ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.28
Committed: Wed Aug 13 14:11:59 2003 UTC (20 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.27: +2 -1 lines
Log Message:
Added raw cast as workaround for compiler bug

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 * This queue orders
6 * elements according to an order specified at construction time, which is
7 * specified in the same manner as {@link java.util.TreeSet} and
8 * {@link java.util.TreeMap}: elements are ordered
9 * either according to their <i>natural order</i> (see {@link Comparable}), or
10 * according to a {@link java.util.Comparator}, depending on which
11 * constructor is used.
12 * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 * respect to the specified ordering.
14 * If multiple elements are tied for least value, the
15 * head is one of those elements. A priority queue does not permit
16 * <tt>null</tt> elements.
17 *
18 * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 * return the head of the queue.
20 *
21 * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 * not delete, the head of the queue.
23 *
24 * <p>A priority queue has a <i>capacity</i>. The capacity is the
25 * size of the array used internally to store the elements on the
26 * queue.
27 * It is always at least as large as the queue size. As
28 * elements are added to a priority queue, its capacity grows
29 * automatically. The details of the growth policy are not specified.
30 *
31 * <p>Implementation note: this implementation provides O(log(n)) time
32 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
33 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
34 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
35 * constant time for the retrieval methods (<tt>peek</tt>,
36 * <tt>element</tt>, and <tt>size</tt>).
37 *
38 * <p>This class is a member of the
39 * <a href="{@docRoot}/../guide/collections/index.html">
40 * Java Collections Framework</a>.
41 * @since 1.5
42 * @author Josh Bloch
43 */
44 public class PriorityQueue<E> extends AbstractQueue<E>
45 implements Queue<E>, java.io.Serializable {
46
47 private static final int DEFAULT_INITIAL_CAPACITY = 11;
48
49 /**
50 * Priority queue represented as a balanced binary heap: the two children
51 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
52 * ordered by comparator, or by the elements' natural ordering, if
53 * comparator is null: For each node n in the heap and each descendant d
54 * of n, n <= d.
55 *
56 * The element with the lowest value is in queue[1], assuming the queue is
57 * nonempty. (A one-based array is used in preference to the traditional
58 * zero-based array to simplify parent and child calculations.)
59 *
60 * queue.length must be >= 2, even if size == 0.
61 */
62 private transient Object[] queue;
63
64 /**
65 * The number of elements in the priority queue.
66 */
67 private int size = 0;
68
69 /**
70 * The comparator, or null if priority queue uses elements'
71 * natural ordering.
72 */
73 private final Comparator<? super E> comparator;
74
75 /**
76 * The number of times this priority queue has been
77 * <i>structurally modified</i>. See AbstractList for gory details.
78 */
79 private transient int modCount = 0;
80
81 /**
82 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
83 * (11) that orders its elements according to their natural
84 * ordering (using <tt>Comparable</tt>).
85 */
86 public PriorityQueue() {
87 this(DEFAULT_INITIAL_CAPACITY, null);
88 }
89
90 /**
91 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
92 * that orders its elements according to their natural ordering
93 * (using <tt>Comparable</tt>).
94 *
95 * @param initialCapacity the initial capacity for this priority queue.
96 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
97 * than 1
98 */
99 public PriorityQueue(int initialCapacity) {
100 this(initialCapacity, null);
101 }
102
103 /**
104 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
105 * that orders its elements according to the specified comparator.
106 *
107 * @param initialCapacity the initial capacity for this priority queue.
108 * @param comparator the comparator used to order this priority queue.
109 * If <tt>null</tt> then the order depends on the elements' natural
110 * ordering.
111 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112 * than 1
113 */
114 public PriorityQueue(int initialCapacity,
115 Comparator<? super E> comparator) {
116 if (initialCapacity < 1)
117 throw new IllegalArgumentException();
118 this.queue = new Object[initialCapacity + 1];
119 this.comparator = comparator;
120 }
121
122 /**
123 * Common code to initialize underlying queue array across
124 * constructors below.
125 */
126 private void initializeArray(Collection<? extends E> c) {
127 int sz = c.size();
128 int initialCapacity = (int)Math.min((sz * 110L) / 100,
129 Integer.MAX_VALUE - 1);
130 if (initialCapacity < 1)
131 initialCapacity = 1;
132
133 this.queue = new Object[initialCapacity + 1];
134 }
135
136 /**
137 * Initially fill elements of the queue array under the
138 * knowledge that it is sorted or is another PQ, in which
139 * case we can just place the elements without fixups.
