ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.124
Committed: Sun May 6 19:35:51 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.123: +52 -63 lines
Log Message:
coding style

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import jdk.internal.misc.SharedSecrets;
30
31 /**
32 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 * The elements of the priority queue are ordered according to their
34 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 * provided at queue construction time, depending on which constructor is
36 * used. A priority queue does not permit {@code null} elements.
37 * A priority queue relying on natural ordering also does not permit
38 * insertion of non-comparable objects (doing so may result in
39 * {@code ClassCastException}).
40 *
41 * <p>The <em>head</em> of this queue is the <em>least</em> element
42 * with respect to the specified ordering. If multiple elements are
43 * tied for least value, the head is one of those elements -- ties are
44 * broken arbitrarily. The queue retrieval operations {@code poll},
45 * {@code remove}, {@code peek}, and {@code element} access the
46 * element at the head of the queue.
47 *
48 * <p>A priority queue is unbounded, but has an internal
49 * <i>capacity</i> governing the size of an array used to store the
50 * elements on the queue. It is always at least as large as the queue
51 * size. As elements are added to a priority queue, its capacity
52 * grows automatically. The details of the growth policy are not
53 * specified.
54 *
55 * <p>This class and its iterator implement all of the
56 * <em>optional</em> methods of the {@link Collection} and {@link
57 * Iterator} interfaces. The Iterator provided in method {@link
58 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 * are <em>not</em> guaranteed to traverse the elements of
60 * the priority queue in any particular order. If you need ordered
61 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 *
63 * <p><strong>Note that this implementation is not synchronized.</strong>
64 * Multiple threads should not access a {@code PriorityQueue}
65 * instance concurrently if any of the threads modifies the queue.
66 * Instead, use the thread-safe {@link
67 * java.util.concurrent.PriorityBlockingQueue} class.
68 *
69 * <p>Implementation note: this implementation provides
70 * O(log(n)) time for the enqueuing and dequeuing methods
71 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 * methods; and constant time for the retrieval methods
74 * ({@code peek}, {@code element}, and {@code size}).
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 * Java Collections Framework</a>.
79 *
80 * @since 1.5
81 * @author Josh Bloch, Doug Lea
82 * @param <E> the type of elements held in this queue
83 */
84 @SuppressWarnings("unchecked")
85 public class PriorityQueue<E> extends AbstractQueue<E>
86 implements java.io.Serializable {
87
88 private static final long serialVersionUID = -7720805057305804111L;
89
90 private static final int DEFAULT_INITIAL_CAPACITY = 11;
91
92 /**
93 * Priority queue represented as a balanced binary heap: the two
94 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
95 * priority queue is ordered by comparator, or by the elements'
96 * natural ordering, if comparator is null: For each node n in the
97 * heap and each descendant d of n, n <= d. The element with the
98 * lowest value is in queue[0], assuming the queue is nonempty.
99 */
100 transient Object[] queue; // non-private to simplify nested class access
101
102 /**
103 * The number of elements in the priority queue.
104 */
105 int size;
106
107 /**
108 * The comparator, or null if priority queue uses elements'
109 * natural ordering.
110 */
111 private final Comparator<? super E> comparator;
112
113 /**
114 * The number of times this priority queue has been
115 * <i>structurally modified</i>. See AbstractList for gory details.
116 */
117 transient int modCount; // non-private to simplify nested class access
118
119 /**
120 * Creates a {@code PriorityQueue} with the default initial
121 * capacity (11) that orders its elements according to their
122 * {@linkplain Comparable natural ordering}.
123 */
124 public PriorityQueue() {
125 this(DEFAULT_INITIAL_CAPACITY, null);
126 }
127
128 /**
129 * Creates a {@code PriorityQueue} with the specified initial
130 * capacity that orders its elements according to their
131 * {@linkplain Comparable natural ordering}.
