ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.123
Committed: Sun May 6 16:26:03 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.122: +18 -16 lines
Log Message:
use common jsr166 idioms

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import jdk.internal.misc.SharedSecrets;
30
31 /**
32 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 * The elements of the priority queue are ordered according to their
34 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 * provided at queue construction time, depending on which constructor is
36 * used. A priority queue does not permit {@code null} elements.
37 * A priority queue relying on natural ordering also does not permit
38 * insertion of non-comparable objects (doing so may result in
39 * {@code ClassCastException}).
40 *
41 * <p>The <em>head</em> of this queue is the <em>least</em> element
42 * with respect to the specified ordering. If multiple elements are
43 * tied for least value, the head is one of those elements -- ties are
44 * broken arbitrarily. The queue retrieval operations {@code poll},
45 * {@code remove}, {@code peek}, and {@code element} access the
46 * element at the head of the queue.
47 *
48 * <p>A priority queue is unbounded, but has an internal
49 * <i>capacity</i> governing the size of an array used to store the
50 * elements on the queue. It is always at least as large as the queue
51 * size. As elements are added to a priority queue, its capacity
52 * grows automatically. The details of the growth policy are not
53 * specified.
54 *
55 * <p>This class and its iterator implement all of the
56 * <em>optional</em> methods of the {@link Collection} and {@link
57 * Iterator} interfaces. The Iterator provided in method {@link
58 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 * are <em>not</em> guaranteed to traverse the elements of
60 * the priority queue in any particular order. If you need ordered
61 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 *
63 * <p><strong>Note that this implementation is not synchronized.</strong>
64 * Multiple threads should not access a {@code PriorityQueue}
65 * instance concurrently if any of the threads modifies the queue.
66 * Instead, use the thread-safe {@link
67 * java.util.concurrent.PriorityBlockingQueue} class.
68 *
69 * <p>Implementation note: this implementation provides
70 * O(log(n)) time for the enqueuing and dequeuing methods
71 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 * methods; and constant time for the retrieval methods
74 * ({@code peek}, {@code element}, and {@code size}).
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 * Java Collections Framework</a>.
79 *
80 * @since 1.5
81 * @author Josh Bloch, Doug Lea
82 * @param <E> the type of elements held in this queue
83 */
84 public class PriorityQueue<E> extends AbstractQueue<E>
85 implements java.io.Serializable {
86
87 private static final long serialVersionUID = -7720805057305804111L;
88
89 private static final int DEFAULT_INITIAL_CAPACITY = 11;
90
91 /**
92 * Priority queue represented as a balanced binary heap: the two
93 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
94 * priority queue is ordered by comparator, or by the elements'
95 * natural ordering, if comparator is null: For each node n in the
96 * heap and each descendant d of n, n <= d. The element with the
97 * lowest value is in queue[0], assuming the queue is nonempty.
98 */
99 transient Object[] queue; // non-private to simplify nested class access
100
101 /**
102 * The number of elements in the priority queue.
103 */
104 int size;
105
106 /**
107 * The comparator, or null if priority queue uses elements'
108 * natural ordering.
109 */
110 private final Comparator<? super E> comparator;
111
112 /**
113 * The number of times this priority queue has been
114 * <i>structurally modified</i>. See AbstractList for gory details.
115 */
116 transient int modCount; // non-private to simplify nested class access
117
118 /**
119 * Creates a {@code PriorityQueue} with the default initial
120 * capacity (11) that orders its elements according to their
121 * {@linkplain Comparable natural ordering}.
122 */
123 public PriorityQueue() {
124 this(DEFAULT_INITIAL_CAPACITY, null);
125 }
126
127 /**
128 * Creates a {@code PriorityQueue} with the specified initial
129 * capacity that orders its elements according to their
130 * {@linkplain Comparable natural ordering}.
131 *
132 * @param initialCapacity the initial capacity for this priority queue
133 * @throws IllegalArgumentException if {@code initialCapacity} is less
134 * than 1
135 */
136 public PriorityQueue(int initialCapacity) {
137 this(initialCapacity, null);
138 }
139
140 /**
141 * Creates a {@code PriorityQueue} with the default initial capacity and
142 * whose elements are ordered according to the specified comparator.