140 */
141 private void fillFromSorted(Collection<? extends E> c) {
142 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
143 queue[++size] = i.next();
144 }
145
146
147 /**
148 * Initially fill elements of the queue array that is
149 * not to our knowledge sorted, so we must add them
150 * one by one.
151 */
152 private void fillFromUnsorted(Collection<? extends E> c) {
153 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 add(i.next());
155 }
156
157 /**
158 * Creates a <tt>PriorityQueue</tt> containing the elements in the
159 * specified collection. The priority queue has an initial
160 * capacity of 110% of the size of the specified collection or 1
161 * if the collection is empty. If the specified collection is an
162 * instance of a {@link java.util.SortedSet} or is another
163 * <tt>PriorityQueue</tt>, the priority queue will be sorted
164 * according to the same comparator, or according to its elements'
165 * natural order if the collection is sorted according to its
166 * elements' natural order. Otherwise, the priority queue is
167 * ordered according to its elements' natural order.
168 *
169 * @param c the collection whose elements are to be placed
170 * into this priority queue.
171 * @throws ClassCastException if elements of the specified collection
172 * cannot be compared to one another according to the priority
173 * queue's ordering.
174 * @throws NullPointerException if <tt>c</tt> or any element within it
175 * is <tt>null</tt>
176 */
177 public PriorityQueue(Collection<? extends E> c) {
178 initializeArray(c);
179 if (c instanceof SortedSet) {
180 // @fixme double-cast workaround for compiler
181 SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
182 comparator = (Comparator<? super E>)s.comparator();
183 fillFromSorted(s);
184 } else if (c instanceof PriorityQueue) {
185 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
186 comparator = (Comparator<? super E>)s.comparator();
187 fillFromSorted(s);
188 } else {
189 comparator = null;
190 fillFromUnsorted(c);
191 }
192 }
193
194 /**
195 * Creates a <tt>PriorityQueue</tt> containing the elements in the
196 * specified collection. The priority queue has an initial
197 * capacity of 110% of the size of the specified collection or 1
198 * if the collection is empty. This priority queue will be sorted
199 * according to the same comparator as the given collection, or
200 * according to its elements' natural order if the collection is
201 * sorted according to its elements' natural order.
202 *
203 * @param c the collection whose elements are to be placed
204 * into this priority queue.
205 * @throws ClassCastException if elements of the specified collection
206 * cannot be compared to one another according to the priority
207 * queue's ordering.
208 * @throws NullPointerException if <tt>c</tt> or any element within it
209 * is <tt>null</tt>
210 */
211 public PriorityQueue(PriorityQueue<? extends E> c) {
212 initializeArray(c);
213 comparator = (Comparator<? super E>)c.comparator();
214 fillFromSorted(c);
215 }
216
217 /**
218 * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 * specified collection. The priority queue has an initial
220 * capacity of 110% of the size of the specified collection or 1
221 * if the collection is empty. This priority queue will be sorted
222 * according to the same comparator as the given collection, or
223 * according to its elements' natural order if the collection is
224 * sorted according to its elements' natural order.
225 *
226 * @param c the collection whose elements are to be placed
227 * into this priority queue.
228 * @throws ClassCastException if elements of the specified collection
229 * cannot be compared to one another according to the priority
230 * queue's ordering.
231 * @throws NullPointerException if <tt>c</tt> or any element within it
232 * is <tt>null</tt>
233 */
234 public PriorityQueue(SortedSet<? extends E> c) {
235 initializeArray(c);
236 comparator = (Comparator<? super E>)c.comparator();
237 fillFromSorted(c);
238 }
239
240 /**
241 * Resize array, if necessary, to be able to hold given index
242 */
243 private void grow(int index) {
244 int newlen = queue.length;
245 if (index < newlen) // don't need to grow
246 return;
247 if (index == Integer.MAX_VALUE)
248 throw new OutOfMemoryError();
249 while (newlen <= index) {
250 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
251 newlen = Integer.MAX_VALUE;
252 else
253 newlen <<= 2;
254 }
255 Object[] newQueue = new Object[newlen];
256 System.arraycopy(queue, 0, newQueue, 0, queue.length);
257 queue = newQueue;
258 }
259
260 // Queue Methods
261
262
263
264 /**
265 * Add the specified element to this priority queue.