132 *
133 * @param initialCapacity the initial capacity for this priority queue
134 * @throws IllegalArgumentException if {@code initialCapacity} is less
135 * than 1
136 */
137 public PriorityQueue(int initialCapacity) {
138 this(initialCapacity, null);
139 }
140
141 /**
142 * Creates a {@code PriorityQueue} with the default initial capacity and
143 * whose elements are ordered according to the specified comparator.
144 *
145 * @param comparator the comparator that will be used to order this
146 * priority queue. If {@code null}, the {@linkplain Comparable
147 * natural ordering} of the elements will be used.
148 * @since 1.8
149 */
150 public PriorityQueue(Comparator<? super E> comparator) {
151 this(DEFAULT_INITIAL_CAPACITY, comparator);
152 }
153
154 /**
155 * Creates a {@code PriorityQueue} with the specified initial capacity
156 * that orders its elements according to the specified comparator.
157 *
158 * @param initialCapacity the initial capacity for this priority queue
159 * @param comparator the comparator that will be used to order this
160 * priority queue. If {@code null}, the {@linkplain Comparable
161 * natural ordering} of the elements will be used.
162 * @throws IllegalArgumentException if {@code initialCapacity} is
163 * less than 1
164 */
165 public PriorityQueue(int initialCapacity,
166 Comparator<? super E> comparator) {
167 // Note: This restriction of at least one is not actually needed,
168 // but continues for 1.5 compatibility
169 if (initialCapacity < 1)
170 throw new IllegalArgumentException();
171 this.queue = new Object[initialCapacity];
172 this.comparator = comparator;
173 }
174
175 /**
176 * Creates a {@code PriorityQueue} containing the elements in the
177 * specified collection. If the specified collection is an instance of
178 * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 * priority queue will be ordered according to the same ordering.
180 * Otherwise, this priority queue will be ordered according to the
181 * {@linkplain Comparable natural ordering} of its elements.
182 *
183 * @param c the collection whose elements are to be placed
184 * into this priority queue
185 * @throws ClassCastException if elements of the specified collection
186 * cannot be compared to one another according to the priority
187 * queue's ordering
188 * @throws NullPointerException if the specified collection or any
189 * of its elements are null
190 */
191 public PriorityQueue(Collection<? extends E> c) {
192 if (c instanceof SortedSet<?>) {
193 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 this.comparator = (Comparator<? super E>) ss.comparator();
195 initElementsFromCollection(ss);
196 }
197 else if (c instanceof PriorityQueue<?>) {
198 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 this.comparator = (Comparator<? super E>) pq.comparator();
200 initFromPriorityQueue(pq);
201 }
202 else {
203 this.comparator = null;
204 initFromCollection(c);
205 }
206 }
207
208 /**
209 * Creates a {@code PriorityQueue} containing the elements in the
210 * specified priority queue. This priority queue will be
211 * ordered according to the same ordering as the given priority
212 * queue.
213 *
214 * @param c the priority queue whose elements are to be placed
215 * into this priority queue
216 * @throws ClassCastException if elements of {@code c} cannot be
217 * compared to one another according to {@code c}'s
218 * ordering
219 * @throws NullPointerException if the specified priority queue or any
220 * of its elements are null
221 */
222 public PriorityQueue(PriorityQueue<? extends E> c) {
223 this.comparator = (Comparator<? super E>) c.comparator();
224 initFromPriorityQueue(c);
225 }
226
227 /**
228 * Creates a {@code PriorityQueue} containing the elements in the
229 * specified sorted set. This priority queue will be ordered
230 * according to the same ordering as the given sorted set.
231 *
232 * @param c the sorted set whose elements are to be placed
233 * into this priority queue
234 * @throws ClassCastException if elements of the specified sorted
235 * set cannot be compared to one another according to the
236 * sorted set's ordering
237 * @throws NullPointerException if the specified sorted set or any
238 * of its elements are null
239 */
240 public PriorityQueue(SortedSet<? extends E> c) {
241 this.comparator = (Comparator<? super E>) c.comparator();
242 initElementsFromCollection(c);
243 }
244
245 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 if (c.getClass() == PriorityQueue.class) {
247 this.queue = c.toArray();
248 this.size = c.size();
249 } else {
250 initFromCollection(c);
251 }
252 }
253
254 private void initElementsFromCollection(Collection<? extends E> c) {
255 Object[] es = c.toArray();
256 int len = es.length;
257 // If c.toArray incorrectly doesn't return Object[], copy it.