143 *
144 * @param comparator the comparator that will be used to order this
145 * priority queue. If {@code null}, the {@linkplain Comparable
146 * natural ordering} of the elements will be used.
147 * @since 1.8
148 */
149 public PriorityQueue(Comparator<? super E> comparator) {
150 this(DEFAULT_INITIAL_CAPACITY, comparator);
151 }
152
153 /**
154 * Creates a {@code PriorityQueue} with the specified initial capacity
155 * that orders its elements according to the specified comparator.
156 *
157 * @param initialCapacity the initial capacity for this priority queue
158 * @param comparator the comparator that will be used to order this
159 * priority queue. If {@code null}, the {@linkplain Comparable
160 * natural ordering} of the elements will be used.
161 * @throws IllegalArgumentException if {@code initialCapacity} is
162 * less than 1
163 */
164 public PriorityQueue(int initialCapacity,
165 Comparator<? super E> comparator) {
166 // Note: This restriction of at least one is not actually needed,
167 // but continues for 1.5 compatibility
168 if (initialCapacity < 1)
169 throw new IllegalArgumentException();
170 this.queue = new Object[initialCapacity];
171 this.comparator = comparator;
172 }
173
174 /**
175 * Creates a {@code PriorityQueue} containing the elements in the
176 * specified collection. If the specified collection is an instance of
177 * a {@link SortedSet} or is another {@code PriorityQueue}, this
178 * priority queue will be ordered according to the same ordering.
179 * Otherwise, this priority queue will be ordered according to the
180 * {@linkplain Comparable natural ordering} of its elements.
181 *
182 * @param c the collection whose elements are to be placed
183 * into this priority queue
184 * @throws ClassCastException if elements of the specified collection
185 * cannot be compared to one another according to the priority
186 * queue's ordering
187 * @throws NullPointerException if the specified collection or any
188 * of its elements are null
189 */
190 @SuppressWarnings("unchecked")
191 public PriorityQueue(Collection<? extends E> c) {
192 if (c instanceof SortedSet<?>) {
193 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 this.comparator = (Comparator<? super E>) ss.comparator();
195 initElementsFromCollection(ss);
196 }
197 else if (c instanceof PriorityQueue<?>) {
198 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 this.comparator = (Comparator<? super E>) pq.comparator();
200 initFromPriorityQueue(pq);
201 }
202 else {
203 this.comparator = null;
204 initFromCollection(c);
205 }
206 }
207
208 /**
209 * Creates a {@code PriorityQueue} containing the elements in the
210 * specified priority queue. This priority queue will be
211 * ordered according to the same ordering as the given priority
212 * queue.
213 *
214 * @param c the priority queue whose elements are to be placed
215 * into this priority queue
216 * @throws ClassCastException if elements of {@code c} cannot be
217 * compared to one another according to {@code c}'s
218 * ordering
219 * @throws NullPointerException if the specified priority queue or any
220 * of its elements are null
221 */
222 @SuppressWarnings("unchecked")
223 public PriorityQueue(PriorityQueue<? extends E> c) {
224 this.comparator = (Comparator<? super E>) c.comparator();
225 initFromPriorityQueue(c);
226 }
227
228 /**
229 * Creates a {@code PriorityQueue} containing the elements in the
230 * specified sorted set. This priority queue will be ordered
231 * according to the same ordering as the given sorted set.
232 *
233 * @param c the sorted set whose elements are to be placed
234 * into this priority queue
235 * @throws ClassCastException if elements of the specified sorted
236 * set cannot be compared to one another according to the
237 * sorted set's ordering
238 * @throws NullPointerException if the specified sorted set or any
239 * of its elements are null
240 */
241 @SuppressWarnings("unchecked")
242 public PriorityQueue(SortedSet<? extends E> c) {
243 this.comparator = (Comparator<? super E>) c.comparator();
244 initElementsFromCollection(c);
245 }
246
247 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
248 if (c.getClass() == PriorityQueue.class) {
249 this.queue = c.toArray();
250 this.size = c.size();
251 } else {
252 initFromCollection(c);
253 }
254 }
255
256 private void initElementsFromCollection(Collection<? extends E> c) {
257 Object[] a = c.toArray();
258 // If c.toArray incorrectly doesn't return Object[], copy it.