266 *
267 * @return <tt>true</tt>
268 * @throws ClassCastException if the specified element cannot be compared
269 * with elements currently in the priority queue according
270 * to the priority queue's ordering.
271 * @throws NullPointerException if the specified element is <tt>null</tt>.
272 */
273 public boolean offer(E o) {
274 if (o == null)
275 throw new NullPointerException();
276 modCount++;
277 ++size;
278
279 // Grow backing store if necessary
280 if (size >= queue.length)
281 grow(size);
282
283 queue[size] = o;
284 fixUp(size);
285 return true;
286 }
287
288 public E poll() {
289 if (size == 0)
290 return null;
291 return (E) remove(1);
292 }
293
294 public E peek() {
295 return (E) queue[1];
296 }
297
298 // Collection Methods - the first two override to update docs
299
300 /**
301 * Adds the specified element to this queue.
302 * @return <tt>true</tt> (as per the general contract of
303 * <tt>Collection.add</tt>).
304 *
305 * @throws NullPointerException {@inheritDoc}
306 * @throws ClassCastException if the specified element cannot be compared
307 * with elements currently in the priority queue according
308 * to the priority queue's ordering.
309 */
310 public boolean add(E o) {
311 return super.add(o);
312 }
313
314
315 /**
316 * Adds all of the elements in the specified collection to this queue.
317 * The behavior of this operation is undefined if
318 * the specified collection is modified while the operation is in
319 * progress. (This implies that the behavior of this call is undefined if
320 * the specified collection is this queue, and this queue is nonempty.)
321 * <p>
322 * This implementation iterates over the specified collection, and adds
323 * each object returned by the iterator to this collection, in turn.
324 * @throws NullPointerException {@inheritDoc}
325 * @throws ClassCastException if any element cannot be compared
326 * with elements currently in the priority queue according
327 * to the priority queue's ordering.
328 */
329 public boolean addAll(Collection<? extends E> c) {
330 return super.addAll(c);
331 }
332
333
334 /**
335 * Removes a single instance of the specified element from this
336 * queue, if it is present. More formally,
337 * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
338 * o.equals(e))</tt>, if the queue contains one or more such
339 * elements. Returns <tt>true</tt> if the queue contained the
340 * specified element (or equivalently, if the queue changed as a
341 * result of the call).
342 *
343 * <p>This implementation iterates over the queue looking for the
344 * specified element. If it finds the element, it removes the element
345 * from the queue using the iterator's remove method.<p>
346 *
347 */
348 public boolean remove(Object o) {
349 if (o == null)
350 return false;
351
352 if (comparator == null) {
353 for (int i = 1; i <= size; i++) {
354 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
355 remove(i);
356 return true;
357 }
358 }
359 } else {
360 for (int i = 1; i <= size; i++) {
361 if (comparator.compare((E)queue[i], (E)o) == 0) {
362 remove(i);
363 return true;
364 }
365 }
366 }
367 return false;
368 }
369
370 /**
371 * Returns an iterator over the elements in this queue. The iterator
372 * does not return the elements in any particular order.
373 *
374 * @return an iterator over the elements in this queue.
375 */
376 public Iterator<E> iterator() {
377 return new Itr();
378 }
379
380 private class Itr implements Iterator<E> {
381 /**
382 * Index (into queue array) of element to be returned by
383 * subsequent call to next.
384 */
385 private int cursor = 1;
386
387 /**
388 * Index of element returned by most recent call to next or
389 * previous. Reset to 0 if this element is deleted by a call
390 * to remove.
391 */
392 private int lastRet = 0;
393
394 /**
395 * The modCount value that the iterator believes that the backing
396 * List should have. If this expectation is violated, the iterator
397 * has detected concurrent modification.
398 */
399 private int expectedModCount = modCount;
400
401 public boolean hasNext() {
402 return cursor <= size;
403 }
404
405 public E next() {
406 checkForComodification();
407 if (cursor > size)
408 throw new NoSuchElementException();
409 E result = (E) queue[cursor];
410 lastRet = cursor++;
411 return result;
412 }
413
414 public void remove() {
415 if (lastRet == 0)
416 throw new IllegalStateException();
417 checkForComodification();
418
419 PriorityQueue.this.remove(lastRet);
420 if (lastRet < cursor)
421 cursor--;
422 lastRet = 0;
423 expectedModCount = modCount;
424 }
425
426 final void checkForComodification() {
427 if (modCount != expectedModCount)
428 throw new ConcurrentModificationException();
429 }
430 }
431
432 public int size() {
433 return size;
434 }
435
436 /**
437 * Remove all elements from the priority queue.