258 if (es.getClass() != Object[].class)
259 es = Arrays.copyOf(es, len, Object[].class);
260 if (len == 1 || this.comparator != null)
261 for (Object e : es)
262 if (e == null)
263 throw new NullPointerException();
264 this.queue = es;
265 this.size = len;
266 }
267
268 /**
269 * Initializes queue array with elements from the given Collection.
270 *
271 * @param c the collection
272 */
273 private void initFromCollection(Collection<? extends E> c) {
274 initElementsFromCollection(c);
275 heapify();
276 }
277
278 /**
279 * The maximum size of array to allocate.
280 * Some VMs reserve some header words in an array.
281 * Attempts to allocate larger arrays may result in
282 * OutOfMemoryError: Requested array size exceeds VM limit
283 */
284 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285
286 /**
287 * Increases the capacity of the array.
288 *
289 * @param minCapacity the desired minimum capacity
290 */
291 private void grow(int minCapacity) {
292 int oldCapacity = queue.length;
293 // Double size if small; else grow by 50%
294 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 (oldCapacity + 2) :
296 (oldCapacity >> 1));
297 // overflow-conscious code
298 if (newCapacity - MAX_ARRAY_SIZE > 0)
299 newCapacity = hugeCapacity(minCapacity);
300 queue = Arrays.copyOf(queue, newCapacity);
301 }
302
303 private static int hugeCapacity(int minCapacity) {
304 if (minCapacity < 0) // overflow
305 throw new OutOfMemoryError();
306 return (minCapacity > MAX_ARRAY_SIZE) ?
307 Integer.MAX_VALUE :
308 MAX_ARRAY_SIZE;
309 }
310
311 /**
312 * Inserts the specified element into this priority queue.
313 *
314 * @return {@code true} (as specified by {@link Collection#add})
315 * @throws ClassCastException if the specified element cannot be
316 * compared with elements currently in this priority queue
317 * according to the priority queue's ordering
318 * @throws NullPointerException if the specified element is null
319 */
320 public boolean add(E e) {
321 return offer(e);
322 }
323
324 /**
325 * Inserts the specified element into this priority queue.
326 *
327 * @return {@code true} (as specified by {@link Queue#offer})
328 * @throws ClassCastException if the specified element cannot be
329 * compared with elements currently in this priority queue
330 * according to the priority queue's ordering
331 * @throws NullPointerException if the specified element is null
332 */
333 public boolean offer(E e) {
334 if (e == null)
335 throw new NullPointerException();
336 modCount++;
337 int i = size;
338 if (i >= queue.length)
339 grow(i + 1);
340 siftUp(i, e);
341 size = i + 1;
342 return true;
343 }
344
345 public E peek() {
346 return (size == 0) ? null : (E) queue[0];
347 }
348
349 private int indexOf(Object o) {
350 if (o != null) {
351 final Object[] es = queue;
352 for (int i = 0, n = size; i < n; i++)
353 if (o.equals(es[i]))
354 return i;
355 }
356 return -1;
357 }
358
359 /**
360 * Removes a single instance of the specified element from this queue,
361 * if it is present. More formally, removes an element {@code e} such
362 * that {@code o.equals(e)}, if this queue contains one or more such
363 * elements. Returns {@code true} if and only if this queue contained
364 * the specified element (or equivalently, if this queue changed as a
365 * result of the call).
366 *
367 * @param o element to be removed from this queue, if present
368 * @return {@code true} if this queue changed as a result of the call
369 */
370 public boolean remove(Object o) {
371 int i = indexOf(o);
372 if (i == -1)
373 return false;
374 else {
375 removeAt(i);
376 return true;
377 }
378 }
379
380 /**
381 * Identity-based version for use in Itr.remove.