259 if (a.getClass() != Object[].class)
260 a = Arrays.copyOf(a, a.length, Object[].class);
261 int len = a.length;
262 if (len == 1 || this.comparator != null)
263 for (Object e : a)
264 if (e == null)
265 throw new NullPointerException();
266 this.queue = a;
267 this.size = a.length;
268 }
269
270 /**
271 * Initializes queue array with elements from the given Collection.
272 *
273 * @param c the collection
274 */
275 private void initFromCollection(Collection<? extends E> c) {
276 initElementsFromCollection(c);
277 heapify();
278 }
279
280 /**
281 * The maximum size of array to allocate.
282 * Some VMs reserve some header words in an array.
283 * Attempts to allocate larger arrays may result in
284 * OutOfMemoryError: Requested array size exceeds VM limit
285 */
286 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
287
288 /**
289 * Increases the capacity of the array.
290 *
291 * @param minCapacity the desired minimum capacity
292 */
293 private void grow(int minCapacity) {
294 int oldCapacity = queue.length;
295 // Double size if small; else grow by 50%
296 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
297 (oldCapacity + 2) :
298 (oldCapacity >> 1));
299 // overflow-conscious code
300 if (newCapacity - MAX_ARRAY_SIZE > 0)
301 newCapacity = hugeCapacity(minCapacity);
302 queue = Arrays.copyOf(queue, newCapacity);
303 }
304
305 private static int hugeCapacity(int minCapacity) {
306 if (minCapacity < 0) // overflow
307 throw new OutOfMemoryError();
308 return (minCapacity > MAX_ARRAY_SIZE) ?
309 Integer.MAX_VALUE :
310 MAX_ARRAY_SIZE;
311 }
312
313 /**
314 * Inserts the specified element into this priority queue.
315 *
316 * @return {@code true} (as specified by {@link Collection#add})
317 * @throws ClassCastException if the specified element cannot be
318 * compared with elements currently in this priority queue
319 * according to the priority queue's ordering
320 * @throws NullPointerException if the specified element is null
321 */
322 public boolean add(E e) {
323 return offer(e);
324 }
325
326 /**
327 * Inserts the specified element into this priority queue.
328 *
329 * @return {@code true} (as specified by {@link Queue#offer})
330 * @throws ClassCastException if the specified element cannot be
331 * compared with elements currently in this priority queue
332 * according to the priority queue's ordering
333 * @throws NullPointerException if the specified element is null
334 */
335 public boolean offer(E e) {
336 if (e == null)
337 throw new NullPointerException();
338 modCount++;
339 int i = size;
340 if (i >= queue.length)
341 grow(i + 1);
342 siftUp(i, e);
343 size = i + 1;
344 return true;
345 }
346
347 @SuppressWarnings("unchecked")
348 public E peek() {
349 return (size == 0) ? null : (E) queue[0];
350 }
351
352 private int indexOf(Object o) {
353 if (o != null) {
354 final Object[] es = queue;
355 for (int i = 0, n = size; i < n; i++)
356 if (o.equals(es[i]))
357 return i;
358 }
359 return -1;
360 }
361
362 /**
363 * Removes a single instance of the specified element from this queue,
364 * if it is present. More formally, removes an element {@code e} such
365 * that {@code o.equals(e)}, if this queue contains one or more such
366 * elements. Returns {@code true} if and only if this queue contained
367 * the specified element (or equivalently, if this queue changed as a
368 * result of the call).
369 *
370 * @param o element to be removed from this queue, if present
371 * @return {@code true} if this queue changed as a result of the call
372 */
373 public boolean remove(Object o) {
374 int i = indexOf(o);
375 if (i == -1)
376 return false;
377 else {
378 removeAt(i);
379 return true;
380 }
381 }
382
383 /**
384 * Identity-based version for use in Itr.remove.