438 */
439 public void clear() {
440 modCount++;
441
442 // Null out element references to prevent memory leak
443 for (int i=1; i<=size; i++)
444 queue[i] = null;
445
446 size = 0;
447 }
448
449 /**
450 * Removes and returns the ith element from queue. Recall
451 * that queue is one-based, so 1 <= i <= size.
452 *
453 * XXX: Could further special-case i==size, but is it worth it?
454 * XXX: Could special-case i==0, but is it worth it?
455 */
456 private E remove(int i) {
457 assert i <= size;
458 modCount++;
459
460 E result = (E) queue[i];
461 queue[i] = queue[size];
462 queue[size--] = null; // Drop extra ref to prevent memory leak
463 if (i <= size)
464 fixDown(i);
465 return result;
466 }
467
468 /**
469 * Establishes the heap invariant (described above) assuming the heap
470 * satisfies the invariant except possibly for the leaf-node indexed by k
471 * (which may have a nextExecutionTime less than its parent's).
472 *
473 * This method functions by "promoting" queue[k] up the hierarchy
474 * (by swapping it with its parent) repeatedly until queue[k]
475 * is greater than or equal to its parent.
476 */
477 private void fixUp(int k) {
478 if (comparator == null) {
479 while (k > 1) {
480 int j = k >> 1;
481 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
482 break;
483 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
484 k = j;
485 }
486 } else {
487 while (k > 1) {
488 int j = k >> 1;
489 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
490 break;
491 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
492 k = j;
493 }
494 }
495 }
496
497 /**
498 * Establishes the heap invariant (described above) in the subtree
499 * rooted at k, which is assumed to satisfy the heap invariant except
500 * possibly for node k itself (which may be greater than its children).
501 *
502 * This method functions by "demoting" queue[k] down the hierarchy
503 * (by swapping it with its smaller child) repeatedly until queue[k]
504 * is less than or equal to its children.
505 */
506 private void fixDown(int k) {
507 int j;
508 if (comparator == null) {
509 while ((j = k << 1) <= size) {
510 if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
511 j++; // j indexes smallest kid
512 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
513 break;
514 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
515 k = j;
516 }
517 } else {
518 while ((j = k << 1) <= size) {
519 if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
520 j++; // j indexes smallest kid
521 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
522 break;
523 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
524 k = j;
525 }
526 }
527 }
528
529
530 /**
531 * Returns the comparator used to order this collection, or <tt>null</tt>
532 * if this collection is sorted according to its elements natural ordering
533 * (using <tt>Comparable</tt>).
534 *
535 * @return the comparator used to order this collection, or <tt>null</tt>
536 * if this collection is sorted according to its elements natural ordering.
537 */
538 public Comparator<? super E> comparator() {
539 return comparator;
540 }
541
542 /**
543 * Save the state of the instance to a stream (that
544 * is, serialize it).
545 *
546 * @serialData The length of the array backing the instance is
547 * emitted (int), followed by all of its elements (each an
548 * <tt>Object</tt>) in the proper order.
549 * @param s the stream
550 */
551 private void writeObject(java.io.ObjectOutputStream s)
552 throws java.io.IOException{
553 // Write out element count, and any hidden stuff
554 s.defaultWriteObject();
555
556 // Write out array length
557 s.writeInt(queue.length);
558
559 // Write out all elements in the proper order.
560 for (int i=0; i<size; i++)
561 s.writeObject(queue[i]);
562 }
563
564 /**
565 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
566 * deserialize it).
567 * @param s the stream
568 */
569 private void readObject(java.io.ObjectInputStream s)
570 throws java.io.IOException, ClassNotFoundException {
571 // Read in size, and any hidden stuff
572 s.defaultReadObject();
573
574 // Read in array length and allocate array
575 int arrayLength = s.readInt();
576 queue = new Object[arrayLength];
577
578 // Read in all elements in the proper order.
579 for (int i=0; i<size; i++)
580 queue[i] = s.readObject();
581 }
582
583 }
584