected concurrent modification.
523 */
524 private int expectedModCount = modCount;
525
526 Itr() {} // prevent access constructor creation
527
528 public boolean hasNext() {
529 return cursor < size ||
530 (forgetMeNot != null && !forgetMeNot.isEmpty());
531 }
532
533 @SuppressWarnings("unchecked")
534 public E next() {
535 if (expectedModCount != modCount)
536 throw new ConcurrentModificationException();
537 if (cursor < size)
538 return (E) queue[lastRet = cursor++];
539 if (forgetMeNot != null) {
540 lastRet = -1;
541 lastRetElt = forgetMeNot.poll();
542 if (lastRetElt != null)
543 return lastRetElt;
544 }
545 throw new NoSuchElementException();
546 }
547
548 public void remove() {
549 if (expectedModCount != modCount)
550 throw new ConcurrentModificationException();
551 if (lastRet != -1) {
552 E moved = PriorityQueue.this.removeAt(lastRet);
553 lastRet = -1;
554 if (moved == null)
555 cursor--;
556 else {
557 if (forgetMeNot == null)
558 forgetMeNot = new ArrayDeque<>();
559 forgetMeNot.add(moved);
560 }
561 } else if (lastRetElt != null) {
562 PriorityQueue.this.removeEq(lastRetElt);
563 lastRetElt = null;
564 } else {
565 throw new IllegalStateException();
566 }
567 expectedModCount = modCount;
568 }
569 }
570
571 public int size() {
572 return size;
573 }
574
575 /**
576 * Removes all of the elements from this priority queue.
577 * The queue will be empty after this call returns.
578 */
579 public void clear() {
580 modCount++;
581 for (int i = 0; i < size; i++)
582 queue[i] = null;
583 size = 0;
584 }
585
586 @SuppressWarnings("unchecked")
587 public E poll() {
588 if (size == 0)
589 return null;
590 int s = --size;
591 modCount++;
592 E result = (E) queue[0];
593 E x = (E) queue[s];
594 queue[s] = null;
595 if (s != 0)
596 siftDown(0, x);
597 return result;
598 }
599
600 /**
601 * Removes the ith element from queue.
602 *
603 * Normally this method leaves the elements at up to i-1,
604 * inclusive, untouched. Under these circumstances, it returns
605 * null. Occasionally, in order to maintain the heap invariant,
606 * it must swap a later element of the list with one earlier than
607 * i. Under these circumstances, this method returns the element
608 * that was previously at the end of the list and is now at some
609 * position before i. This fact is used by iterator.remove so as to
610 * avoid missing traversing elements.
611 */
612 @SuppressWarnings("unchecked")
613 E removeAt(int i) {
614 // assert i >= 0 && i < size;
615 modCount++;
616 int s = --size;
617 if (s == i) // removed last element
618 queue[i] = null;
619 else {
620 E moved = (E) queue[s];
621 queue[s] = null;
622 siftDown(i, moved);
623 if (queue[i] == moved) {
624 siftUp(i, moved);
625 if (queue[i] != moved)
626 return moved;
627 }
628 }
629 return null;
630 }
631
632 /**
633 * Inserts item x at position k, maintaining heap invariant by
634 * promoting x up the tree until it is greater than or equal to
635 * its parent, or is the root.
636 *
637 * To simplify and speed up coercions and comparisons, the
638 * Comparable and Comparator versions are separated into different
639 * methods that are otherwise identical. (Similarly for siftDown.)
640 *
641 * @param k the position to fill
642 * @param x the item to insert
643 */
644 private void siftUp(int k, E x) {
645 if (comparator != null)
646 siftUpUsingComparator(k, x);
647 else
648 siftUpComparable(k, x);
649 }
650
651 @SuppressWarnings("unchecked")
652 private void siftUpComparable(int k, E x) {
653 Comparable<? super E> key = (Comparable<? super E>) x;
654 while (k > 0) {
655 int parent = (k - 1) >>> 1;
656 Object e = queue[parent];
657 if (key.compareTo((E) e) >= 0)
658 break;
659 queue[k] = e;
660 k = parent;
661 }
662 queue[k] = key;
663 }
664
665 @SuppressWarnings("unchecked")
666 private void siftUpUsingComparator(int k, E x) {
667 while (k > 0) {
668 int parent = (k - 1) >>> 1;
669 Object e = queue[parent];
670 if (comparator.compare(x, (E) e) >= 0)
671 break;
672 queue[k] = e;
673 k = parent;
674 }
675 queue[k] = x;
676 }
677
678 /**
679 * Inserts item x at position k, maintaining heap invariant by
680 * demoting x down the tree repeatedly until it is less than or
681 * equal to its children or is a leaf.
682 *
683 * @param k the position to fill
684 * @param x the item to insert
685 */
686 private void siftDown(int k, E x) {
687 if (comparator != null)
688 siftDownUsingComparator(k, x);
689 else
690 siftDownComparable(k, x);
691 }
692
693 @SuppressWarnings("unchecked")
694 private void siftDownComparable(int k, E x) {
695 Comparable<? super E> key = (Comparable<? super E>)x;
696 int half = size >>> 1; // loop while a non-leaf
697 while (k < half) {
698 int child = (k << 1) + 1; // assume left child is least
699 Object c = queue[child];
700 int right = child + 1;
701 if (right < size &&
702 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
703 c = queue[child = right];
704 if (key.compareTo((E) c) <= 0)
705 break;
706 queue[k] = c;
707 k = child;
708 }
709 queue[k] = key;
710 }
711
712 @SuppressWarnings("unchecked")
713 private void siftDownUsingComparator(int k, E x) {
714 int half = size >>> 1;
715 while (k < half) {
716 int child = (k << 1) + 1;
717 Object c = queue[child];
718 int right = child + 1;
719 if (right < size &&
720 comparator.compare((E) c, (E) queue[right]) > 0)
721 c = queue[child = right];
722 if (comparator.compare(x, (E) c) <= 0)
723 break;
724 queue[k] = c;
725 k = child;
726 }
727 queue[k] = x;
728 }
729
730 /**
731 * Establishes the heap invariant (described above) in the entire tree,
732 * assuming nothing about the order of the elements prior to the call.