385 *
386 * @param o element to be removed from this queue, if present
387 */
388 void removeEq(Object o) {
389 final Object[] es = queue;
390 for (int i = 0, n = size; i < n; i++) {
391 if (o == es[i]) {
392 removeAt(i);
393 break;
394 }
395 }
396 }
397
398 /**
399 * Returns {@code true} if this queue contains the specified element.
400 * More formally, returns {@code true} if and only if this queue contains
401 * at least one element {@code e} such that {@code o.equals(e)}.
402 *
403 * @param o object to be checked for containment in this queue
404 * @return {@code true} if this queue contains the specified element
405 */
406 public boolean contains(Object o) {
407 return indexOf(o) >= 0;
408 }
409
410 /**
411 * Returns an array containing all of the elements in this queue.
412 * The elements are in no particular order.
413 *
414 * <p>The returned array will be "safe" in that no references to it are
415 * maintained by this queue. (In other words, this method must allocate
416 * a new array). The caller is thus free to modify the returned array.
417 *
418 * <p>This method acts as bridge between array-based and collection-based
419 * APIs.
420 *
421 * @return an array containing all of the elements in this queue
422 */
423 public Object[] toArray() {
424 return Arrays.copyOf(queue, size);
425 }
426
427 /**
428 * Returns an array containing all of the elements in this queue; the
429 * runtime type of the returned array is that of the specified array.
430 * The returned array elements are in no particular order.
431 * If the queue fits in the specified array, it is returned therein.
432 * Otherwise, a new array is allocated with the runtime type of the
433 * specified array and the size of this queue.
434 *
435 * <p>If the queue fits in the specified array with room to spare
436 * (i.e., the array has more elements than the queue), the element in
437 * the array immediately following the end of the collection is set to
438 * {@code null}.
439 *
440 * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 * array-based and collection-based APIs. Further, this method allows
442 * precise control over the runtime type of the output array, and may,
443 * under certain circumstances, be used to save allocation costs.
444 *
445 * <p>Suppose {@code x} is a queue known to contain only strings.
446 * The following code can be used to dump the queue into a newly
447 * allocated array of {@code String}:
448 *
449 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 *
451 * Note that {@code toArray(new Object[0])} is identical in function to
452 * {@code toArray()}.
453 *
454 * @param a the array into which the elements of the queue are to
455 * be stored, if it is big enough; otherwise, a new array of the
456 * same runtime type is allocated for this purpose.
457 * @return an array containing all of the elements in this queue
458 * @throws ArrayStoreException if the runtime type of the specified array
459 * is not a supertype of the runtime type of every element in
460 * this queue
461 * @throws NullPointerException if the specified array is null
462 */
463 @SuppressWarnings("unchecked")
464 public <T> T[] toArray(T[] a) {
465 final int size = this.size;
466 if (a.length < size)
467 // Make a new array of a's runtime type, but my contents:
468 return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 System.arraycopy(queue, 0, a, 0, size);
470 if (a.length > size)
471 a[size] = null;
472 return a;
473 }
474
475 /**
476 * Returns an iterator over the elements in this queue. The iterator
477 * does not return the elements in any particular order.
478 *
479 * @return an iterator over the elements in this queue
480 */
481 public Iterator<E> iterator() {
482 return new Itr();
483 }
484
485 private final class Itr implements Iterator<E> {
486 /**
487 * Index (into queue array) of element to be returned by
488 * subsequent call to next.
489 */
490 private int cursor;
491
492 /**
493 * Index of element returned by most recent call to next,
494 * unless that element came from the forgetMeNot list.
495 * Set to -1 if element is deleted by a call to remove.
496 */
497 private int lastRet = -1;
498
499 /**
500 * A queue of elements that were moved from the unvisited portion of
501 * the heap into the visited portion as a result of "unlucky" element
502 * removals during the iteration. (Unlucky element removals are those
503 * that require a siftup instead of a siftdown.) We must visit all of
504 * the elements in this list to complete the iteration. We do this
505 * after we've completed the "normal" iteration.
