ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.29
Committed: Sun Aug 24 23:31:53 2003 UTC (20 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.28: +12 -0 lines
Log Message:
Mention at top that traversal not ordered

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 * This queue orders
6 * elements according to an order specified at construction time, which is
7 * specified in the same manner as {@link java.util.TreeSet} and
8 * {@link java.util.TreeMap}: elements are ordered
9 * either according to their <i>natural order</i> (see {@link Comparable}), or
10 * according to a {@link java.util.Comparator}, depending on which
11 * constructor is used.
12 * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 * respect to the specified ordering.
14 * If multiple elements are tied for least value, the
15 * head is one of those elements. A priority queue does not permit
16 * <tt>null</tt> elements.
17 *
18 * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 * return the head of the queue.
20 *
21 * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 * not delete, the head of the queue.
23 *
24 * <p>A priority queue has a <i>capacity</i>. The capacity is the
25 * size of the array used internally to store the elements on the
26 * queue.
27 * It is always at least as large as the queue size. As
28 * elements are added to a priority queue, its capacity grows
29 * automatically. The details of the growth policy are not specified.
30 *
31 * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
32 * guaranteed to traverse the elements of the PriorityQueue in any
33 * particular order. If you need ordered traversal, consider using
34 * <tt>Arrays.sort(pq.toArray())</tt>.
35 *
36 * <p> <strong>Note that this implementation is not synchronized.</strong>
37 * Multiple threads should not access a <tt>PriorityQueue</tt>
38 * instance concurrently if any of the threads modifies the list
39 * structurally. Instead, use the thread-safe {@link
40 * java.util.concurrent.BlockingPriorityQueue} class.
41 *
42 *
43 * <p>Implementation note: this implementation provides O(log(n)) time
44 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
45 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
46 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
47 * constant time for the retrieval methods (<tt>peek</tt>,
48 * <tt>element</tt>, and <tt>size</tt>).
49 *
50 * <p>This class is a member of the
51 * <a href="{@docRoot}/../guide/collections/index.html">
52 * Java Collections Framework</a>.
53 * @since 1.5
54 * @author Josh Bloch
55 */
56 public class PriorityQueue<E> extends AbstractQueue<E>
57 implements Queue<E>, java.io.Serializable {
58
59 private static final int DEFAULT_INITIAL_CAPACITY = 11;
60
61 /**
62 * Priority queue represented as a balanced binary heap: the two children
63 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
64 * ordered by comparator, or by the elements' natural ordering, if
65 * comparator is null: For each node n in the heap and each descendant d
66 * of n, n <= d.
67 *
68 * The element with the lowest value is in queue[1], assuming the queue is
69 * nonempty. (A one-based array is used in preference to the traditional
70 * zero-based array to simplify parent and child calculations.)
71 *
72 * queue.length must be >= 2, even if size == 0.
73 */
74 private transient Object[] queue;
75
76 /**
77 * The number of elements in the priority queue.
78 */
79 private int size = 0;
80
81 /**
82 * The comparator, or null if priority queue uses elements'
83 * natural ordering.
84 */
85 private final Comparator<? super E> comparator;
86
87 /**
88 * The number of times this priority queue has been
89 * <i>structurally modified</i>. See AbstractList for gory details.
90 */
91 private transient int modCount = 0;
92
93 /**
94 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
95 * (11) that orders its elements according to their natural
96 * ordering (using <tt>Comparable</tt>).
97 */
98 public PriorityQueue() {
99 this(DEFAULT_INITIAL_CAPACITY, null);
100 }
101
102 /**
103 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
104 * that orders its elements according to their natural ordering
105 * (using <tt>Comparable</tt>).
106 *
107 * @param initialCapacity the initial capacity for this priority queue.
108 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
109 * than 1
110 */
111 public PriorityQueue(int initialCapacity) {
112 this(initialCapacity, null);
113 }
114
115 /**
116 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
117 * that orders its elements according to the specified comparator.
118 *
119 * @param initialCapacity the initial capacity for this priority queue.
120 * @param comparator the comparator used to order this priority queue.
121 * If <tt>null</tt> then the order depends on the elements' natural
122 * ordering.
123 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
124 * than 1
125 */
126 public PriorityQueue(int initialCapacity,
127 Comparator<? super E> comparator) {
128 if (initialCapacity < 1)
129 throw new IllegalArgumentException();
130 this.queue = new Object[initialCapacity + 1];
131 this.comparator = comparator;
132 }
133
134 /**
135 * Common code to initialize underlying queue array across
136 * constructors below.