382 *
383 * @param o element to be removed from this queue, if present
384 */
385 void removeEq(Object o) {
386 final Object[] es = queue;
387 for (int i = 0, n = size; i < n; i++) {
388 if (o == es[i]) {
389 removeAt(i);
390 break;
391 }
392 }
393 }
394
395 /**
396 * Returns {@code true} if this queue contains the specified element.
397 * More formally, returns {@code true} if and only if this queue contains
398 * at least one element {@code e} such that {@code o.equals(e)}.
399 *
400 * @param o object to be checked for containment in this queue
401 * @return {@code true} if this queue contains the specified element
402 */
403 public boolean contains(Object o) {
404 return indexOf(o) >= 0;
405 }
406
407 /**
408 * Returns an array containing all of the elements in this queue.
409 * The elements are in no particular order.
410 *
411 * <p>The returned array will be "safe" in that no references to it are
412 * maintained by this queue. (In other words, this method must allocate
413 * a new array). The caller is thus free to modify the returned array.
414 *
415 * <p>This method acts as bridge between array-based and collection-based
416 * APIs.
417 *
418 * @return an array containing all of the elements in this queue
419 */
420 public Object[] toArray() {
421 return Arrays.copyOf(queue, size);
422 }
423
424 /**
425 * Returns an array containing all of the elements in this queue; the
426 * runtime type of the returned array is that of the specified array.
427 * The returned array elements are in no particular order.
428 * If the queue fits in the specified array, it is returned therein.
429 * Otherwise, a new array is allocated with the runtime type of the
430 * specified array and the size of this queue.
431 *
432 * <p>If the queue fits in the specified array with room to spare
433 * (i.e., the array has more elements than the queue), the element in
434 * the array immediately following the end of the collection is set to
435 * {@code null}.
436 *
437 * <p>Like the {@link #toArray()} method, this method acts as bridge between
438 * array-based and collection-based APIs. Further, this method allows
439 * precise control over the runtime type of the output array, and may,
440 * under certain circumstances, be used to save allocation costs.
441 *
442 * <p>Suppose {@code x} is a queue known to contain only strings.
443 * The following code can be used to dump the queue into a newly
444 * allocated array of {@code String}:
445 *
446 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
447 *
448 * Note that {@code toArray(new Object[0])} is identical in function to
449 * {@code toArray()}.
450 *
451 * @param a the array into which the elements of the queue are to
452 * be stored, if it is big enough; otherwise, a new array of the
453 * same runtime type is allocated for this purpose.
454 * @return an array containing all of the elements in this queue
455 * @throws ArrayStoreException if the runtime type of the specified array
456 * is not a supertype of the runtime type of every element in
457 * this queue
458 * @throws NullPointerException if the specified array is null
459 */
460 public <T> T[] toArray(T[] a) {
461 final int size = this.size;
462 if (a.length < size)
463 // Make a new array of a's runtime type, but my contents:
464 return (T[]) Arrays.copyOf(queue, size, a.getClass());
465 System.arraycopy(queue, 0, a, 0, size);
466 if (a.length > size)
467 a[size] = null;
468 return a;
469 }
470
471 /**
472 * Returns an iterator over the elements in this queue. The iterator
473 * does not return the elements in any particular order.
474 *
475 * @return an iterator over the elements in this queue
476 */
477 public Iterator<E> iterator() {
478 return new Itr();
479 }
480
481 private final class Itr implements Iterator<E> {
482 /**
483 * Index (into queue array) of element to be returned by
484 * subsequent call to next.
485 */
486 private int cursor;
487
488 /**
489 * Index of element returned by most recent call to next,
490 * unless that element came from the forgetMeNot list.
491 * Set to -1 if element is deleted by a call to remove.
