ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.20
Committed: Tue Aug 5 06:18:17 2003 UTC (20 years, 9 months ago) by dholmes
Branch: MAIN
Changes since 1.19: +3 -9 lines
Log Message:
Regressed to describing a PQ as unbounded.

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority queue based on a priority heap. This queue orders
5 * elements according to an order specified at construction time, which is
6 * specified in the same manner as {@link java.util.TreeSet} and
7 * {@link java.util.TreeMap}: elements are ordered
8 * either according to their <i>natural order</i> (see {@link Comparable}), or
9 * according to a {@link java.util.Comparator}, depending on which
10 * constructor is used.
11 * <p>The <em>head</em> of this queue is the <em>least</em> element with
12 * respect to the specified ordering.
13 * If multiple elements are tied for least value, the
14 * head is one of those elements. A priority queue does not permit
15 * <tt>null</tt> elements.
16 *
17 * <p>The {@link #remove()} and {@link #poll()} methods remove and
18 * return the head of the queue.
19 *
20 * <p>The {@link #element()} and {@link #peek()} methods return, but do
21 * not delete, the head of the queue.
22 *
23 * <p>A priority queue has a <i>capacity</i>. The capacity is the
24 * size of the array used internally to store the elements on the
25 * queue.
26 * It is always at least as large as the queue size. As
27 * elements are added to a priority queue, its capacity grows
28 * automatically. The details of the growth policy are not specified.
29 *
30 * <p>Implementation note: this implementation provides O(log(n)) time
31 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
32 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
33 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
34 * constant time for the retrieval methods (<tt>peek</tt>,
35 * <tt>element</tt>, and <tt>size</tt>).
36 *
37 * <p>This class is a member of the
38 * <a href="{@docRoot}/../guide/collections/index.html">
39 * Java Collections Framework</a>.
40 * @since 1.5
41 * @author Josh Bloch
42 */
43 public class PriorityQueue<E> extends AbstractQueue<E>
44 implements Sorted, Queue<E>, java.io.Serializable {
45
46 private static final int DEFAULT_INITIAL_CAPACITY = 11;
47
48 /**
49 * Priority queue represented as a balanced binary heap: the two children
50 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
51 * ordered by comparator, or by the elements' natural ordering, if
52 * comparator is null: For each node n in the heap and each descendant d
53 * of n, n <= d.
54 *
55 * The element with the lowest value is in queue[1], assuming the queue is
56 * nonempty. (A one-based array is used in preference to the traditional
57 * zero-based array to simplify parent and child calculations.)
58 *
59 * queue.length must be >= 2, even if size == 0.
60 */
61 private transient Object[] queue;
62
63 /**
64 * The number of elements in the priority queue.
65 */
66 private int size = 0;
67
68 /**
69 * The comparator, or null if priority queue uses elements'
70 * natural ordering.
71 */
72 private final Comparator<? super E> comparator;
73
74 /**
75 * The number of times this priority queue has been
76 * <i>structurally modified</i>. See AbstractList for gory details.
77 */
78 private transient int modCount = 0;
79
80 /**
81 * Create a <tt>PriorityQueue</tt> with the default initial capacity
82 * (11) that orders its elements according to their natural
83 * ordering (using <tt>Comparable</tt>.)
84 */
85 public PriorityQueue() {
86 this(DEFAULT_INITIAL_CAPACITY, null);
87 }
88
89 /**
90 * Create a <tt>PriorityQueue</tt> with the specified initial capacity
91 * that orders its elements according to their natural ordering
92 * (using <tt>Comparable</tt>.)
93 *
94 * @param initialCapacity the initial capacity for this priority queue.
95 */
96 public PriorityQueue(int initialCapacity) {
97 this(initialCapacity, null);
98 }
99
100 /**
101 * Create a <tt>PriorityQueue</tt> with the specified initial capacity
102 * that orders its elements according to the specified comparator.
103 *
104 * @param initialCapacity the initial capacity for this priority queue.
105 * @param comparator the comparator used to order this priority queue.
106 * If <tt>null</tt> then the order depends on the elements' natural
107 * ordering.
108 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
109 * than 1
110 */
111 public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {
112 if (initialCapacity < 1)
113 throw new IllegalArgumentException();
114 this.queue = new Object[initialCapacity + 1];
115 this.comparator = comparator;
116 }
117
118 /**
119 * Create a <tt>PriorityQueue</tt> containing the elements in the specified
120 * collection. The priority queue has an initial capacity of 110% of the
121 * size of the specified collection or 1 if the collection is empty.
