ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.21
Committed: Tue Aug 5 06:49:51 2003 UTC (20 years, 9 months ago) by dholmes
Branch: MAIN
Changes since 1.20: +6 -5 lines
Log Message:
MOre tense changes

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority queue based on a priority heap. This queue orders
5 * elements according to an order specified at construction time, which is
6 * specified in the same manner as {@link java.util.TreeSet} and
7 * {@link java.util.TreeMap}: elements are ordered
8 * either according to their <i>natural order</i> (see {@link Comparable}), or
9 * according to a {@link java.util.Comparator}, depending on which
10 * constructor is used.
11 * <p>The <em>head</em> of this queue is the <em>least</em> element with
12 * respect to the specified ordering.
13 * If multiple elements are tied for least value, the
14 * head is one of those elements. A priority queue does not permit
15 * <tt>null</tt> elements.
16 *
17 * <p>The {@link #remove()} and {@link #poll()} methods remove and
18 * return the head of the queue.
19 *
20 * <p>The {@link #element()} and {@link #peek()} methods return, but do
21 * not delete, the head of the queue.
22 *
23 * <p>A priority queue has a <i>capacity</i>. The capacity is the
24 * size of the array used internally to store the elements on the
25 * queue.
26 * It is always at least as large as the queue size. As
27 * elements are added to a priority queue, its capacity grows
28 * automatically. The details of the growth policy are not specified.
29 *
30 * <p>Implementation note: this implementation provides O(log(n)) time
31 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
32 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
33 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
34 * constant time for the retrieval methods (<tt>peek</tt>,
35 * <tt>element</tt>, and <tt>size</tt>).
36 *
37 * <p>This class is a member of the
38 * <a href="{@docRoot}/../guide/collections/index.html">
39 * Java Collections Framework</a>.
40 * @since 1.5
41 * @author Josh Bloch
42 */
43 public class PriorityQueue<E> extends AbstractQueue<E>
44 implements Sorted, Queue<E>, java.io.Serializable {
45
46 private static final int DEFAULT_INITIAL_CAPACITY = 11;
47
48 /**
49 * Priority queue represented as a balanced binary heap: the two children
50 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
51 * ordered by comparator, or by the elements' natural ordering, if
52 * comparator is null: For each node n in the heap and each descendant d
53 * of n, n <= d.
54 *
55 * The element with the lowest value is in queue[1], assuming the queue is
56 * nonempty. (A one-based array is used in preference to the traditional
57 * zero-based array to simplify parent and child calculations.)
58 *
59 * queue.length must be >= 2, even if size == 0.
60 */
61 private transient Object[] queue;
62
63 /**
64 * The number of elements in the priority queue.
65 */
66 private int size = 0;
67
68 /**
69 * The comparator, or null if priority queue uses elements'
70 * natural ordering.
71 */
72 private final Comparator<? super E> comparator;
73
74 /**
75 * The number of times this priority queue has been
76 * <i>structurally modified</i>. See AbstractList for gory details.
77 */
78 private transient int modCount = 0;
79
80 /**
81 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
82 * (11) that orders its elements according to their natural
83 * ordering (using <tt>Comparable</tt>.)
84 */
85 public PriorityQueue() {
86 this(DEFAULT_INITIAL_CAPACITY, null);
87 }
88
89 /**
90 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
91 * that orders its elements according to their natural ordering
92 * (using <tt>Comparable</tt>.)
93 *
94 * @param initialCapacity the initial capacity for this priority queue.
95 */
96 public PriorityQueue(int initialCapacity) {
97 this(initialCapacity, null);
98 }
99
100 /**
101 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
102 * that orders its elements according to the specified comparator.
103 *
104 * @param initialCapacity the initial capacity for this priority queue.
105 * @param comparator the comparator used to order this priority queue.
106 * If <tt>null</tt> then the order depends on the elements' natural
107 * ordering.
108 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
109 * than 1
110 */
111 public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {
112 if (initialCapacity < 1)
113 throw new IllegalArgumentException();
114 this.queue = new Object[initialCapacity + 1];
115 this.comparator = comparator;
116 }
117
118 /**
119 * Creates a <tt>PriorityQueue</tt> containing the elements in the
120 * specified collection.
121 * The priority queue has an initial capacity of 110% of the
122 * size of the specified collection or 1 if the collection is empty.
