ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.125
Committed: Sun May 6 21:07:41 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.124: +27 -16 lines
Log Message:
small improvements

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import jdk.internal.misc.SharedSecrets;
30
31 /**
32 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 * The elements of the priority queue are ordered according to their
34 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 * provided at queue construction time, depending on which constructor is
36 * used. A priority queue does not permit {@code null} elements.
37 * A priority queue relying on natural ordering also does not permit
38 * insertion of non-comparable objects (doing so may result in
39 * {@code ClassCastException}).
40 *
41 * <p>The <em>head</em> of this queue is the <em>least</em> element
42 * with respect to the specified ordering. If multiple elements are
43 * tied for least value, the head is one of those elements -- ties are
44 * broken arbitrarily. The queue retrieval operations {@code poll},
45 * {@code remove}, {@code peek}, and {@code element} access the
46 * element at the head of the queue.
47 *
48 * <p>A priority queue is unbounded, but has an internal
49 * <i>capacity</i> governing the size of an array used to store the
50 * elements on the queue. It is always at least as large as the queue
51 * size. As elements are added to a priority queue, its capacity
52 * grows automatically. The details of the growth policy are not
53 * specified.
54 *
55 * <p>This class and its iterator implement all of the
56 * <em>optional</em> methods of the {@link Collection} and {@link
57 * Iterator} interfaces. The Iterator provided in method {@link
58 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 * are <em>not</em> guaranteed to traverse the elements of
60 * the priority queue in any particular order. If you need ordered
61 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 *
63 * <p><strong>Note that this implementation is not synchronized.</strong>
64 * Multiple threads should not access a {@code PriorityQueue}
65 * instance concurrently if any of the threads modifies the queue.
66 * Instead, use the thread-safe {@link
67 * java.util.concurrent.PriorityBlockingQueue} class.
68 *
69 * <p>Implementation note: this implementation provides
70 * O(log(n)) time for the enqueuing and dequeuing methods
71 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 * methods; and constant time for the retrieval methods
74 * ({@code peek}, {@code element}, and {@code size}).
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 * Java Collections Framework</a>.
79 *
80 * @since 1.5
81 * @author Josh Bloch, Doug Lea
82 * @param <E> the type of elements held in this queue
83 */
84 @SuppressWarnings("unchecked")
85 public class PriorityQueue<E> extends AbstractQueue<E>
86 implements java.io.Serializable {
87
88 private static final long serialVersionUID = -7720805057305804111L;
89
90 private static final int DEFAULT_INITIAL_CAPACITY = 11;
91
92 /**
93 * Priority queue represented as a balanced binary heap: the two
94 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
95 * priority queue is ordered by comparator, or by the elements'
96 * natural ordering, if comparator is null: For each node n in the
97 * heap and each descendant d of n, n <= d. The element with the
98 * lowest value is in queue[0], assuming the queue is nonempty.
99 */
100 transient Object[] queue; // non-private to simplify nested class access
101
102 /**
103 * The number of elements in the priority queue.
104 */
105 int size;
106
107 /**
108 * The comparator, or null if priority queue uses elements'
109 * natural ordering.
110 */
111 private final Comparator<? super E> comparator;
112
113 /**
114 * The number of times this priority queue has been
115 * <i>structurally modified</i>. See AbstractList for gory details.
116 */
117 transient int modCount; // non-private to simplify nested class access
118
119 /**
120 * Creates a {@code PriorityQueue} with the default initial
121 * capacity (11) that orders its elements according to their
122 * {@linkplain Comparable natural ordering}.
123 */
124 public PriorityQueue() {
125 this(DEFAULT_INITIAL_CAPACITY, null);
126 }
127
128 /**
129 * Creates a {@code PriorityQueue} with the specified initial
130 * capacity that orders its elements according to their
131 * {@linkplain Comparable natural ordering}.
132 *
133 * @param initialCapacity the initial capacity for this priority queue
134 * @throws IllegalArgumentException if {@code initialCapacity} is less
135 * than 1
136 */
137 public PriorityQueue(int initialCapacity) {
138 this(initialCapacity, null);
139 }
140
141 /**
142 * Creates a {@code PriorityQueue} with the default initial capacity and
143 * whose elements are ordered according to the specified comparator.