137 */
138 private void initializeArray(Collection<? extends E> c) {
139 int sz = c.size();
140 int initialCapacity = (int)Math.min((sz * 110L) / 100,
141 Integer.MAX_VALUE - 1);
142 if (initialCapacity < 1)
143 initialCapacity = 1;
144
145 this.queue = new Object[initialCapacity + 1];
146 }
147
148 /**
149 * Initially fill elements of the queue array under the
150 * knowledge that it is sorted or is another PQ, in which
151 * case we can just place the elements without fixups.
152 */
153 private void fillFromSorted(Collection<? extends E> c) {
154 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
155 queue[++size] = i.next();
156 }
157
158
159 /**
160 * Initially fill elements of the queue array that is
161 * not to our knowledge sorted, so we must add them
162 * one by one.
163 */
164 private void fillFromUnsorted(Collection<? extends E> c) {
165 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
166 add(i.next());
167 }
168
169 /**
170 * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 * specified collection. The priority queue has an initial
172 * capacity of 110% of the size of the specified collection or 1
173 * if the collection is empty. If the specified collection is an
174 * instance of a {@link java.util.SortedSet} or is another
175 * <tt>PriorityQueue</tt>, the priority queue will be sorted
176 * according to the same comparator, or according to its elements'
177 * natural order if the collection is sorted according to its
178 * elements' natural order. Otherwise, the priority queue is
179 * ordered according to its elements' natural order.
180 *
181 * @param c the collection whose elements are to be placed
182 * into this priority queue.
183 * @throws ClassCastException if elements of the specified collection
184 * cannot be compared to one another according to the priority
185 * queue's ordering.
186 * @throws NullPointerException if <tt>c</tt> or any element within it
187 * is <tt>null</tt>
188 */
189 public PriorityQueue(Collection<? extends E> c) {
190 initializeArray(c);
191 if (c instanceof SortedSet) {
192 // @fixme double-cast workaround for compiler
193 SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
194 comparator = (Comparator<? super E>)s.comparator();
195 fillFromSorted(s);
196 } else if (c instanceof PriorityQueue) {
197 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
198 comparator = (Comparator<? super E>)s.comparator();
199 fillFromSorted(s);
200 } else {
201 comparator = null;
202 fillFromUnsorted(c);
203 }
204 }
205
206 /**
207 * Creates a <tt>PriorityQueue</tt> containing the elements in the
208 * specified collection. The priority queue has an initial
209 * capacity of 110% of the size of the specified collection or 1
210 * if the collection is empty. This priority queue will be sorted
211 * according to the same comparator as the given collection, or
212 * according to its elements' natural order if the collection is
213 * sorted according to its elements' natural order.
214 *
215 * @param c the collection whose elements are to be placed
216 * into this priority queue.
217 * @throws ClassCastException if elements of the specified collection
218 * cannot be compared to one another according to the priority
219 * queue's ordering.
220 * @throws NullPointerException if <tt>c</tt> or any element within it
221 * is <tt>null</tt>
222 */
223 public PriorityQueue(PriorityQueue<? extends E> c) {
224 initializeArray(c);
225 comparator = (Comparator<? super E>)c.comparator();
226 fillFromSorted(c);
227 }
228
229 /**
230 * Creates a <tt>PriorityQueue</tt> containing the elements in the
231 * specified collection. The priority queue has an initial
232 * capacity of 110% of the size of the specified collection or 1
233 * if the collection is empty. This priority queue will be sorted
234 * according to the same comparator as the given collection, or
235 * according to its elements' natural order if the collection is
236 * sorted according to its elements' natural order.
237 *
238 * @param c the collection whose elements are to be placed
239 * into this priority queue.
240 * @throws ClassCastException if elements of the specified collection
241 * cannot be compared to one another according to the priority
242 * queue's ordering.
243 * @throws NullPointerException if <tt>c</tt> or any element within it
244 * is <tt>null</tt>
245 */
246 public PriorityQueue(SortedSet<? extends E> c) {
247 initializeArray(c);
248 comparator = (Comparator<? super E>)c.comparator();
249 fillFromSorted(c);
250 }
251
252 /**
253 * Resize array, if necessary, to be able to hold given index
254 */
255 private void grow(int index) {
256 int newlen = queue.length;
257 if (index < newlen) // don't need to grow
258 return;
259 if (index == Integer.MAX_VALUE)
260 throw new OutOfMemoryError();
261 while (newlen <= index) {
262 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
263 newlen = Integer.MAX_VALUE;
264 else
265 newlen <<= 2;
266 }
267 Object[] newQueue = new Object[newlen];
268 System.arraycopy(queue, 0, newQueue, 0, queue.length);
269 queue = newQueue;
270 }
271
272 // Queue Methods
273
274
275
276 /**
277 * Add the specified element to this priority queue.