492 */
493 private int lastRet = -1;
494
495 /**
496 * A queue of elements that were moved from the unvisited portion of
497 * the heap into the visited portion as a result of "unlucky" element
498 * removals during the iteration. (Unlucky element removals are those
499 * that require a siftup instead of a siftdown.) We must visit all of
500 * the elements in this list to complete the iteration. We do this
501 * after we've completed the "normal" iteration.
502 *
503 * We expect that most iterations, even those involving removals,
504 * will not need to store elements in this field.
505 */
506 private ArrayDeque<E> forgetMeNot;
507
508 /**
509 * Element returned by the most recent call to next iff that
510 * element was drawn from the forgetMeNot list.
511 */
512 private E lastRetElt;
513
514 /**
515 * The modCount value that the iterator believes that the backing
516 * Queue should have. If this expectation is violated, the iterator
517 * has detected concurrent modification.
518 */
519 private int expectedModCount = modCount;
520
521 Itr() {} // prevent access constructor creation
522
523 public boolean hasNext() {
524 return cursor < size ||
525 (forgetMeNot != null && !forgetMeNot.isEmpty());
526 }
527
528 public E next() {
529 if (expectedModCount != modCount)
530 throw new ConcurrentModificationException();
531 if (cursor < size)
532 return (E) queue[lastRet = cursor++];
533 if (forgetMeNot != null) {
534 lastRet = -1;
535 lastRetElt = forgetMeNot.poll();
536 if (lastRetElt != null)
537 return lastRetElt;
538 }
539 throw new NoSuchElementException();
540 }
541
542 public void remove() {
543 if (expectedModCount != modCount)
544 throw new ConcurrentModificationException();
545 if (lastRet != -1) {
546 E moved = PriorityQueue.this.removeAt(lastRet);
547 lastRet = -1;
548 if (moved == null)
549 cursor--;
550 else {
551 if (forgetMeNot == null)
552 forgetMeNot = new ArrayDeque<>();
553 forgetMeNot.add(moved);
554 }
555 } else if (lastRetElt != null) {
556 PriorityQueue.this.removeEq(lastRetElt);
557 lastRetElt = null;
558 } else {
559 throw new IllegalStateException();
560 }
561 expectedModCount = modCount;
562 }
563 }
564
565 public int size() {
566 return size;
567 }
568
569 /**
570 * Removes all of the elements from this priority queue.
571 * The queue will be empty after this call returns.
572 */
573 public void clear() {
574 modCount++;
575 final Object[] es = queue;
576 for (int i = 0, n = size; i < n; i++)
577 es[i] = null;
578 size = 0;
579 }
580
581 public E poll() {
582 if (size == 0)
583 return null;
584 int s = --size;
585 modCount++;
586 E result = (E) queue[0];
587 E x = (E) queue[s];
588 queue[s] = null;
589 if (s != 0)
590 siftDown(0, x);
591 return result;
592 }
593
594 /**
595 * Removes the ith element from queue.
596 *
597 * Normally this method leaves the elements at up to i-1,
598 * inclusive, untouched. Under these circumstances, it returns
599 * null. Occasionally, in order to maintain the heap invariant,
600 * it must swap a later element of the list with one earlier than
601 * i. Under these circumstances, this method returns the element
602 * that was previously at the end of the list and is now at some
603 * position before i. This fact is used by iterator.remove so as to
604 * avoid missing traversing elements.
605 */
606 E removeAt(int i) {
607 // assert i >= 0 && i < size;
608 modCount++;
609 int s = --size;
610 if (s == i) // removed last element
611 queue[i] = null;
612 else {
613 E moved = (E) queue[s];
614 queue[s] = null;
615 siftDown(i, moved);
616 if (queue[i] == moved) {
617 siftUp(i, moved);
618 if (queue[i] != moved)
619 return moved;
620 }
621 }
622 return null;
623 }
624
625 /**
626 * Inserts item x at position k, maintaining heap invariant by
627 * promoting x up the tree until it is greater than or equal to
628 * its parent, or is the root.
629 *
630 * To simplify and speed up coercions and comparisons, the
631 * Comparable and Comparator versions are separated into different
632 * methods that are otherwise identical. (Similarly for siftDown.)