144 *
145 * @param comparator the comparator that will be used to order this
146 * priority queue. If {@code null}, the {@linkplain Comparable
147 * natural ordering} of the elements will be used.
148 * @since 1.8
149 */
150 public PriorityQueue(Comparator<? super E> comparator) {
151 this(DEFAULT_INITIAL_CAPACITY, comparator);
152 }
153
154 /**
155 * Creates a {@code PriorityQueue} with the specified initial capacity
156 * that orders its elements according to the specified comparator.
157 *
158 * @param initialCapacity the initial capacity for this priority queue
159 * @param comparator the comparator that will be used to order this
160 * priority queue. If {@code null}, the {@linkplain Comparable
161 * natural ordering} of the elements will be used.
162 * @throws IllegalArgumentException if {@code initialCapacity} is
163 * less than 1
164 */
165 public PriorityQueue(int initialCapacity,
166 Comparator<? super E> comparator) {
167 // Note: This restriction of at least one is not actually needed,
168 // but continues for 1.5 compatibility
169 if (initialCapacity < 1)
170 throw new IllegalArgumentException();
171 this.queue = new Object[initialCapacity];
172 this.comparator = comparator;
173 }
174
175 /**
176 * Creates a {@code PriorityQueue} containing the elements in the
177 * specified collection. If the specified collection is an instance of
178 * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 * priority queue will be ordered according to the same ordering.
180 * Otherwise, this priority queue will be ordered according to the
181 * {@linkplain Comparable natural ordering} of its elements.
182 *
183 * @param c the collection whose elements are to be placed
184 * into this priority queue
185 * @throws ClassCastException if elements of the specified collection
186 * cannot be compared to one another according to the priority
187 * queue's ordering
188 * @throws NullPointerException if the specified collection or any
189 * of its elements are null
190 */
191 public PriorityQueue(Collection<? extends E> c) {
192 if (c instanceof SortedSet<?>) {
193 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 this.comparator = (Comparator<? super E>) ss.comparator();
195 initElementsFromCollection(ss);
196 }
197 else if (c instanceof PriorityQueue<?>) {
198 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 this.comparator = (Comparator<? super E>) pq.comparator();
200 initFromPriorityQueue(pq);
201 }
202 else {
203 this.comparator = null;
204 initFromCollection(c);
205 }
206 }
207
208 /**
209 * Creates a {@code PriorityQueue} containing the elements in the
210 * specified priority queue. This priority queue will be
211 * ordered according to the same ordering as the given priority
212 * queue.
213 *
214 * @param c the priority queue whose elements are to be placed
215 * into this priority queue
216 * @throws ClassCastException if elements of {@code c} cannot be
217 * compared to one another according to {@code c}'s
218 * ordering
219 * @throws NullPointerException if the specified priority queue or any
220 * of its elements are null
221 */
222 public PriorityQueue(PriorityQueue<? extends E> c) {
223 this.comparator = (Comparator<? super E>) c.comparator();
224 initFromPriorityQueue(c);
225 }
226
227 /**
228 * Creates a {@code PriorityQueue} containing the elements in the
229 * specified sorted set. This priority queue will be ordered
230 * according to the same ordering as the given sorted set.
231 *
232 * @param c the sorted set whose elements are to be placed
233 * into this priority queue
234 * @throws ClassCastException if elements of the specified sorted
235 * set cannot be compared to one another according to the
236 * sorted set's ordering
237 * @throws NullPointerException if the specified sorted set or any
238 * of its elements are null
239 */
240 public PriorityQueue(SortedSet<? extends E> c) {
241 this.comparator = (Comparator<? super E>) c.comparator();
242 initElementsFromCollection(c);
243 }
244
245 /** Ensures that queue[0] exists, helping peek() and poll(). */
246 private static Object[] ensureNonEmpty(Object[] es) {
247 return (es.length > 0) ? es : new Object[1];
248 }
249
250 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 if (c.getClass() == PriorityQueue.class) {
252 this.queue = ensureNonEmpty(c.toArray());
253 this.size = c.size();
254 } else {
255 initFromCollection(c);
256 }
257 }
258
259 private void initElementsFromCollection(Collection<? extends E> c) {
260 Object[] es = c.toArray();
261 int len = es.length;
262 // If c.toArray incorrectly doesn't return Object[], copy it.