122 * If the specified collection
123 * implements the {@link Sorted} interface, the priority queue will be
124 * sorted according to the same comparator, or according to its elements'
125 * natural order if the collection is sorted according to its elements'
126 * natural order. If the specified collection does not implement
127 * <tt>Sorted</tt>, the priority queue is ordered according to
128 * its elements' natural order.
129 *
130 * @param c the collection whose elements are to be placed
131 * into this priority queue.
132 * @throws ClassCastException if elements of the specified collection
133 * cannot be compared to one another according to the priority
134 * queue's ordering.
135 * @throws NullPointerException if <tt>c</tt> or any element within it
136 * is <tt>null</tt>
137 */
138 public PriorityQueue(Collection<? extends E> c) {
139 int sz = c.size();
140 int initialCapacity = (int)Math.min((sz * 110L) / 100,
141 Integer.MAX_VALUE - 1);
142 if (initialCapacity < 1)
143 initialCapacity = 1;
144
145 this.queue = new Object[initialCapacity + 1];
146
147 if (c instanceof Sorted) {
148 comparator = (Comparator<? super E>)((Sorted)c).comparator();
149 } else {
150 comparator = null;
151 }
152
153 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 add(i.next());
155 }
156
157 // Queue Methods
158
159 /**
160 * Add the specified element to this priority queue.
161 *
162 * @return <tt>true</tt>
163 * @throws ClassCastException if the specified element cannot be compared
164 * with elements currently in the priority queue according
165 * to the priority queue's ordering.
166 * @throws NullPointerException if the specified element is <tt>null</tt>.
167 */
168 public boolean offer(E o) {
169 if (o == null)
170 throw new NullPointerException();
171 modCount++;
172 ++size;
173
174 // Grow backing store if necessary
175 while (size >= queue.length) {
176 Object[] newQueue = new Object[2 * queue.length];
177 System.arraycopy(queue, 0, newQueue, 0, queue.length);
178 queue = newQueue;
179 }
180
181 queue[size] = o;
182 fixUp(size);
183 return true;
184 }
185
186 public E poll() {
187 if (size == 0)
188 return null;
189 return (E) remove(1);
190 }
191
192 public E peek() {
193 return (E) queue[1];
194 }
195
196 // Collection Methods
197
198 // these first two override just to get the throws docs
199
200 /**
201 * @throws NullPointerException if the specified element is <tt>null</tt>.
202 * @throws ClassCastException if the specified element cannot be compared
203 * with elements currently in the priority queue according
204 * to the priority queue's ordering.
205 */
206 public boolean add(E o) {
207 return super.add(o);
208 }
209
210 /**
211 * @throws ClassCastException if any element cannot be compared
212 * with elements currently in the priority queue according
213 * to the priority queue's ordering.
214 * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
215 * is <tt>null</tt>
216 */
217 public boolean addAll(Collection<? extends E> c) {
218 return super.addAll(c);
219 }
220
221 public boolean remove(Object o) {
222 if (o == null)
223 return false;
224
225 if (comparator == null) {
226 for (int i = 1; i <= size; i++) {
227 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
228 remove(i);
229 return true;
230 }
231 }
232 } else {
233 for (int i = 1; i <= size; i++) {
234 if (comparator.compare((E)queue[i], (E)o) == 0) {
235 remove(i);
236 return true;
237 }
238 }
239 }
240 return false;
241 }
242
243 public Iterator<E> iterator() {
244 return new Itr();
245 }
246
247 private class Itr implements Iterator<E> {
248 /**
249 * Index (into queue array) of element to be returned by
250 * subsequent call to next.
251 */
252 private int cursor = 1;
253
254 /**
255 * Index of element returned by most recent call to next or
256 * previous. Reset to 0 if this element is deleted by a call
257 * to remove.
258 */
259 private int lastRet = 0;
260
261 /**
262 * The modCount value that the iterator believes that the backing
263 * List should have. If this expectation is violated, the iterator
264 * has detected concurrent modification.