633 *
634 * @param k the position to fill
635 * @param x the item to insert
636 */
637 private void siftUp(int k, E x) {
638 if (comparator != null)
639 siftUpUsingComparator(k, x, queue, comparator);
640 else
641 siftUpComparable(k, x, queue);
642 }
643
644 private static <T> void siftUpComparable(int k, T x, Object[] es) {
645 Comparable<? super T> key = (Comparable<? super T>) x;
646 while (k > 0) {
647 int parent = (k - 1) >>> 1;
648 Object e = es[parent];
649 if (key.compareTo((T) e) >= 0)
650 break;
651 es[k] = e;
652 k = parent;
653 }
654 es[k] = key;
655 }
656
657 private static <T> void siftUpUsingComparator(
658 int k, T x, Object[] es, Comparator<? super T> cmp) {
659 while (k > 0) {
660 int parent = (k - 1) >>> 1;
661 Object e = es[parent];
662 if (cmp.compare(x, (T) e) >= 0)
663 break;
664 es[k] = e;
665 k = parent;
666 }
667 es[k] = x;
668 }
669
670 /**
671 * Inserts item x at position k, maintaining heap invariant by
672 * demoting x down the tree repeatedly until it is less than or
673 * equal to its children or is a leaf.
674 *
675 * @param k the position to fill
676 * @param x the item to insert
677 */
678 private void siftDown(int k, E x) {
679 if (comparator != null)
680 siftDownUsingComparator(k, x, queue, size, comparator);
681 else
682 siftDownComparable(k, x, queue, size);
683 }
684
685 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
686 // assert n > 0;
687 Comparable<? super T> key = (Comparable<? super T>)x;
688 int half = n >>> 1; // loop while a non-leaf
689 while (k < half) {
690 int child = (k << 1) + 1; // assume left child is least
691 Object c = es[child];
692 int right = child + 1;
693 if (right < n &&
694 ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
695 c = es[child = right];
696 if (key.compareTo((T) c) <= 0)
697 break;
698 es[k] = c;
699 k = child;
700 }
701 es[k] = key;
702 }
703
704 private static <T> void siftDownUsingComparator(
705 int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
706 // assert n > 0;
707 int half = n >>> 1;
708 while (k < half) {
709 int child = (k << 1) + 1;
710 Object c = es[child];
711 int right = child + 1;
712 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
713 c = es[child = right];
714 if (cmp.compare(x, (T) c) <= 0)
715 break;
716 es[k] = c;
717 k = child;
718 }
719 es[k] = x;
720 }
721
722 /**
723 * Establishes the heap invariant (described above) in the entire tree,
724 * assuming nothing about the order of the elements prior to the call.
725 * This classic algorithm due to Floyd (1964) is known to be O(size).
726 */
727 private void heapify() {
728 final Object[] es = queue;
729 int n = size, i = (n >>> 1) - 1;
730 Comparator<? super E> cmp = comparator;
731 if (cmp == null)
732 for (; i >= 0; i--)
733 siftDownComparable(i, (E) es[i], es, n);
734 else
735 for (; i >= 0; i--)
736 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
737 }
738
739 /**
740 * Returns the comparator used to order the elements in this
741 * queue, or {@code null} if this queue is sorted according to
742 * the {@linkplain Comparable natural ordering} of its elements.
743 *
744 * @return the comparator used to order this queue, or
745 * {@code null} if this queue is sorted according to the
746 * natural ordering of its elements
747 */
748 public Comparator<? super E> comparator() {
749 return comparator;
750 }
751
752 /**
753 * Saves this queue to a stream (that is, serializes it).
754 *
755 * @param s the stream
756 * @throws java.io.IOException if an I/O error occurs
757 * @serialData The length of the array backing the instance is
758 * emitted (int), followed by all of its elements
759 * (each an {@code Object}) in the proper order.