263 if (es.getClass() != Object[].class)
264 es = Arrays.copyOf(es, len, Object[].class);
265 if (len == 1 || this.comparator != null)
266 for (Object e : es)
267 if (e == null)
268 throw new NullPointerException();
269 this.queue = ensureNonEmpty(es);
270 this.size = len;
271 }
272
273 /**
274 * Initializes queue array with elements from the given Collection.
275 *
276 * @param c the collection
277 */
278 private void initFromCollection(Collection<? extends E> c) {
279 initElementsFromCollection(c);
280 heapify();
281 }
282
283 /**
284 * The maximum size of array to allocate.
285 * Some VMs reserve some header words in an array.
286 * Attempts to allocate larger arrays may result in
287 * OutOfMemoryError: Requested array size exceeds VM limit
288 */
289 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290
291 /**
292 * Increases the capacity of the array.
293 *
294 * @param minCapacity the desired minimum capacity
295 */
296 private void grow(int minCapacity) {
297 int oldCapacity = queue.length;
298 // Double size if small; else grow by 50%
299 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 (oldCapacity + 2) :
301 (oldCapacity >> 1));
302 // overflow-conscious code
303 if (newCapacity - MAX_ARRAY_SIZE > 0)
304 newCapacity = hugeCapacity(minCapacity);
305 queue = Arrays.copyOf(queue, newCapacity);
306 }
307
308 private static int hugeCapacity(int minCapacity) {
309 if (minCapacity < 0) // overflow
310 throw new OutOfMemoryError();
311 return (minCapacity > MAX_ARRAY_SIZE) ?
312 Integer.MAX_VALUE :
313 MAX_ARRAY_SIZE;
314 }
315
316 /**
317 * Inserts the specified element into this priority queue.
318 *
319 * @return {@code true} (as specified by {@link Collection#add})
320 * @throws ClassCastException if the specified element cannot be
321 * compared with elements currently in this priority queue
322 * according to the priority queue's ordering
323 * @throws NullPointerException if the specified element is null
324 */
325 public boolean add(E e) {
326 return offer(e);
327 }
328
329 /**
330 * Inserts the specified element into this priority queue.
331 *
332 * @return {@code true} (as specified by {@link Queue#offer})
333 * @throws ClassCastException if the specified element cannot be
334 * compared with elements currently in this priority queue
335 * according to the priority queue's ordering
336 * @throws NullPointerException if the specified element is null
337 */
338 public boolean offer(E e) {
339 if (e == null)
340 throw new NullPointerException();
341 modCount++;
342 int i = size;
343 if (i >= queue.length)
344 grow(i + 1);
345 siftUp(i, e);
346 size = i + 1;
347 return true;
348 }
349
350 public E peek() {
351 return (E) queue[0];
352 }
353
354 private int indexOf(Object o) {
355 if (o != null) {
356 final Object[] es = queue;
357 for (int i = 0, n = size; i < n; i++)
358 if (o.equals(es[i]))
359 return i;
360 }
361 return -1;
362 }
363
364 /**
365 * Removes a single instance of the specified element from this queue,
366 * if it is present. More formally, removes an element {@code e} such
367 * that {@code o.equals(e)}, if this queue contains one or more such
368 * elements. Returns {@code true} if and only if this queue contained
369 * the specified element (or equivalently, if this queue changed as a
370 * result of the call).
371 *
372 * @param o element to be removed from this queue, if present
373 * @return {@code true} if this queue changed as a result of the call
374 */
375 public boolean remove(Object o) {
376 int i = indexOf(o);
377 if (i == -1)
378 return false;
379 else {
380 removeAt(i);
381 return true;
382 }
383 }
384
385 /**
386 * Identity-based version for use in Itr.remove.