278 *
279 * @return <tt>true</tt>
280 * @throws ClassCastException if the specified element cannot be compared
281 * with elements currently in the priority queue according
282 * to the priority queue's ordering.
283 * @throws NullPointerException if the specified element is <tt>null</tt>.
284 */
285 public boolean offer(E o) {
286 if (o == null)
287 throw new NullPointerException();
288 modCount++;
289 ++size;
290
291 // Grow backing store if necessary
292 if (size >= queue.length)
293 grow(size);
294
295 queue[size] = o;
296 fixUp(size);
297 return true;
298 }
299
300 public E poll() {
301 if (size == 0)
302 return null;
303 return (E) remove(1);
304 }
305
306 public E peek() {
307 return (E) queue[1];
308 }
309
310 // Collection Methods - the first two override to update docs
311
312 /**
313 * Adds the specified element to this queue.
314 * @return <tt>true</tt> (as per the general contract of
315 * <tt>Collection.add</tt>).
316 *
317 * @throws NullPointerException {@inheritDoc}
318 * @throws ClassCastException if the specified element cannot be compared
319 * with elements currently in the priority queue according
320 * to the priority queue's ordering.
321 */
322 public boolean add(E o) {
323 return super.add(o);
324 }
325
326
327 /**
328 * Adds all of the elements in the specified collection to this queue.
329 * The behavior of this operation is undefined if
330 * the specified collection is modified while the operation is in
331 * progress. (This implies that the behavior of this call is undefined if
332 * the specified collection is this queue, and this queue is nonempty.)
333 * <p>
334 * This implementation iterates over the specified collection, and adds
335 * each object returned by the iterator to this collection, in turn.
336 * @throws NullPointerException {@inheritDoc}
337 * @throws ClassCastException if any element cannot be compared
338 * with elements currently in the priority queue according
339 * to the priority queue's ordering.
340 */
341 public boolean addAll(Collection<? extends E> c) {
342 return super.addAll(c);
343 }
344
345
346 /**
347 * Removes a single instance of the specified element from this
348 * queue, if it is present. More formally,
349 * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
350 * o.equals(e))</tt>, if the queue contains one or more such
351 * elements. Returns <tt>true</tt> if the queue contained the
352 * specified element (or equivalently, if the queue changed as a
353 * result of the call).
354 *
355 * <p>This implementation iterates over the queue looking for the
356 * specified element. If it finds the element, it removes the element
357 * from the queue using the iterator's remove method.<p>
358 *
359 */
360 public boolean remove(Object o) {
361 if (o == null)
362 return false;
363
364 if (comparator == null) {
365 for (int i = 1; i <= size; i++) {
366 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
367 remove(i);
368 return true;
369 }
370 }
371 } else {
372 for (int i = 1; i <= size; i++) {
373 if (comparator.compare((E)queue[i], (E)o) == 0) {
374 remove(i);
375 return true;
376 }
377 }
378 }
379 return false;
380 }
381
382 /**
383 * Returns an iterator over the elements in this queue. The iterator
384 * does not return the elements in any particular order.
385 *
386 * @return an iterator over the elements in this queue.
387 */
388 public Iterator<E> iterator() {
389 return new Itr();
390 }
391
392 private class Itr implements Iterator<E> {
393 /**
394 * Index (into queue array) of element to be returned by
395 * subsequent call to next.
396 */
397 private int cursor = 1;
398
399 /**
400 * Index of element returned by most recent call to next or
401 * previous. Reset to 0 if this element is deleted by a call
402 * to remove.
403 */
404 private int lastRet = 0;
405
406 /**
407 * The modCount value that the iterator believes that the backing
408 * List should have. If this expectation is violated, the iterator
409 * has detected concurrent modification.