265 */
266 private int expectedModCount = modCount;
267
268 public boolean hasNext() {
269 return cursor <= size;
270 }
271
272 public E next() {
273 checkForComodification();
274 if (cursor > size)
275 throw new NoSuchElementException();
276 E result = (E) queue[cursor];
277 lastRet = cursor++;
278 return result;
279 }
280
281 public void remove() {
282 if (lastRet == 0)
283 throw new IllegalStateException();
284 checkForComodification();
285
286 PriorityQueue.this.remove(lastRet);
287 if (lastRet < cursor)
288 cursor--;
289 lastRet = 0;
290 expectedModCount = modCount;
291 }
292
293 final void checkForComodification() {
294 if (modCount != expectedModCount)
295 throw new ConcurrentModificationException();
296 }
297 }
298
299 /**
300 * Returns the number of elements in this priority queue.
301 *
302 * @return the number of elements in this priority queue.
303 */
304 public int size() {
305 return size;
306 }
307
308 /**
309 * Remove all elements from the priority queue.
310 */
311 public void clear() {
312 modCount++;
313
314 // Null out element references to prevent memory leak
315 for (int i=1; i<=size; i++)
316 queue[i] = null;
317
318 size = 0;
319 }
320
321 /**
322 * Removes and returns the ith element from queue. Recall
323 * that queue is one-based, so 1 <= i <= size.
324 *
325 * XXX: Could further special-case i==size, but is it worth it?
326 * XXX: Could special-case i==0, but is it worth it?
327 */
328 private E remove(int i) {
329 assert i <= size;
330 modCount++;
331
332 E result = (E) queue[i];
333 queue[i] = queue[size];
334 queue[size--] = null; // Drop extra ref to prevent memory leak
335 if (i <= size)
336 fixDown(i);
337 return result;
338 }
339
340 /**
341 * Establishes the heap invariant (described above) assuming the heap
342 * satisfies the invariant except possibly for the leaf-node indexed by k
343 * (which may have a nextExecutionTime less than its parent's).
344 *
345 * This method functions by "promoting" queue[k] up the hierarchy
346 * (by swapping it with its parent) repeatedly until queue[k]
347 * is greater than or equal to its parent.
348 */
349 private void fixUp(int k) {
350 if (comparator == null) {
351 while (k > 1) {
352 int j = k >> 1;
353 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
354 break;
355 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
356 k = j;
357 }
358 } else {
359 while (k > 1) {
360 int j = k >> 1;
361 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
362 break;
363 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
364 k = j;
365 }
366 }
367 }
368
369 /**
370 * Establishes the heap invariant (described above) in the subtree
371 * rooted at k, which is assumed to satisfy the heap invariant except
372 * possibly for node k itself (which may be greater than its children).
373 *
374 * This method functions by "demoting" queue[k] down the hierarchy
375 * (by swapping it with its smaller child) repeatedly until queue[k]
376 * is less than or equal to its children.
377 */
378 private void fixDown(int k) {
379 int j;
380 if (comparator == null) {
381 while ((j = k << 1) <= size) {
382 if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
383 j++; // j indexes smallest kid
384 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
385 break;
386 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
387 k = j;
388 }
389 } else {
390 while ((j = k << 1) <= size) {
391 if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
392 j++; // j indexes smallest kid
393 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
394 break;
395 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
396 k = j;
397 }
398 }
399 }
400
401 public Comparator<? super E> comparator() {
402 return comparator;
403 }
404
405 /**
406 * Save the state of the instance to a stream (that
407 * is, serialize it).
408 *
409 * @serialData The length of the array backing the instance is
410 * emitted (int), followed by all of its elements (each an
411 * <tt>Object</tt>) in the proper order.
412 * @param s the stream
413 */
414 private synchronized void writeObject(java.io.ObjectOutputStream s)
415 throws java.io.IOException{
416 // Write out element count, and any hidden stuff
417 s.defaultWriteObject();
418
419 // Write out array length
420 s.writeInt(queue.length);
421
422 // Write out all elements in the proper order.
423 for (int i=0; i<size; i++)
424 s.writeObject(queue[i]);
425 }
426
427 /**
428 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
429 * deserialize it).
430 * @param s the stream
431 */
432 private synchronized void readObject(java.io.ObjectInputStream s)
433 throws java.io.IOException, ClassNotFoundException {
434 // Read in size, and any hidden stuff
435 s.defaultReadObject();
436
437 // Read in array length and allocate array
438 int arrayLength = s.readInt();
439 queue = new Object[arrayLength];
440
441 // Read in all elements in the proper order.
442 for (int i=0; i<size; i++)
443 queue[i] = s.readObject();
444 }
445
446 }
447