387 *
388 * @param o element to be removed from this queue, if present
389 */
390 void removeEq(Object o) {
391 final Object[] es = queue;
392 for (int i = 0, n = size; i < n; i++) {
393 if (o == es[i]) {
394 removeAt(i);
395 break;
396 }
397 }
398 }
399
400 /**
401 * Returns {@code true} if this queue contains the specified element.
402 * More formally, returns {@code true} if and only if this queue contains
403 * at least one element {@code e} such that {@code o.equals(e)}.
404 *
405 * @param o object to be checked for containment in this queue
406 * @return {@code true} if this queue contains the specified element
407 */
408 public boolean contains(Object o) {
409 return indexOf(o) >= 0;
410 }
411
412 /**
413 * Returns an array containing all of the elements in this queue.
414 * The elements are in no particular order.
415 *
416 * <p>The returned array will be "safe" in that no references to it are
417 * maintained by this queue. (In other words, this method must allocate
418 * a new array). The caller is thus free to modify the returned array.
419 *
420 * <p>This method acts as bridge between array-based and collection-based
421 * APIs.
422 *
423 * @return an array containing all of the elements in this queue
424 */
425 public Object[] toArray() {
426 return Arrays.copyOf(queue, size);
427 }
428
429 /**
430 * Returns an array containing all of the elements in this queue; the
431 * runtime type of the returned array is that of the specified array.
432 * The returned array elements are in no particular order.
433 * If the queue fits in the specified array, it is returned therein.
434 * Otherwise, a new array is allocated with the runtime type of the
435 * specified array and the size of this queue.
436 *
437 * <p>If the queue fits in the specified array with room to spare
438 * (i.e., the array has more elements than the queue), the element in
439 * the array immediately following the end of the collection is set to
440 * {@code null}.
441 *
442 * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 * array-based and collection-based APIs. Further, this method allows
444 * precise control over the runtime type of the output array, and may,
445 * under certain circumstances, be used to save allocation costs.
446 *
447 * <p>Suppose {@code x} is a queue known to contain only strings.
448 * The following code can be used to dump the queue into a newly
449 * allocated array of {@code String}:
450 *
451 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 *
453 * Note that {@code toArray(new Object[0])} is identical in function to
454 * {@code toArray()}.
455 *
456 * @param a the array into which the elements of the queue are to
457 * be stored, if it is big enough; otherwise, a new array of the
458 * same runtime type is allocated for this purpose.
459 * @return an array containing all of the elements in this queue
460 * @throws ArrayStoreException if the runtime type of the specified array
461 * is not a supertype of the runtime type of every element in
462 * this queue
463 * @throws NullPointerException if the specified array is null
464 */
465 public <T> T[] toArray(T[] a) {
466 final int size = this.size;
467 if (a.length < size)
468 // Make a new array of a's runtime type, but my contents:
469 return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 System.arraycopy(queue, 0, a, 0, size);
471 if (a.length > size)
472 a[size] = null;
473 return a;
474 }
475
476 /**
477 * Returns an iterator over the elements in this queue. The iterator
478 * does not return the elements in any particular order.
479 *
480 * @return an iterator over the elements in this queue
481 */
482 public Iterator<E> iterator() {
483 return new Itr();
484 }
485
486 private final class Itr implements Iterator<E> {
487 /**
488 * Index (into queue array) of element to be returned by
489 * subsequent call to next.
490 */
491 private int cursor;
492
493 /**
494 * Index of element returned by most recent call to next,
495 * unless that element came from the forgetMeNot list.
496 * Set to -1 if element is deleted by a call to remove.
497 */
498 private int lastRet = -1;
499
500 /**
501 * A queue of elements that were moved from the unvisited portion of
502 * the heap into the visited portion as a result of "unlucky" element
503 * removals during the iteration. (Unlucky element removals are those
504 * that require a siftup instead of a siftdown.) We must visit all of
505 * the elements in this list to complete the iteration. We do this
506 * after we've completed the "normal" iteration.