506 *
507 * We expect that most iterations, even those involving removals,
508 * will not need to store elements in this field.
509 */
510 private ArrayDeque<E> forgetMeNot;
511
512 /**
513 * Element returned by the most recent call to next iff that
514 * element was drawn from the forgetMeNot list.
515 */
516 private E lastRetElt;
517
518 /**
519 * The modCount value that the iterator believes that the backing
520 * Queue should have. If this expectation is violated, the iterator
521 * has detected concurrent modification.
522 */
523 private int expectedModCount = modCount;
524
525 Itr() {} // prevent access constructor creation
526
527 public boolean hasNext() {
528 return cursor < size ||
529 (forgetMeNot != null && !forgetMeNot.isEmpty());
530 }
531
532 @SuppressWarnings("unchecked")
533 public E next() {
534 if (expectedModCount != modCount)
535 throw new ConcurrentModificationException();
536 if (cursor < size)
537 return (E) queue[lastRet = cursor++];
538 if (forgetMeNot != null) {
539 lastRet = -1;
540 lastRetElt = forgetMeNot.poll();
541 if (lastRetElt != null)
542 return lastRetElt;
543 }
544 throw new NoSuchElementException();
545 }
546
547 public void remove() {
548 if (expectedModCount != modCount)
549 throw new ConcurrentModificationException();
550 if (lastRet != -1) {
551 E moved = PriorityQueue.this.removeAt(lastRet);
552 lastRet = -1;
553 if (moved == null)
554 cursor--;
555 else {
556 if (forgetMeNot == null)
557 forgetMeNot = new ArrayDeque<>();
558 forgetMeNot.add(moved);
559 }
560 } else if (lastRetElt != null) {
561 PriorityQueue.this.removeEq(lastRetElt);
562 lastRetElt = null;
563 } else {
564 throw new IllegalStateException();
565 }
566 expectedModCount = modCount;
567 }
568 }
569
570 public int size() {
571 return size;
572 }
573
574 /**
575 * Removes all of the elements from this priority queue.
576 * The queue will be empty after this call returns.
577 */
578 public void clear() {
579 modCount++;
580 final Object[] es = queue;
581 for (int i = 0, n = size; i < n; i++)
582 es[i] = null;
583 size = 0;
584 }
585
586 @SuppressWarnings("unchecked")
587 public E poll() {
588 if (size == 0)
589 return null;
590 int s = --size;
591 modCount++;
592 E result = (E) queue[0];
593 E x = (E) queue[s];
594 queue[s] = null;
595 if (s != 0)
596 siftDown(0, x);
597 return result;
598 }
599
600 /**
601 * Removes the ith element from queue.
602 *
603 * Normally this method leaves the elements at up to i-1,
604 * inclusive, untouched. Under these circumstances, it returns
605 * null. Occasionally, in order to maintain the heap invariant,
606 * it must swap a later element of the list with one earlier than
607 * i. Under these circumstances, this method returns the element
608 * that was previously at the end of the list and is now at some
609 * position before i. This fact is used by iterator.remove so as to
610 * avoid missing traversing elements.
611 */
612 @SuppressWarnings("unchecked")
613 E removeAt(int i) {
614 // assert i >= 0 && i < size;
615 modCount++;
616 int s = --size;
617 if (s == i) // removed last element
618 queue[i] = null;
619 else {
620 E moved = (E) queue[s];
621 queue[s] = null;
622 siftDown(i, moved);
623 if (queue[i] == moved) {
624 siftUp(i, moved);
625 if (queue[i] != moved)
626 return moved;
627 }
628 }
629 return null;
630 }
631
632 /**
633 * Inserts item x at position k, maintaining heap invariant by
634 * promoting x up the tree until it is greater than or equal to
635 * its parent, or is the root.
636 *
637 * To simplify and speed up coercions and comparisons, the
638 * Comparable and Comparator versions are separated into different
639 * methods that are otherwise identical. (Similarly for siftDown.)