123 * If the specified collection
124 * implements the {@link Sorted} interface, the priority queue will be
125 * sorted according to the same comparator, or according to its elements'
126 * natural order if the collection is sorted according to its elements'
127 * natural order. If the specified collection does not implement
128 * <tt>Sorted</tt>, the priority queue is ordered according to
129 * its elements' natural order.
130 *
131 * @param c the collection whose elements are to be placed
132 * into this priority queue.
133 * @throws ClassCastException if elements of the specified collection
134 * cannot be compared to one another according to the priority
135 * queue's ordering.
136 * @throws NullPointerException if <tt>c</tt> or any element within it
137 * is <tt>null</tt>
138 */
139 public PriorityQueue(Collection<? extends E> c) {
140 int sz = c.size();
141 int initialCapacity = (int)Math.min((sz * 110L) / 100,
142 Integer.MAX_VALUE - 1);
143 if (initialCapacity < 1)
144 initialCapacity = 1;
145
146 this.queue = new Object[initialCapacity + 1];
147
148 if (c instanceof Sorted) {
149 comparator = (Comparator<? super E>)((Sorted)c).comparator();
150 } else {
151 comparator = null;
152 }
153
154 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
155 add(i.next());
156 }
157
158 // Queue Methods
159
160 /**
161 * Add the specified element to this priority queue.
162 *
163 * @return <tt>true</tt>
164 * @throws ClassCastException if the specified element cannot be compared
165 * with elements currently in the priority queue according
166 * to the priority queue's ordering.
167 * @throws NullPointerException if the specified element is <tt>null</tt>.
168 */
169 public boolean offer(E o) {
170 if (o == null)
171 throw new NullPointerException();
172 modCount++;
173 ++size;
174
175 // Grow backing store if necessary
176 while (size >= queue.length) {
177 Object[] newQueue = new Object[2 * queue.length];
178 System.arraycopy(queue, 0, newQueue, 0, queue.length);
179 queue = newQueue;
180 }
181
182 queue[size] = o;
183 fixUp(size);
184 return true;
185 }
186
187 public E poll() {
188 if (size == 0)
189 return null;
190 return (E) remove(1);
191 }
192
193 public E peek() {
194 return (E) queue[1];
195 }
196
197 // Collection Methods
198
199 // these first two override just to get the throws docs
200
201 /**
202 * @throws NullPointerException if the specified element is <tt>null</tt>.
203 * @throws ClassCastException if the specified element cannot be compared
204 * with elements currently in the priority queue according
205 * to the priority queue's ordering.
206 */
207 public boolean add(E o) {
208 return super.add(o);
209 }
210
211 /**
212 * @throws ClassCastException if any element cannot be compared
213 * with elements currently in the priority queue according
214 * to the priority queue's ordering.
215 * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
216 * is <tt>null</tt>
217 */
218 public boolean addAll(Collection<? extends E> c) {
219 return super.addAll(c);
220 }
221
222 public boolean remove(Object o) {
223 if (o == null)
224 return false;
225
226 if (comparator == null) {
227 for (int i = 1; i <= size; i++) {
228 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
229 remove(i);
230 return true;
231 }
232 }
233 } else {
234 for (int i = 1; i <= size; i++) {
235 if (comparator.compare((E)queue[i], (E)o) == 0) {
236 remove(i);
237 return true;
238 }
239 }
240 }
241 return false;
242 }
243
244 public Iterator<E> iterator() {
245 return new Itr();
246 }
247
248 private class Itr implements Iterator<E> {
249 /**
250 * Index (into queue array) of element to be returned by
251 * subsequent call to next.
252 */
253 private int cursor = 1;
254
255 /**
256 * Index of element returned by most recent call to next or
257 * previous. Reset to 0 if this element is deleted by a call
258 * to remove.
259 */
260 private int lastRet = 0;
261
262 /**
263 * The modCount value that the iterator believes that the backing
264 * List should have. If this expectation is violated, the iterator
265 * has detected concurrent modification.