507 *
508 * We expect that most iterations, even those involving removals,
509 * will not need to store elements in this field.
510 */
511 private ArrayDeque<E> forgetMeNot;
512
513 /**
514 * Element returned by the most recent call to next iff that
515 * element was drawn from the forgetMeNot list.
516 */
517 private E lastRetElt;
518
519 /**
520 * The modCount value that the iterator believes that the backing
521 * Queue should have. If this expectation is violated, the iterator
522 * has detected concurrent modification.
523 */
524 private int expectedModCount = modCount;
525
526 Itr() {} // prevent access constructor creation
527
528 public boolean hasNext() {
529 return cursor < size ||
530 (forgetMeNot != null && !forgetMeNot.isEmpty());
531 }
532
533 public E next() {
534 if (expectedModCount != modCount)
535 throw new ConcurrentModificationException();
536 if (cursor < size)
537 return (E) queue[lastRet = cursor++];
538 if (forgetMeNot != null) {
539 lastRet = -1;
540 lastRetElt = forgetMeNot.poll();
541 if (lastRetElt != null)
542 return lastRetElt;
543 }
544 throw new NoSuchElementException();
545 }
546
547 public void remove() {
548 if (expectedModCount != modCount)
549 throw new ConcurrentModificationException();
550 if (lastRet != -1) {
551 E moved = PriorityQueue.this.removeAt(lastRet);
552 lastRet = -1;
553 if (moved == null)
554 cursor--;
555 else {
556 if (forgetMeNot == null)
557 forgetMeNot = new ArrayDeque<>();
558 forgetMeNot.add(moved);
559 }
560 } else if (lastRetElt != null) {
561 PriorityQueue.this.removeEq(lastRetElt);
562 lastRetElt = null;
563 } else {
564 throw new IllegalStateException();
565 }
566 expectedModCount = modCount;
567 }
568 }
569
570 public int size() {
571 return size;
572 }
573
574 /**
575 * Removes all of the elements from this priority queue.
576 * The queue will be empty after this call returns.
577 */
578 public void clear() {
579 modCount++;
580 final Object[] es = queue;
581 for (int i = 0, n = size; i < n; i++)
582 es[i] = null;
583 size = 0;
584 }
585
586 public E poll() {
587 final Object[] es;
588 final E result;
589
590 if ((result = (E) ((es = queue)[0])) != null) {
591 modCount++;
592 final int n;
593 final E x = (E) es[(n = --size)];
594 es[n] = null;
595 if (n > 0) {
596 final Comparator<? super E> cmp;
597 if ((cmp = comparator) == null)
598 siftDownComparable(0, x, es, n);
599 else
600 siftDownUsingComparator(0, x, es, n, cmp);
601 }
602 }
603 return result;
604 }
605
606 /**
607 * Removes the ith element from queue.
608 *
609 * Normally this method leaves the elements at up to i-1,
610 * inclusive, untouched. Under these circumstances, it returns
611 * null. Occasionally, in order to maintain the heap invariant,
612 * it must swap a later element of the list with one earlier than
613 * i. Under these circumstances, this method returns the element
614 * that was previously at the end of the list and is now at some
615 * position before i. This fact is used by iterator.remove so as to
616 * avoid missing traversing elements.
617 */
618 E removeAt(int i) {
619 // assert i >= 0 && i < size;
620 modCount++;
621 int s = --size;
622 if (s == i) // removed last element
623 queue[i] = null;
624 else {
625 E moved = (E) queue[s];
626 queue[s] = null;
627 siftDown(i, moved);
628 if (queue[i] == moved) {
629 siftUp(i, moved);
630 if (queue[i] != moved)
631 return moved;
632 }
633 }
634 return null;
635 }
636
637 /**
638 * Inserts item x at position k, maintaining heap invariant by
639 * promoting x up the tree until it is greater than or equal to
640 * its parent, or is the root.
641 *
642 * To simplify and speed up coercions and comparisons, the
643 * Comparable and Comparator versions are separated into different
644 * methods that are otherwise identical. (Similarly for siftDown.)