760 */
761 private void writeObject(java.io.ObjectOutputStream s)
762 throws java.io.IOException {
763 // Write out element count, and any hidden stuff
764 s.defaultWriteObject();
765
766 // Write out array length, for compatibility with 1.5 version
767 s.writeInt(Math.max(2, size + 1));
768
769 // Write out all elements in the "proper order".
770 final Object[] es = queue;
771 for (int i = 0, n = size; i < n; i++)
772 s.writeObject(es[i]);
773 }
774
775 /**
776 * Reconstitutes the {@code PriorityQueue} instance from a stream
777 * (that is, deserializes it).
778 *
779 * @param s the stream
780 * @throws ClassNotFoundException if the class of a serialized object
781 * could not be found
782 * @throws java.io.IOException if an I/O error occurs
783 */
784 private void readObject(java.io.ObjectInputStream s)
785 throws java.io.IOException, ClassNotFoundException {
786 // Read in size, and any hidden stuff
787 s.defaultReadObject();
788
789 // Read in (and discard) array length
790 s.readInt();
791
792 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
793 queue = new Object[size];
794
795 // Read in all elements.
796 final Object[] es = queue;
797 for (int i = 0, n = size; i < n; i++)
798 es[i] = s.readObject();
799
800 // Elements are guaranteed to be in "proper order", but the
801 // spec has never explained what that might be.
802 heapify();
803 }
804
805 /**
806 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 * queue. The spliterator does not traverse elements in any particular order
809 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 *
811 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 * Overriding implementations should document the reporting of additional
814 * characteristic values.
815 *
816 * @return a {@code Spliterator} over the elements in this queue
817 * @since 1.8
818 */
819 public final Spliterator<E> spliterator() {
820 return new PriorityQueueSpliterator(0, -1, 0);
821 }
822
823 final class PriorityQueueSpliterator implements Spliterator<E> {
824 private int index; // current index, modified on advance/split
825 private int fence; // -1 until first use
826 private int expectedModCount; // initialized when fence set
827
828 /** Creates new spliterator covering the given range. */
829 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 this.index = origin;
831 this.fence = fence;
832 this.expectedModCount = expectedModCount;
833 }
834
835 private int getFence() { // initialize fence to size on first use
836 int hi;
837 if ((hi = fence) < 0) {
838 expectedModCount = modCount;
839 hi = fence = size;
840 }
841 return hi;
842 }
843
844 public PriorityQueueSpliterator trySplit() {
845 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 return (lo >= mid) ? null :
847 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 }
849
850 public void forEachRemaining(Consumer<? super E> action) {
851 if (action == null)
852 throw new NullPointerException();
853 if (fence < 0) { fence = size; expectedModCount = modCount; }
854 final Object[] es = queue;
855 int i, hi; E e;
856 for (i = index, index = hi = fence; i < hi; i++) {
857 if ((e = (E) es[i]) == null)
858 break; // must be CME
859 action.accept(e);
860 }
861 if (modCount != expectedModCount)
862 throw new ConcurrentModificationException();
863 }
864
865 public boolean tryAdvance(Consumer<? super E> action) {
866 if (action == null)
867 throw new NullPointerException();
868 if (fence < 0) { fence = size; expectedModCount = modCount; }
869 int i;
870 if ((i = index) < fence) {
871 index = i + 1;
872 E e;
873 if ((e = (E) queue[i]) == null
874 || modCount != expectedModCount)
875 throw new ConcurrentModificationException();
876 action.accept(e);
877 return true;
878 }
879 return false;
880 }
881
882 public long estimateSize() {
883 return getFence() - index;
884 }
885
886 public int characteristics() {
887 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888 }
889 }
890
891 /**
892 * @throws NullPointerException {@inheritDoc}
893 */
894 public void forEach(Consumer<? super E> action) {
895 Objects.requireNonNull(action);
896 final int expectedModCount = modCount;
897 final Object[] es = queue;
898 for (int i = 0, n = size; i < n; i++)
899 action.accept((E) es[i]);
900 if (expectedModCount != modCount)
901 throw new ConcurrentModificationException();
902 }
903 }