410 */
411 private int expectedModCount = modCount;
412
413 public boolean hasNext() {
414 return cursor <= size;
415 }
416
417 public E next() {
418 checkForComodification();
419 if (cursor > size)
420 throw new NoSuchElementException();
421 E result = (E) queue[cursor];
422 lastRet = cursor++;
423 return result;
424 }
425
426 public void remove() {
427 if (lastRet == 0)
428 throw new IllegalStateException();
429 checkForComodification();
430
431 PriorityQueue.this.remove(lastRet);
432 if (lastRet < cursor)
433 cursor--;
434 lastRet = 0;
435 expectedModCount = modCount;
436 }
437
438 final void checkForComodification() {
439 if (modCount != expectedModCount)
440 throw new ConcurrentModificationException();
441 }
442 }
443
444 public int size() {
445 return size;
446 }
447
448 /**
449 * Remove all elements from the priority queue.
450 */
451 public void clear() {
452 modCount++;
453
454 // Null out element references to prevent memory leak
455 for (int i=1; i<=size; i++)
456 queue[i] = null;
457
458 size = 0;
459 }
460
461 /**
462 * Removes and returns the ith element from queue. Recall
463 * that queue is one-based, so 1 <= i <= size.
464 *
465 * XXX: Could further special-case i==size, but is it worth it?
466 * XXX: Could special-case i==0, but is it worth it?
467 */
468 private E remove(int i) {
469 assert i <= size;
470 modCount++;
471
472 E result = (E) queue[i];
473 queue[i] = queue[size];
474 queue[size--] = null; // Drop extra ref to prevent memory leak
475 if (i <= size)
476 fixDown(i);
477 return result;
478 }
479
480 /**
481 * Establishes the heap invariant (described above) assuming the heap
482 * satisfies the invariant except possibly for the leaf-node indexed by k
483 * (which may have a nextExecutionTime less than its parent's).
484 *
485 * This method functions by "promoting" queue[k] up the hierarchy
486 * (by swapping it with its parent) repeatedly until queue[k]
487 * is greater than or equal to its parent.
488 */
489 private void fixUp(int k) {
490 if (comparator == null) {
491 while (k > 1) {
492 int j = k >> 1;
493 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
494 break;
495 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
496 k = j;
497 }
498 } else {
499 while (k > 1) {
500 int j = k >> 1;
501 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
502 break;
503 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
504 k = j;
505 }
506 }
507 }
508
509 /**
510 * Establishes the heap invariant (described above) in the subtree
511 * rooted at k, which is assumed to satisfy the heap invariant except
512 * possibly for node k itself (which may be greater than its children).
513 *
514 * This method functions by "demoting" queue[k] down the hierarchy
515 * (by swapping it with its smaller child) repeatedly until queue[k]
516 * is less than or equal to its children.
517 */
518 private void fixDown(int k) {
519 int j;
520 if (comparator == null) {
521 while ((j = k << 1) <= size) {
522 if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
523 j++; // j indexes smallest kid
524 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
525 break;
526 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
527 k = j;
528 }
529 } else {
530 while ((j = k << 1) <= size) {
531 if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
532 j++; // j indexes smallest kid
533 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
534 break;
535 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
536 k = j;
537 }
538 }
539 }
540
541
542 /**
543 * Returns the comparator used to order this collection, or <tt>null</tt>
544 * if this collection is sorted according to its elements natural ordering
545 * (using <tt>Comparable</tt>).
546 *
547 * @return the comparator used to order this collection, or <tt>null</tt>
548 * if this collection is sorted according to its elements natural ordering.
549 */
550 public Comparator<? super E> comparator() {
551 return comparator;
552 }
553
554 /**
555 * Save the state of the instance to a stream (that
556 * is, serialize it).
557 *
558 * @serialData The length of the array backing the instance is
559 * emitted (int), followed by all of its elements (each an
560 * <tt>Object</tt>) in the proper order.
561 * @param s the stream
562 */
563 private void writeObject(java.io.ObjectOutputStream s)
564 throws java.io.IOException{
565 // Write out element count, and any hidden stuff
566 s.defaultWriteObject();
567
568 // Write out array length
569 s.writeInt(queue.length);
570
571 // Write out all elements in the proper order.
572 for (int i=0; i<size; i++)
573 s.writeObject(queue[i]);
574 }
575
576 /**
577 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
578 * deserialize it).
579 * @param s the stream
580 */
581 private void readObject(java.io.ObjectInputStream s)
582 throws java.io.IOException, ClassNotFoundException {
583 // Read in size, and any hidden stuff
584 s.defaultReadObject();
585
586 // Read in array length and allocate array
587 int arrayLength = s.readInt();
588 queue = new Object[arrayLength];
589
590 // Read in all elements in the proper order.
591 for (int i=0; i<size; i++)
592 queue[i] = s.readObject();
593 }
594
595 }
596