733 * This classic algorithm due to Floyd (1964) is known to be O(size).
734 */
735 @SuppressWarnings("unchecked")
736 private void heapify() {
737 final Object[] es = queue;
738 int i = (size >>> 1) - 1;
739 if (comparator == null)
740 for (; i >= 0; i--)
741 siftDownComparable(i, (E) es[i]);
742 else
743 for (; i >= 0; i--)
744 siftDownUsingComparator(i, (E) es[i]);
745 }
746
747 /**
748 * Returns the comparator used to order the elements in this
749 * queue, or {@code null} if this queue is sorted according to
750 * the {@linkplain Comparable natural ordering} of its elements.
751 *
752 * @return the comparator used to order this queue, or
753 * {@code null} if this queue is sorted according to the
754 * natural ordering of its elements
755 */
756 public Comparator<? super E> comparator() {
757 return comparator;
758 }
759
760 /**
761 * Saves this queue to a stream (that is, serializes it).
762 *
763 * @param s the stream
764 * @throws java.io.IOException if an I/O error occurs
765 * @serialData The length of the array backing the instance is
766 * emitted (int), followed by all of its elements
767 * (each an {@code Object}) in the proper order.
768 */
769 private void writeObject(java.io.ObjectOutputStream s)
770 throws java.io.IOException {
771 // Write out element count, and any hidden stuff
772 s.defaultWriteObject();
773
774 // Write out array length, for compatibility with 1.5 version
775 s.writeInt(Math.max(2, size + 1));
776
777 // Write out all elements in the "proper order".
778 for (int i = 0; i < size; i++)
779 s.writeObject(queue[i]);
780 }
781
782 /**
783 * Reconstitutes the {@code PriorityQueue} instance from a stream
784 * (that is, deserializes it).
785 *
786 * @param s the stream
787 * @throws ClassNotFoundException if the class of a serialized object
788 * could not be found
789 * @throws java.io.IOException if an I/O error occurs
790 */
791 private void readObject(java.io.ObjectInputStream s)
792 throws java.io.IOException, ClassNotFoundException {
793 // Read in size, and any hidden stuff
794 s.defaultReadObject();
795
796 // Read in (and discard) array length
797 s.readInt();
798
799 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
800 queue = new Object[size];
801
802 // Read in all elements.
803 for (int i = 0; i < size; i++)
804 queue[i] = s.readObject();
805
806 // Elements are guaranteed to be in "proper order", but the
807 // spec has never explained what that might be.
808 heapify();
809 }
810
811 /**
812 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
813 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
814 * queue. The spliterator does not traverse elements in any particular order
815 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
816 *
817 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
818 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
819 * Overriding implementations should document the reporting of additional
820 * characteristic values.
821 *
822 * @return a {@code Spliterator} over the elements in this queue
823 * @since 1.8
824 */
825 public final Spliterator<E> spliterator() {
826 return new PriorityQueueSpliterator(0, -1, 0);
827 }
828
829 final class PriorityQueueSpliterator implements Spliterator<E> {
830 private int index; // current index, modified on advance/split
831 private int fence; // -1 until first use
832 private int expectedModCount; // initialized when fence set
833
834 /** Creates new spliterator covering the given range. */
835 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
836 this.index = origin;
837 this.fence = fence;
838 this.expectedModCount = expectedModCount;
839 }
840
841 private int getFence() { // initialize fence to size on first use
842 int hi;
843 if ((hi = fence) < 0) {
844 expectedModCount = modCount;
845 hi = fence = size;
846 }
847 return hi;
848 }
849
850 public PriorityQueueSpliterator trySplit() {
851 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
852 return (lo >= mid) ? null :
853 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
854 }
855
856 @SuppressWarnings("unchecked")
857 public void forEachRemaining(Consumer<? super E> action) {
858 if (action == null)
859 throw new NullPointerException();
860 if (fence < 0) { fence = size; expectedModCount = modCount; }
861 final Object[] a = queue;
862 int i, hi; E e;
863 for (i = index, index = hi = fence; i < hi; i++) {
864 if ((e = (E) a[i]) == null)
865 break; // must be CME
866 action.accept(e);
867 }
868 if (modCount != expectedModCount)
869 throw new ConcurrentModificationException();
870 }
871
872 @SuppressWarnings("unchecked")
873 public boolean tryAdvance(Consumer<? super E> action) {
874 if (action == null)
875 throw new NullPointerException();
876 if (fence < 0) { fence = size; expectedModCount = modCount; }
877 int i;
878 if ((i = index) < fence) {
879 index = i + 1;
880 E e;
881 if ((e = (E) queue[i]) == null
882 || modCount != expectedModCount)
883 throw new ConcurrentModificationException();
884 action.accept(e);
885 return true;
886 }
887 return false;
888 }
889
890 public long estimateSize() {
891 return getFence() - index;
892 }
893
894 public int characteristics() {
895 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
896 }
897 }
898 }