266 */
267 private int expectedModCount = modCount;
268
269 public boolean hasNext() {
270 return cursor <= size;
271 }
272
273 public E next() {
274 checkForComodification();
275 if (cursor > size)
276 throw new NoSuchElementException();
277 E result = (E) queue[cursor];
278 lastRet = cursor++;
279 return result;
280 }
281
282 public void remove() {
283 if (lastRet == 0)
284 throw new IllegalStateException();
285 checkForComodification();
286
287 PriorityQueue.this.remove(lastRet);
288 if (lastRet < cursor)
289 cursor--;
290 lastRet = 0;
291 expectedModCount = modCount;
292 }
293
294 final void checkForComodification() {
295 if (modCount != expectedModCount)
296 throw new ConcurrentModificationException();
297 }
298 }
299
300 /**
301 * Returns the number of elements in this priority queue.
302 *
303 * @return the number of elements in this priority queue.
304 */
305 public int size() {
306 return size;
307 }
308
309 /**
310 * Remove all elements from the priority queue.
311 */
312 public void clear() {
313 modCount++;
314
315 // Null out element references to prevent memory leak
316 for (int i=1; i<=size; i++)
317 queue[i] = null;
318
319 size = 0;
320 }
321
322 /**
323 * Removes and returns the ith element from queue. Recall
324 * that queue is one-based, so 1 <= i <= size.
325 *
326 * XXX: Could further special-case i==size, but is it worth it?
327 * XXX: Could special-case i==0, but is it worth it?
328 */
329 private E remove(int i) {
330 assert i <= size;
331 modCount++;
332
333 E result = (E) queue[i];
334 queue[i] = queue[size];
335 queue[size--] = null; // Drop extra ref to prevent memory leak
336 if (i <= size)
337 fixDown(i);
338 return result;
339 }
340
341 /**
342 * Establishes the heap invariant (described above) assuming the heap
343 * satisfies the invariant except possibly for the leaf-node indexed by k
344 * (which may have a nextExecutionTime less than its parent's).
345 *
346 * This method functions by "promoting" queue[k] up the hierarchy
347 * (by swapping it with its parent) repeatedly until queue[k]
348 * is greater than or equal to its parent.
349 */
350 private void fixUp(int k) {
351 if (comparator == null) {
352 while (k > 1) {
353 int j = k >> 1;
354 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
355 break;
356 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
357 k = j;
358 }
359 } else {
360 while (k > 1) {
361 int j = k >> 1;
362 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
363 break;
364 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
365 k = j;
366 }
367 }
368 }
369
370 /**
371 * Establishes the heap invariant (described above) in the subtree
372 * rooted at k, which is assumed to satisfy the heap invariant except
373 * possibly for node k itself (which may be greater than its children).
374 *
375 * This method functions by "demoting" queue[k] down the hierarchy
376 * (by swapping it with its smaller child) repeatedly until queue[k]
377 * is less than or equal to its children.
378 */
379 private void fixDown(int k) {
380 int j;
381 if (comparator == null) {
382 while ((j = k << 1) <= size) {
383 if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
384 j++; // j indexes smallest kid
385 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
386 break;
387 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
388 k = j;
389 }
390 } else {
391 while ((j = k << 1) <= size) {
392 if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
393 j++; // j indexes smallest kid
394 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
395 break;
396 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
397 k = j;
398 }
399 }
400 }
401
402 public Comparator<? super E> comparator() {
403 return comparator;
404 }
405
406 /**
407 * Save the state of the instance to a stream (that
408 * is, serialize it).
409 *
410 * @serialData The length of the array backing the instance is
411 * emitted (int), followed by all of its elements (each an
412 * <tt>Object</tt>) in the proper order.
413 * @param s the stream
414 */
415 private synchronized void writeObject(java.io.ObjectOutputStream s)
416 throws java.io.IOException{
417 // Write out element count, and any hidden stuff
418 s.defaultWriteObject();
419
420 // Write out array length
421 s.writeInt(queue.length);
422
423 // Write out all elements in the proper order.
424 for (int i=0; i<size; i++)
425 s.writeObject(queue[i]);
426 }
427
428 /**
429 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
430 * deserialize it).
431 * @param s the stream
432 */
433 private synchronized void readObject(java.io.ObjectInputStream s)
434 throws java.io.IOException, ClassNotFoundException {
435 // Read in size, and any hidden stuff
436 s.defaultReadObject();
437
438 // Read in array length and allocate array
439 int arrayLength = s.readInt();
440 queue = new Object[arrayLength];
441
442 // Read in all elements in the proper order.
443 for (int i=0; i<size; i++)
444 queue[i] = s.readObject();
445 }
446
447 }
448