640 *
641 * @param k the position to fill
642 * @param x the item to insert
643 */
644 private void siftUp(int k, E x) {
645 if (comparator != null)
646 siftUpUsingComparator(k, x);
647 else
648 siftUpComparable(k, x);
649 }
650
651 @SuppressWarnings("unchecked")
652 private void siftUpComparable(int k, E x) {
653 Comparable<? super E> key = (Comparable<? super E>) x;
654 while (k > 0) {
655 int parent = (k - 1) >>> 1;
656 Object e = queue[parent];
657 if (key.compareTo((E) e) >= 0)
658 break;
659 queue[k] = e;
660 k = parent;
661 }
662 queue[k] = key;
663 }
664
665 @SuppressWarnings("unchecked")
666 private void siftUpUsingComparator(int k, E x) {
667 while (k > 0) {
668 int parent = (k - 1) >>> 1;
669 Object e = queue[parent];
670 if (comparator.compare(x, (E) e) >= 0)
671 break;
672 queue[k] = e;
673 k = parent;
674 }
675 queue[k] = x;
676 }
677
678 /**
679 * Inserts item x at position k, maintaining heap invariant by
680 * demoting x down the tree repeatedly until it is less than or
681 * equal to its children or is a leaf.
682 *
683 * @param k the position to fill
684 * @param x the item to insert
685 */
686 private void siftDown(int k, E x) {
687 if (comparator != null)
688 siftDownUsingComparator(k, x);
689 else
690 siftDownComparable(k, x);
691 }
692
693 @SuppressWarnings("unchecked")
694 private void siftDownComparable(int k, E x) {
695 Comparable<? super E> key = (Comparable<? super E>)x;
696 int half = size >>> 1; // loop while a non-leaf
697 while (k < half) {
698 int child = (k << 1) + 1; // assume left child is least
699 Object c = queue[child];
700 int right = child + 1;
701 if (right < size &&
702 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
703 c = queue[child = right];
704 if (key.compareTo((E) c) <= 0)
705 break;
706 queue[k] = c;
707 k = child;
708 }
709 queue[k] = key;
710 }
711
712 @SuppressWarnings("unchecked")
713 private void siftDownUsingComparator(int k, E x) {
714 int half = size >>> 1;
715 while (k < half) {
716 int child = (k << 1) + 1;
717 Object c = queue[child];
718 int right = child + 1;
719 if (right < size &&
720 comparator.compare((E) c, (E) queue[right]) > 0)
721 c = queue[child = right];
722 if (comparator.compare(x, (E) c) <= 0)
723 break;
724 queue[k] = c;
725 k = child;
726 }
727 queue[k] = x;
728 }
729
730 /**
731 * Establishes the heap invariant (described above) in the entire tree,
732 * assuming nothing about the order of the elements prior to the call.
733 * This classic algorithm due to Floyd (1964) is known to be O(size).
734 */
735 @SuppressWarnings("unchecked")
736 private void heapify() {
737 final Object[] es = queue;
738 int i = (size >>> 1) - 1;
739 if (comparator == null)
740 for (; i >= 0; i--)
741 siftDownComparable(i, (E) es[i]);
742 else
743 for (; i >= 0; i--)
744 siftDownUsingComparator(i, (E) es[i]);
745 }
746
747 /**
748 * Returns the comparator used to order the elements in this
749 * queue, or {@code null} if this queue is sorted according to
750 * the {@linkplain Comparable natural ordering} of its elements.
751 *
752 * @return the comparator used to order this queue, or
753 * {@code null} if this queue is sorted according to the
754 * natural ordering of its elements
755 */
756 public Comparator<? super E> comparator() {
757 return comparator;
758 }
759
760 /**
761 * Saves this queue to a stream (that is, serializes it).
762 *
763 * @param s the stream
764 * @throws java.io.IOException if an I/O error occurs
765 * @serialData The length of the array backing the instance is
766 * emitted (int), followed by all of its elements
767 * (each an {@code Object}) in the proper order.
768 */
769 private void writeObject(java.io.ObjectOutputStream s)
770 throws java.io.IOException {
771 // Write out element count, and any hidden stuff
772 s.defaultWriteObject();
773
774 // Write out array length, for compatibility with 1.5 version
775 s.writeInt(Math.max(2, size + 1));
776
777 // Write out all elements in the "proper order".