645 *
646 * @param k the position to fill
647 * @param x the item to insert
648 */
649 private void siftUp(int k, E x) {
650 if (comparator != null)
651 siftUpUsingComparator(k, x, queue, comparator);
652 else
653 siftUpComparable(k, x, queue);
654 }
655
656 private static <T> void siftUpComparable(int k, T x, Object[] es) {
657 Comparable<? super T> key = (Comparable<? super T>) x;
658 while (k > 0) {
659 int parent = (k - 1) >>> 1;
660 Object e = es[parent];
661 if (key.compareTo((T) e) >= 0)
662 break;
663 es[k] = e;
664 k = parent;
665 }
666 es[k] = key;
667 }
668
669 private static <T> void siftUpUsingComparator(
670 int k, T x, Object[] es, Comparator<? super T> cmp) {
671 while (k > 0) {
672 int parent = (k - 1) >>> 1;
673 Object e = es[parent];
674 if (cmp.compare(x, (T) e) >= 0)
675 break;
676 es[k] = e;
677 k = parent;
678 }
679 es[k] = x;
680 }
681
682 /**
683 * Inserts item x at position k, maintaining heap invariant by
684 * demoting x down the tree repeatedly until it is less than or
685 * equal to its children or is a leaf.
686 *
687 * @param k the position to fill
688 * @param x the item to insert
689 */
690 private void siftDown(int k, E x) {
691 if (comparator != null)
692 siftDownUsingComparator(k, x, queue, size, comparator);
693 else
694 siftDownComparable(k, x, queue, size);
695 }
696
697 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
698 // assert n > 0;
699 Comparable<? super T> key = (Comparable<? super T>)x;
700 int half = n >>> 1; // loop while a non-leaf
701 while (k < half) {
702 int child = (k << 1) + 1; // assume left child is least
703 Object c = es[child];
704 int right = child + 1;
705 if (right < n &&
706 ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
707 c = es[child = right];
708 if (key.compareTo((T) c) <= 0)
709 break;
710 es[k] = c;
711 k = child;
712 }
713 es[k] = key;
714 }
715
716 private static <T> void siftDownUsingComparator(
717 int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
718 // assert n > 0;
719 int half = n >>> 1;
720 while (k < half) {
721 int child = (k << 1) + 1;
722 Object c = es[child];
723 int right = child + 1;
724 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
725 c = es[child = right];
726 if (cmp.compare(x, (T) c) <= 0)
727 break;
728 es[k] = c;
729 k = child;
730 }
731 es[k] = x;
732 }
733
734 /**
735 * Establishes the heap invariant (described above) in the entire tree,
736 * assuming nothing about the order of the elements prior to the call.
737 * This classic algorithm due to Floyd (1964) is known to be O(size).
738 */
739 private void heapify() {
740 final Object[] es = queue;
741 int n = size, i = (n >>> 1) - 1;
742 final Comparator<? super E> cmp;
743 if ((cmp = comparator) == null)
744 for (; i >= 0; i--)
745 siftDownComparable(i, (E) es[i], es, n);
746 else
747 for (; i >= 0; i--)
748 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
749 }
750
751 /**
752 * Returns the comparator used to order the elements in this
753 * queue, or {@code null} if this queue is sorted according to
754 * the {@linkplain Comparable natural ordering} of its elements.
755 *
756 * @return the comparator used to order this queue, or
757 * {@code null} if this queue is sorted according to the
758 * natural ordering of its elements
759 */
760 public Comparator<? super E> comparator() {
761 return comparator;
762 }
763
764 /**
765 * Saves this queue to a stream (that is, serializes it).
766 *
767 * @param s the stream
768 * @throws java.io.IOException if an I/O error occurs
769 * @serialData The length of the array backing the instance is
770 * emitted (int), followed by all of its elements
771 * (each an {@code Object}) in the proper order.
772 */
773 private void writeObject(java.io.ObjectOutputStream s)
774 throws java.io.IOException {
775 // Write out element count, and any hidden stuff
776 s.defaultWriteObject();
777
778 // Write out array length, for compatibility with 1.5 version
779 s.writeInt(Math.max(2, size + 1));
780
781 // Write out all elements in the "proper order".
782 final Object[] es = queue;
783 for (int i = 0, n = size; i < n; i++)
784 s.writeObject(es[i]);
785 }
786
787 /**
788 * Reconstitutes the {@code PriorityQueue} instance from a stream
789 * (that is, deserializes it).
790 *
791 * @param s the stream
792 * @throws ClassNotFoundException if the class of a serialized object
793 * could not be found
794 * @throws java.io.IOException if an I/O error occurs
795 */
796 private void readObject(java.io.ObjectInputStream s)
797 throws java.io.IOException, ClassNotFoundException {
798 // Read in size, and any hidden stuff
799 s.defaultReadObject();
800
801 // Read in (and discard) array length
802 s.readInt();
803
804 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
805 final Object[] es = queue = new Object[Math.max(size, 1)];
806
807 // Read in all elements.
808 for (int i = 0, n = size; i < n; i++)
809 es[i] = s.readObject();
810
811 // Elements are guaranteed to be in "proper order", but the
812 // spec has never explained what that might be.
813 heapify();
814 }
815
816 /**
817 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
818 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
819 * queue. The spliterator does not traverse elements in any particular order
820 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
821 *
822 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
823 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
824 * Overriding implementations should document the reporting of additional
825 * characteristic values.
826 *
827 * @return a {@code Spliterator} over the elements in this queue
828 * @since 1.8
829 */
830 public final Spliterator<E> spliterator() {
831 return new PriorityQueueSpliterator(0, -1, 0);
832 }
833
834 final class PriorityQueueSpliterator implements Spliterator<E> {
835 private int index; // current index, modified on advance/split
836 private int fence; // -1 until first use
837 private int expectedModCount; // initialized when fence set
838
839 /** Creates new spliterator covering the given range. */
840 PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
841 this.index = origin;
842 this.fence = fence;
843 this.expectedModCount = expectedModCount;
844 }
845
846 private int getFence() { // initialize fence to size on first use
847 int hi;
848 if ((hi = fence) < 0) {
849 expectedModCount = modCount;
850 hi = fence = size;
851 }
852 return hi;
853 }
854
855 public PriorityQueueSpliterator trySplit() {
856 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
857 return (lo >= mid) ? null :
858 new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
859 }
860
861 public void forEachRemaining(Consumer<? super E> action) {
862 if (action == null)
863 throw new NullPointerException();
864 if (fence < 0) { fence = size; expectedModCount = modCount; }
865 final Object[] es = queue;
866 int i, hi; E e;
867 for (i = index, index = hi = fence; i < hi; i++) {
868 if ((e = (E) es[i]) == null)
869 break; // must be CME
870 action.accept(e);
871 }
872 if (modCount != expectedModCount)
873 throw new ConcurrentModificationException();
874 }
875
876 public boolean tryAdvance(Consumer<? super E> action) {
877 if (action == null)
878 throw new NullPointerException();
879 if (fence < 0) { fence = size; expectedModCount = modCount; }
880 int i;
881 if ((i = index) < fence) {
882 index = i + 1;
883 E e;
884 if ((e = (E) queue[i]) == null
885 || modCount != expectedModCount)
886 throw new ConcurrentModificationException();
887 action.accept(e);
888 return true;
889 }
890 return false;
891 }
892
893 public long estimateSize() {
894 return getFence() - index;
895 }
896
897 public int characteristics() {
898 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
899 }
900 }
901
902 /**
903 * @throws NullPointerException {@inheritDoc}
904 */
905 public void forEach(Consumer<? super E> action) {
906 Objects.requireNonNull(action);
907 final int expectedModCount = modCount;
908 final Object[] es = queue;
909 for (int i = 0, n = size; i < n; i++)
910 action.accept((E) es[i]);
911 if (expectedModCount != modCount)
912 throw new ConcurrentModificationException();
913 }
914 }