778 final Object[] es = queue;
779 for (int i = 0, n = size; i < n; i++)
780 s.writeObject(es[i]);
781 }
782
783 /**
784 * Reconstitutes the {@code PriorityQueue} instance from a stream
785 * (that is, deserializes it).
786 *
787 * @param s the stream
788 * @throws ClassNotFoundException if the class of a serialized object
789 * could not be found
790 * @throws java.io.IOException if an I/O error occurs
791 */
792 private void readObject(java.io.ObjectInputStream s)
793 throws java.io.IOException, ClassNotFoundException {
794 // Read in size, and any hidden stuff
795 s.defaultReadObject();
796
797 // Read in (and discard) array length
798 s.readInt();
799
800 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
801 queue = new Object[size];
802
803 // Read in all elements.
804 final Object[] es = queue;
805 for (int i = 0, n = size; i < n; i++)
806 es[i] = s.readObject();
807
808 // Elements are guaranteed to be in "proper order", but the
809 // spec has never explained what that might be.
810 heapify();
811 }
812
813 /**
814 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
815 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
816 * queue. The spliterator does not traverse elements in any particular order
817 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
818 *
819 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
820 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
821 * Overriding implementations should document the reporting of additional
822 * characteristic values.
823 *
824 * @return a {@code Spliterator} over the elements in this queue
825 * @since 1.8
826 */
827 public final Spliterator<E> spliterator() {
828 return new PriorityQueueSpliterator(0, -1, 0);
829 }
830
831 final class PriorityQueueSpliterator implements Spliterator<E> {
832 private int index; // current index, modified on advance/split
833 private int fence; // -1 until first use
834 private int expectedModCount; // initialized when fence set
835
836 /** Creates new spliterator covering the given range. */
837 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
838 this.index = origin;
839 this.fence = fence;
840 this.expectedModCount = expectedModCount;
841 }
842
843 private int getFence() { // initialize fence to size on first use
844 int hi;
845 if ((hi = fence) < 0) {
846 expectedModCount = modCount;
847 hi = fence = size;
848 }
849 return hi;
850 }
851
852 public PriorityQueueSpliterator trySplit() {
853 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
854 return (lo >= mid) ? null :
855 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
856 }
857
858 @SuppressWarnings("unchecked")
859 public void forEachRemaining(Consumer<? super E> action) {
860 if (action == null)
861 throw new NullPointerException();
862 if (fence < 0) { fence = size; expectedModCount = modCount; }
863 final Object[] a = queue;
864 int i, hi; E e;
865 for (i = index, index = hi = fence; i < hi; i++) {
866 if ((e = (E) a[i]) == null)
867 break; // must be CME
868 action.accept(e);
869 }
870 if (modCount != expectedModCount)
871 throw new ConcurrentModificationException();
872 }
873
874 @SuppressWarnings("unchecked")
875 public boolean tryAdvance(Consumer<? super E> action) {
876 if (action == null)
877 throw new NullPointerException();
878 if (fence < 0) { fence = size; expectedModCount = modCount; }
879 int i;
880 if ((i = index) < fence) {
881 index = i + 1;
882 E e;
883 if ((e = (E) queue[i]) == null
884 || modCount != expectedModCount)
885 throw new ConcurrentModificationException();
886 action.accept(e);
887 return true;
888 }
889 return false;
890 }
891
892 public long estimateSize() {
893 return getFence() - index;
894 }
895
896 public int characteristics() {
897 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
898 }
899 }
900
901 /**
902 * @throws NullPointerException {@inheritDoc}
903 */
904 @SuppressWarnings("unchecked")
905 public void forEach(Consumer<? super E> action) {
906 Objects.requireNonNull(action);
907 final int expectedModCount = modCount;
908 final Object[] es = queue;
909 for (int i = 0, n = size; i < n; i++)
910 action.accept((E) es[i]);
911 if (expectedModCount != modCount)
912 throw new ConcurrentModificationException();
913 }
914 }